Меню

Заряженный конденсатор отключили от аккумулятора

Заряд и разряд конденсатора

Значение диэлектрика

Кроме общего размера обкладок и расстояния между ними, существует ещё один параметр, влияющий на ёмкость — используемый тип изолятора. Фактор, по которому определяется способность диэлектрика повышать ёмкость конденсатора в сравнении с вакуумом, называется диэлектрической проницаемостью и описывается для разных материалов постоянной величиной от 1 и до бесконечности (теоретически):

  • вакуум: 1,0000;
  • воздух: 1,0006;
  • бумага: 2,5—3,5;
  • стекло: 3—10;
  • оксиды металлов 6—20;
  • электротехническая керамика: до 80.

Кроме конденсаторов с твёрдым диэлектриком (керамических, бумажных, плёночных) существуют также электролитические. В последних используют алюминиевые или танталовые пластины с оксидным изолирующим слоем в качестве одного электрода и раствор электролита в качестве другого.

Энергия, которую способны накопить большинство конденсаторов, обычно невелика — не больше сотен джоулей. К тому же она не сохраняется долго из-за неизбежной утечки заряда. Поэтому конденсаторы не могут заменить, например, аккумуляторные батареи в качестве источника питания. И хотя они способны эффективно выполнять только одну работу (сохранение заряда), их применение весьма многообразно в электрических цепях. Конденсаторы используются как фильтры, для сглаживания сетевого напряжения, в качестве устройств синхронизации и для других целей.

Синтаксис

Для пользователей XMPP клиентов, используется команда

где ключи это известные параметры, параметра=значение, разделенные точкой с запятой

Обязателен ключ key=razryad при расчете разаряда конденсатора

и zaryad при расчете заряда

Так как при других параметрах ключах будут рассчитываться совершенно другие формулы. Например баллистического движения или давления над уровнем моря.

Заметьте, чем данный калькулятор отличается от других:

Во первых: данные можно вводить не переводя из наноФарад в Фарады, а килоОмы в Омы. Если уж заданы параметры в единицах измерения то так и пишите. Если не напишите то считается что данные заданы в основным единицах СИ ( то есть метр, Фарад, Ом)

Во вторых: Расчет ведётся по тем параметрым которые можно рассчитать зная исходные.Это очень удобно, когда нужно рассчитать любой из параметров в формуле, когда известны все остальные. Другие известные калькуляторы могут рассчитывать только по определенному алгоритму и только в одну сторону.

Разряд конденсатора

После того как конденсатор зарядился, отключим источник питания и подключим нагрузку R. Так как конденсатор уже заряжен, он сам превратился в источник питания. Нагрузка R образовала проход между пластинами. Отрицательно заряженные электроны, накопленные на одной пластине, согласно силе притяжения между разноименными зарядами, двинутся в сторону положительно заряженных ионов на другой пластине.

В момент подключения R, напряжение на конденсаторе то же, что и после окончания переходного периода зарядки. Начальный ток по закону Ома будет равняться напряжению на обкладках, разделенном на сопротивление нагрузки.

Как только в цепи пойдет ток, конденсатор начнет разряжаться. По мере потери заряда, напряжение начнет падать. Следовательно, ток тоже упадет. По мере понижения значений напряжения и тока, будет снижаться их скорость падения.

Время зарядки и разрядки конденсатора зависит от двух параметров – емкости конденсатора C и общего сопротивления в цепи R. Чем больше емкость конденсатора, тем большее количество заряда должно пройти по цепи, и тем больше времени потребует процесс зарядки/разрядки ( ток определяется как количество заряда, прошедшего по проводнику за единицу времени). Чем больше сопротивление R, тем меньше ток. Соответственно, больше времени потребуется на зарядку.

Продукт RC (сопротивление, умноженное на емкость) формирует временную константу ? (тау). За один ? конденсатор заряжается или разряжается на 63%. За пять ? конденсатор заряжается или разряжается полностью.

Для наглядности подставим значения: конденсатор емкостью в 20 микрофарад, сопротивление в 1 килоом и источник питания в 10В. Процесс заряда будет выглядеть следующим образом:

Заряд конденсатора. Ток

По своему предназначению конденсатор напоминает батарейку, однако все же он сильно отличается по принципу работы, максимальной емкости, а также скорости зарядки/разрядки.

