Меню

Зарядные устройства для шуруповертов схемы своими руками

Зарядные устройства для шуруповертов схемы своими руками

«Народный» зарядник для шуруповёрта

Автор: arhimed2007, arhimed@ukr.net
Опубликовано 27.10.2015
Создано при помощи КотоРед.

Мрр-мяу! Воистину, лень — тормоз прогресса. Уже лет несколько валялся у меня в загашнике шуруповёрт. Польский (если верить паспорту), марки «VERTO», на 12 В. Когда-то выменял его на одну из древних мобил. НОВЫЙ! В УПАКОВКЕ. Но, блин, аккумулятор. С полного заряда его через месяц работы уже не хватало на десяток шурупов. Чуть позже я унюхал кем-то выброшенную начинку от аккумулятора BOSH и ею перепаковал свой аккумулятор. Но. те же грабли! Новые покупать задавила жаба. В общем, забросил я его куда подальше.

Так поляцкий продухт и валялся несколько лет. А недавно мне приволокли в ремонт другой шурик, на 14,4 В, марки «MATRIX». Один из шедших в комплекте аккумуляторов сдох, причём бОльшую часть банок тупо закоротило. В результате зарядное издало пшик и прогорело так, что аж корпус деформировался, и блок питания скис. Как всегда, термопредохранитель. Второй аккумулятор оказался вполне живым.

Естественно, просто восстановить «родной» зарядник — не вариант, если возможны такие дефекты. Нужна как минимум защита от перегрузки. Серьёзный зарядник с анализатором городить было влом, кроме того, в умных книжках говорилось, что самым простым в исполнении для NiCd является «капельный» режим заряда — током 0,1С, где С — численный эквивалент ёмкости батареи в ампер-часах. При этом не случается перезаряда и ток заряда по окончании процесса просто компенсирует саморазряд, который у банок от дядюшки Ляо достаточно высок. Таким образом, зарядник просто должен представлять собой стабилизатор тока. Он же не даст спалить блок питания в случае повторения истории с дохлой батареей.

«Родные» же зарядники, как оказалось, не блещут не только сложностью, но и качеством работы. Токозадающий резистор в них очень часто прогорает до дыр в плате, ток задаётся наобум Лазаря, ни тебе защиты, ни стабилизации! Посему от оригинальных китайских плат было решено избавиться и вставить вместо них более пристойный зарядник.

Изваять оный девайс было решено, как всегда, из подручных средств, а именно старого компьютерного железа. В качестве регулирующего элемента был выбран мощный MOSFET с материнской платы. Типовая схема стабилизатора тока на полевом транзисторе была дополнена индикацией питания и процесса заряда. Получилось вот что:
Собственно стабилизатор тока выполнен на элементах VT2, VT3 и токоизмерительном резисторе R5. Стабилитрон VD2 защищает MOSFET от превышения напряжения сток — затвор. На VT1 выполнен индикатор окончания заряда, гасящий красный светодиод HL2, когда напряжение на истоке VT3 упадёт ниже порога открывания минус падение напряжения на R4. А это, в свою очередь, происходит при увеличении напряжения на батарее свыше 15 В. Второй светодиод горит всё время, индицируя наличие питания на заряднике. Диод VD1 предохраняет батарею от разряда через схему при отключении БП.

В качестве VT1, VT2 были взяты самые распространённые в компьютерном барахле MMBT3904 (корпус SOT-23 с маркировкой 1Ам, t04, р04 или ещё несколько вариантов). VT3 — APM2025, шотя походу сойдёт любой n-MOSFET, применяемый в стабилизаторах питания материнских плат. Резисторы типоразмера 1206 взяты со старых серверных плат, хотя можно применить и меньшие. Просто под 1206 легче изготовить плату. Оттуда же был сдут и конденсатор того же типоразмера. Единственный выводной резистор — R5, который я установил мощностью 3 Вт. Хотя при желании его можно изваять из нескольких включенных параллельно 1210 от винчестеров, они такой ток выдержат.