Рассмотрим принцип работы плоского конденсатора. Если подключить к нему источник питания, на одной пластине проводника начнут собираться отрицательно заряженные частицы в виде электронов, на другой – положительно заряженные частицы в виде ионов. Поскольку между обкладками находиться диэлектрик, заряженные частицы не могут «перескочить» на противоположную сторону конденсатора. Тем не менее, электроны передвигаются от источника питания — до пластины конденсатора. Поэтому в цепи идет электрический ток.

В самом начале включения конденсатора в цепь, на его обкладках больше всего свободного места. Следовательно, начальный ток в этот момент встречает меньше всего сопротивления и является максимальным. По мере заполнения конденсатора заряженными частицами ток постепенно падает, пока не закончится свободное место на обкладках и ток совсем не прекратится.

Время между состояниями «пустого» конденсатора с максимальным значением тока, и «полного» конденсатора с минимальным значением тока (т.е. его отсутствием), называют переходным периодом заряда конденсатора.

Читайте также:  Аккумулятор для телефона htc desire 516

Формула

Нахождение тока конденсаторного заряда происходит по формуле, представленной ниже. Измеряется он в фарадах, что равно кулону или вольту.

Формула нахождения заряда конденсатора

В целомэто элемент электросети, накапливающий и сохраняющий напряжение в ней. Бывает разного типа и размера, к примеру, электролитическим, керамическим и танталовым. Состоит, в основном, из нескольких токопроводящих обкладок с диэлектриком. Его емкость зависит от размеров диэлектрика и заполнителя между обкладками. Заряжается благодаря электричеству. Определить ток конденсаторного заряда можно измерительными приборами и формулой.

Устройство и принцип работы

В простейшем варианте конструкция состоит из двух электродов в форме проводящих пластин (называемых обкладками), разделённых диэлектриком, толщина которого ничтожно мала по сравнению с размерами обкладок. Практически применяемые радиоэлектронные компоненты содержат много слоёв диэлектрика и электродов. В качестве обозначения конденсатора на схеме используются два параллельных отрезка с пространством между ними. Они символизируют металлические пластины обкладок физического прибора, электрически разделённые между собой.

Многие считают Майкла Фарадея автором изобретения, но на самом деле это не так. Но он сделал главное — продемонстрировал первые практические примеры и способы использования этого прибора для хранения электрического заряда в своих экспериментах. Благодаря Фарадею человечество получило способ измерять возможность накапливать заряд. Эта величина называется ёмкостью и измеряется в Фарадах.

Работу конденсатора можно проиллюстрировать на примере событий, проходящих во вспышке цифровой фотокамеры за отрезок времени между нажатием кнопки и тем моментом, когда вспышка погаснет. Основой электронной схемы этого осветительного устройства является конденсатор, в котором происходит следующее:

  • Зарядка. После нажатия кнопки поток электронов приходит в конденсатор и останавливается на одной из его пластин благодаря диэлектрику. Этот поток называется зарядным током.
  • Накопление. Поскольку под действием электродвижущей силы всё больше и больше электронов будут поступать на обкладку и распределяться по ней, отрицательный заряд обкладки может расти до момента, пока накопленный потенциал не будет отталкивать поступающий избыточный поток электронов. Вторая пластина из-за дефицита электронов приобретает положительный заряд, по модулю равный отрицательному на первой. Зарядный ток будет протекать до тех пор, пока напряжение на обеих пластинах не сравняется с приложенным. Сила или скорость тока зарядки будет находиться на максимальном уровне в момент, когда пластины полностью разряжены, и приблизится к нулю в момент, когда напряжение на обкладках и источнике будут равны.
  • Сохранение. Поскольку обкладки заряжены противоположно, ионы и электроны будут притягиваться друг к другу, но не смогут соединиться из-за диэлектрической прослойки, создавая электростатическое поле. Благодаря этому полю конденсатор удерживает и сохраняет заряд.
  • Разряд. Если в цепи появляется возможность для электронов протечь другим путём, то напряжение, накопленное между положительными и отрицательными зарядами обкладок, мгновенно реализуется в электрический ток, импульс которого в лампе вспышки преобразуется в световую энергию.