Плата, как всегда, была разведена в Sprint Layout 6 и выполнена методом ЛУТ. Совмещение сторон выполнялось булавками через отверстия по краям платы. Переходы между слоями выполнены обрезками выводов, запаянными с двух сторон. Красный провод на фото — ошибка, которая в выложенном варианте платы уже исправлена. 🙂 Разводка выполнялась точно под корпус. Разъём блока питания прикошачен непосредственно к плате. Подгонять эту конструкцию под направляющие в корпусе пришлось дремелем с фрезой, хотя можно и резаком, правда, не так аккуратно.

Заработал зарядник сразу и на ура, что говорит об отсутствии ошибок в монтаже. Рабочую батарею зарядил примерно за три часа, дохлая же не вызвала серьёзного перегрева элементов в течение 20 минут, после чего АКБ была перепакована.

Следующим номером я решил сделать аналогичный девайс и под свой 12В шуруповёрт. Ведь ёмкость их аккумуляторов одинакова, значит, и ток заряда такой же. Вдруг когда дойдут руки купить солидные банки для перепаковки его батареи! Вот вариант его платы:

Как оказалось, перепакованные бошевские банки этой штуковиной заряжаются отнюдь не так уж плохо! Заряда батарей хватало примерно на час непрерывной работы, что для такой дешёвки очень даже пристойно. Вся технология изготовления была такой же, как и в клиентском шуруповёрте. Только стабилитрон я поставил советский двунаправленный — его давно надо было куда-нибудь деть 🙂

Разъём был посажен в корпус посредством того же подпиливания дремелем, после чего плата легла как родная.

В итоге имеем несложную и халявную замену примитивным зарядникам, поставляемым в комплекте с дешёвыми шуруповёртами, что позволяет использовать их батареи на всю доступную ёмкость. Разумеется, при нынешних достижениях микроминиатюризации можно напичкать тот же корпус ещё массой дополнительных прибамбасов — таймером, переключателем режимов заряда, звуковой сигнализацией и т.д. Но это всё уже снижает доступность схемы для повторения слесарем дядей Васей 🙂

Источник



Изготовление устройства зарядного для шуруповёрта своими руками

При использовании шуруповёрта пользователи часто сталкиваются с повреждением зарядного устройства (ЗУ). В первую очередь это связано с нестабильностью параметров электрической сети, к которой подключается устройство заряда, а во вторую — с выходом из строя аккумуляторной батареи. Решается эта проблема двумя способами: покупкой нового зарядного устройства для шуруповёрта или его самостоятельным ремонтом.

Читайте также:  Как зарядить аккумулятор зарядным устройством зу 75м

Виды зарядных устройств

Популярность шуруповёрта вызвана тем, что он упрощает процесс закручивания или выкручивания различного крепёжного элемента. Характеризуясь мобильностью и небольшими размерами, он незаменим при сборке мебельных конструкций, разборке техники, кровельных и других строительных работах. Своей мобильностью инструмент обязан входящим в его конструкцию аккумуляторным батареям.

Достоинство применения аккумуляторов в возможности их неоднократного использования. Аккумуляторы, отдавая накопленную энергию устройству, периодически сами нуждаются в подзарядке. Для восстановления величины их ёмкости и служат зарядные устройства.

Зарядка аккумулятора шуруповёрта происходит двумя способами: встроенным или внешним зарядным прибором. Встроенное ЗУ позволяет заряжать батарею, не извлекая её из шуруповёрта. Схема восстановления ёмкости расположена непосредственно вместе с аккумулятором. В то время как выносное подразумевает их извлечение и установку в отдельное приспособление для заряда. Различают ЗУ по типу восстанавливаемых батарей. Применяемые аккумуляторы бывают:

  • никель-кадмиевые (NiCd);
  • никель-металл-гидридные (NiMH);
  • литий-ионные (LiIon).