Источник



Что может произойти с вашей электроникой, если ее на нее не подавать питание длительное время

Вы никогда не сталкивались с такой ситуацией, что при подаче питания на электроприбор, то есть при его включении, после длительного перерыва в работе, например, более года, он внезапно выходит из строя? Хотя до последнего выключения он работал исправно. А это имеет место быть. И чем больше был перерыв в работе электроприбора, тем больше вероятность его выхода из строя при включении. Нет, я не утверждаю, что при включении электроприбора в данной ситуации он обязательно выйдет из строя. Но! Вероятность этого события при этом увеличится.

Давайте разберемся, почему это происходит. Почти все электроприборы, от компьютера, до стиральной машины содержат в своем составе электролитические конденсаторы. И в этой статье речь пойдет о них, как об основных виновниках выхода из строя электроприборов. Чтобы понять физические процессы происходящие при этом в электролитических конденсаторах, рассмотрим их устройство.

Электролитический конденсатор состоит из герметичной колбы, в которую запрессованы две обкладки свернутые в спираль. Положительная и отрицательная. Положительная обкладка выполнена из алюминиевой фольги, покрытой тонкой пленкой оксида алюминия, которая исполняет роль диэлектрика в конденсаторе между обкладками.

Отрицательной обкладкой является жидкий электролит, которым пропитана бумажная лента и которая имеет гальванический контакт с неоксидированной (непокрытой пленкой оксида алюминия) алюминиевой фольгой, обеспечивающей надежный контакт между отрицательным выводом конденсатора и электролитом, благодаря их большой площади соприкосновения.

При длительном перерыве в работе, то есть при отсутствии на конденсаторе напряжения в течении этого времени, происходит постепенное разрушение диэлектрика (оксида алюминия) при его взаимодействии с электролитом в отсутствии напряжения на обкладках конденсатора. Это приводит к утончению диэлектрического слоя, к увеличению тока утечки и как следствие, увеличению вероятности пробоя конденсатора при подаче на него номинального напряжения. Этот эффект начинает проявляться при перерыве в работе конденсатора длительностью более года.

Читайте также:  Как померить вольтаж аккумулятора мультиметром

Специалисты в таких случаях рекомендуют проводить тренировку (формовку) конденсаторов, суть которой заключается в подаче на конденсатор в течении длительного времени постепенно увеличивающегося напряжения, с контролем тока утечки. При этом, подача в начале тренировки малого значения напряжения, не приведет к пробою конденсатора, и начнется процесс восстановления диэлектрического слоя (оксида алюминия) благодаря процессу электролиза. И по мере восстановления диэлектрического слоя, напряжение на конденсаторе увеличивается до номинального. Скорость увеличения напряжения определяется по значению тока утечки.

Рекомендации одного из производителей электролитических конденсаторов по проведению тренировки (риформинга).

Еще выдержка из технической документации производителя конденсаторов EPCOS.

Проведем практическую проверку этого эффекта. В качестве подопытного возьму недавно купленный на радиорынке электролитический конденсатор на 3300 мкФ., с номинальным напряжением 25 В., дата изготовления сентябрь 2016 года.

Предполагаю, что с даты изготовления, и до сегодняшнего дня на него никто не подавал напряжение. И потому для эксперимента он подходит, как нельзя лучше. Подам на него с лабораторного источника питания 25 В., и после его заряда в разрыв включу амперметр (прибор Ц-43101) для измерения тока утечки.

Ссылка на видео: https://disk.yandex.ru/i/B1R4rwUrHpjyyQ

Отсюда видно, что ток утечки составил 35 мкА. (вся шкала прибора 250 мкА). Оставляю его под напряжением на 1 час, и повторю измерение.

Ссылка на видео: https://disk.yandex.ru/i/k8fSGwiW3YpzgQ

В этом случае, как мы видим, ток утечки составил 7 мкА. Итого ток утечки уменьшился в 5 раз. Отсюда вывод, вышеизложенное явление подтверждено на практике.

Но не будете, же вы выпаивать из своих компьютеров и телевизоров конденсаторы для их тренировки, после их длительного перерыва в работе. Поэтому включайте свою электронику (подавайте на нее питание) хотя бы раз в год. А иначе после включения, особенно если в вашей электронике применены дешевые конденсаторы из них может выйти белый дым.