Конечная стоимость шуруповёрта не в последнюю очередь зависит от типа используемых батарей и возможностей зарядного устройства. ЗУ выпускаются на 12 вольт, 14,4 вольта и 18 вольт. Кроме этого, ЗУ разделяются по возможностям и могут иметь:

  • индикацию;
  • быструю зарядку;
  • разный тип защиты.

Наиболее используемые ЗУ используют в работе медленный заряд, обусловленный малым током. Они не содержат в своей конструкции индикацию работы и не отключаются автоматически. Это более справедливо к встроенным приборам восстановления ёмкости. ЗУ, построенные на импульсных схемах, обеспечивают возможность ускоренного заряда. Они автоматически отключаются по достижению требуемой величины напряжения или в случае возникновения аварийной ситуации.

Типы применяемых батарей

Никель-кадмиевые аккумуляторы не испытывают проблем при заряде в ускоренном режиме. Такие батарейки обладают высокой нагрузочной способностью, невысокой ценой и спокойно переносят работы при минусовой температуре. К недостаткам относят: эффект памяти, токсичность, большую скорость саморазряда. Поэтому перед тем, как заряжать такого типа аккумулятор, его необходимо полностью разрядить. Батарея имеет высокую степень саморазряда и быстро разряжается, даже если её не используют. В настоящее время практически не выпускаются из-за своей токсичности. Из всех типов обладают наименьшей ёмкостью.

Никель-металл-гидридные по всем параметрам превосходят NiCd. У них меньше величина саморазряда, меньше выражен эффект памяти. При одинаковых размерах они имеют большую ёмкость. В их составе нет токсичного материала, кадмия. В ценовой категории этот тип занимает среднее положение, поэтому наиболее распространённый тип ёмкостных элементов в шуруповёрте именно он.

Литий-ионные характеризуются высокой ёмкостью и низким значением саморазряда. Эти аккумуляторы плохо переносят перегрев и глубокий разряд. В первом случае они способны взорваться, а во втором уже не смогут восстановить свою ёмкость. Они также способны работать при отрицательных температурах и не имеют эффекта памяти. Использование ЗУ с микроконтроллером позволило защитить батарею от перезаряда, тем самым сделав этот тип наиболее привлекателен к применению. По цене они дороже, чем первые два типа.

Кроме этого, основной характеристикой аккумуляторных батарей, является их ёмкость. Чем выше этот показатель — тем дольше работает шуруповёрт. Единица измерения ёмкости — миллиампер в час (мА/ч). Конструкция батареи заключается в последовательном соединении элементов питания и помещение их в общий корпус. Для Li-Ion напряжение на одном элементе составляет 3,3 вольта, для NiCd и NiMH — 1,2 вольта.

Принцип работы ЗУ

При выходе из строя ЗУ есть смысл сначала попробовать его восстановить. Для проведения ремонта желательно иметь схему прибора заряда и мультиметр. Схемотехника многих приборов заряда построена на микросхеме HCF4060BE. Её схема включения формирует выдержку интервала времени заряда. Она включает в себя цепь кварцевого генератора и 14-разрядный двоичный счётчик, благодаря чему на ней легко реализовывается таймер.

Принцип работы схемы зарядника проще разобрать на реальном примере. Вот как выглядит она в шуруповёрте Интерскол:

Такая схема предназначена для заряда 14,4-вольтовых аккумуляторов. Она имеет светодиодную индикацию, показывающую подключение в сеть, горит светодиод LED2, и процесс заряда, горит LED1. В качестве счётчика используется микросхема U1 HCF4060BE или её аналоги: TC4060, CD4060. Выпрямитель собран на силовых диодах VD1-VD4 типа 1N5408. Транзистор PNP типа Q1 работает в ключевом режиме, к его выводам подключены управляющие контакты реле S3-12A. Работой ключа управляет контроллер U1.