Во время моей учебы, мой преподаватель по предмету «радиокомпоненты» как то спросил у нас: так на чем работает вся электроника? Многие начали отвечать, что работает на упорядоченном движении заряженных частиц, и так далее. На что преподаватель в шутку сказал, что вся электроника работает на белом дыме. Пока белый дым находится в электронике, она работает. Как только белый дым выходит из электроники, она перестает работать. Так и в данном случае с нашими электролитическими конденсаторами, подобное может произойти.

Кроме того, электролитические конденсаторы подвержены высыханию. И это их основная проблема, каждый второй ремонт электроники по моему опыту заканчивается заменой именно этой детали. Высыхание происходит из-за плохой герметизации корпуса. Вследствие чего электролит постепенно испаряется, а поскольку он является одной из обкладок конденсатора, то и получается, что испаряется одна обкладка конденсатора. И емкость уменьшается до нуля. Опять же это зависит от качества конденсаторов. С качественными конденсаторами вероятность подобного значительно меньше. Но, к сожалению, при покупке электроники возможности изучить применяемую в ней элементную базу, какие там стоят конденсаторы не всегда возможно.

Подобных недостатков лишены полимерные конденсаторы.

Поэтому, выбирая комплектующие компьютерной техники, старайтесь выбирать комплектующие, выполненные на полимерных конденсаторах. Тем более, что во многих комплектующих визуально открыт доступ к используемой элементной базе. И легко, например, увидеть на материнской плате, какие конденсаторы применяются.

Источник

Зарядка и разрядка конденсатора

Пишу для школьников (для лучшего понимания ими основ физики). Материал излагаю в соответствии с признанной ныне научной трактовкой физических явлений. Критике существующей теории и глубоким теоретическим рассуждениям здесь не место.

Основной характеристикой конденсатора является его электрическая ёмкость С .

Под ёмкостью конденсатора понимается его способность накопить на своих обкладках и удержать на них электрический заряд.

Чем больший электрический заряд соберёт на себе конденсатор, тем больший заряд при разряде он отдаст во внешнюю электрическую цепь.

Ёмкость плоского конденсатора тем больше, чем больше площадь его пластин, чем меньше расстояние между ними и чем больше диэлектрическая проницаемость диэлектрика между его обкладками (объяснение дано в Занятии 53 ):

На практике конденсатор заряжают, присоединив его обкладки к полюсам источника постоянного напряжения.

Как происходит процесс зарядки конденсатора?

До зарядки каждая обкладка конденсатора имела одинаково е количество положительных и отрицательных зарядов, то есть не была заряжена.

Чтобы зарядить конденсатор надо, чтобы какое-то количество свободных электронов перешло с одной обкладки на другую. Поэтому обкладки и получают одинаковые по модулю, но противоположные по знаку заряды.

Вдумаемся в смысл слов:

  • чтобы зарядить конденсатор, надо разъединит ь заряды;
  • чтобы разрядить конденсатор, надо соединить разъединённые заряды.
Читайте также:  Аккумулятор для galaxy gear s3 frontier

Проведём мысленный эксперимент.

Имеются две металлические пластинки . Каждая из них не заряжена . Это значит, что в них содержится одинаковое количество положительных и отрицательных зарядов.

Перемещаться в металле могут только свободные (оторвавшиеся от атомов валентные) электроны.

Представим, что эти пластинки привели в очень тесное соприкосновение, при котором часть свободных электронов перешла, например, с верхней пластинки на нижнюю.

Тогда на поверхности верхней пластинки появится положительный заряд (там будет недостаток электронов). Поверхность же нижней пластинки зарядится отрицательно (на ней избыток электронов).

Пластинки, имеющие противоположные знаки, притягиваются друг к другу. Чтобы их разъединить, надо совершить механическую работу против силы притяжения.

После перемещения пластинок на некоторое расстояние друг от друга (после совершения механической работы), они окажутся заряженными разноимёнными равными по модулю зарядами.

Совершив работу, мы разделили заряды и зарядили пластинки. Совершённая механическая работа перешла в энергию электрического поля, образовавшегося между пластинками, которые можно считать обкладками плоского конденсатора.

Рассуждая так, мы представили процесс зарядки конденсатора.

Теперь представим процесс разрядки конденсатора.

Чтобы разрядить конденсатор, надо соединить разъединённые заряды, то есть вернуть электроны, перешедшие с верхней пластинки на нижнюю, на верхнюю пластинку. Тогда обе пластинки опять окажутся незаряженными.

Для этого надо заряженные пластинки соединить проводом. Тогда свободные электроны с отрицательно заряженной пластинки, отталкиваясь от неё, станут перемещаться в ближайший к пластинке участок провода. В результате заряд отрицательно заряженной пластинки уменьшается.

Количество электронов в этом участке провода ( прилегающего к отрицательно заряженной пластинке) увеличится . Эти электроны передадут движение (энергию) электронам соседнего участка провода и так далее.

Одновременно с другого конца провода, соединённого с положительно заряженной пластинкой, свободные электроны переходят на пластинку , уменьшая её положительный заряд . Направленное движение электронов и здесь передаётся от участка к участку провода.

Перераспределение электронов от участка к участку в проводе (электрический ток) происходит до тех пор, пока количество положительных и отрицательных зарядов в каждой пластинке не станет одинаковым ( пока разъединённые при зарядке пластин заряды не соединятся).

Процесс разрядки конденсатора — это процесс соединения разъединённых зарядов .

Так можно представить процессы зарядки и разрядки конденсатора.

Теперь рассмотрим качественно процесс зарядки конденсатора от источника постоянного тока.

Источник

Разрядка входных конденсаторов блоков питания при их ремонте. Легкий обзор схем.

При ремонте импульсных блоков питания различной аппаратуры необходимо принудительно разряжать оксидные конденсаторы, установленные на выходе сетевого мостового диодного выпрямителя или умножителя.
Конденсаторы заряжаются до напряжения от 115 до 420 вольт в различных схемах блоков. Даже при ёмкости одного установленного конденсатора 100 мкФ на рабочее напряжение 400 В при прикосновении к нему можно получить достаточно сильный удар током, даже с ожогами кожи.
Конденсаторы выпрямленного сетевого напряжения остаются заряженными долгое время после отключения питания, что не только может привести к неожиданному неприятному удару тока, но и привести к повреждению деталей устройства и измерительного оборудования.

Разряжать замыканием выводов конденсатора отвёрткой или другим электропроводящим предметом не рекомендуется, такой разряд не полезен не глазам при вспышке, ни самому конденсатору.

Так как приходится ремонтировать блоки питания решил я собрать себе приспособление для разрядки конденсаторов. Дело в том, что при нормальной работе блока питания входные конденсаторы разряжаются достаточно быстро, а когда блок неисправен напряжение на них остается достаточно долго. Не люблю когда бьют током.
Пошарив по Интернету свел найденные сведения в кучку.

Самый простой способ это лампочка на ватт 15-30 на 220 вольт со щупами.

Все просто, подключаем, наблюдаем вспышку лампы. Разряжено.
Плюсы простота, минусы лампа стекло хранить неудобно спиралька сгорит или стресется устройство не работает.

Разрядник на резисторе с индикацией на неоновой лампе.

Здесь разряд конденсатора идет через резистор R1. Подключаем, наблюдаем загорание и потухание лампы. Разряжено, наверное.
Плюсы простота, небольшие габариты конструкции, минусы неоновая лампа имеет напряжение зажигания более 70-80 вольт, и если будет плохой контакт с конденсатором он разрядится не до конца, всеравно ударит током, хоть и менее больнее, да и наблюдать свечение лампы неудобно, слишком слабое.

Разрядник на резисторе с индикацией на двух светодиодах.

Здесь разряд конденсатора идет через резистор R1 и цепочки диодов. При разряде конденсатора на диодах получается падение напряжения около 2,8 вольта, это дает возможность засветиться и плавно по разряду конденсатора погаснуть одному из светодиодов. Их два, в зависимости от полярности подключения конденсатора будет светиться либо один, либо второй.
Плюсы простота, небольшие габариты конструкции, минусы наверное много диодов.

Мне надо было что-то попроще. Тоже на резисторе, но попроще, но чтобы работало. Решил испробовать такую схемку.

Источник