При включении ЗУ переменное напряжение сети 220 вольт через предохранитель поступает на понижающий трансформатор, на выходе которого её значение составляет 18 вольт. Далее, проходя через диодный мост, выпрямляется и попадает на сглаживающий конденсатор C1 ёмкостью 330 мкФ. Величина напряжения на нём равна 24 вольта. Во время подсоединения батареи контактная группа реле находится в разомкнутом положении. Микросхема U1 запитывается через стабилитрон VD6 постоянным сигналом равным 12 вольт.

Когда кнопка «Пуск» SK1 нажата, на 16-й вывод контроллера U1 поступает стабилизированный сигнал через резистор R6. Ключ Q1 открывается и через него поступает ток на выводы реле. Контакты прибора S3-12A замыкаются и начинается процесс зарядки. Диод VD8, включённый параллельно транзистору, защищает его от скачка напряжения, вызванного отключением реле.

Источник

Зарядное устройство (зарядка) для шуруповерта и его схемы

Шуруповерт — инструмент, который есть почти у каждого домашнего мастера. Как и другие электрические приборы, он требует подключения к сети либо аккумулирует заряд. Наиболее распространен последний вариант. Для подпитки съемного аккумулятора нужно зарядное устройство. Обычно оно есть в наборе. Однако, как и любое другое устройство, зарядка для шуруповерта не застрахована от поломки. Чтобы восстановить работоспособность инструмента, придется приобрести замену или сделать его самостоятельно.

Существует множество зарядок, подходящих для определенных марок и моделей инструментов. Все их можно разбить на основные виды.

Аналоговые со встроенным блоком питания

Аналоговые со встроенным блоком питания — довольно востребованы. Это объясняется невысокой стоимостью. Обычно не относятся к профессиональному оборудованию, быстро выходят из строя и «не хватают звезд с неба». Минимальная задача, которую, как правило, ставят их производители — получить постоянное напряжение и токовую нагрузку, необходимую для работы.

Читайте также:  Зарядное устройство magsafe характеристики

Устройства работают по принципу стабилизатора. Можно сделать самостоятельно, используя приведенную схему. Для работы нужно запомнить:

  1. Напряжение на выходе блока-зарядки — больше номинала батареи.
  2. Подходит любой тип аккумулятора.
  3. Можно использовать обычную монтажную плату.
  4. Такие стабилизаторы применяют компенсационный принцип: ненужная энергия, тепло отводится. Для его рассеивания можно взять, например, медный радиатор. Площадь — 20 см².
  5. Трансформатор на входе (Тр1) изменяет напряжение с 220 до 20 В. Его мощность определяется по току и напряжению на выходе.
  6. Ток выпрямляется диодным мостом (VD1).
  7. Можно позаимствовать решение производителей: сборку диодов Шоттки.
  8. После выпрямления ток — пульсирующий, что вредно. Для сглаживания нужен электролитический конденсатор (С1).
  9. В качестве стабилизатора идет КР142ЕН. Для 12 В ее индекс — 8Б.
  10. Управление — на основе транзистора (VT2) и резисторов (подстроечных).
  11. Автоматическое отключение после зарядки обычно не предусматривается. Придется самостоятельно определять необходимое время. Как вариант, можно использовать цепь, включающую диод (VD2), транзистор (VT1). После зарядки светодиод (HL1) тухнет. Есть и более серьезные варианты с коммутатором и электронным ключом, отключающиеся автоматически.

Если инструмент — бюджетный, схема его «родного» зарядника может быть проще. Неудивительно, что такие изделия быстро выходят из строя. Иногда без зарядки остается сравнительно новый шуруповерт. Используя рассмотренную выше схему, можно ответственно подойти к вопросу и устройство, скорее, прослужит дольше покупного. Подходящие трансформатор и стабилизатор определяются индивидуально для конкретного шуруповерта.

Аналоговые зарядки с внешним блоком питания

Аналоговые с внешним блоком, как видно из названия, состоят:

  • из сетевого блока;
  • зарядника.

Блок — обычный, включает:

  • трансформатор;
  • диодный мост;
  • выпрямитель;
  • конденсаторный фильтр.

В фабричных сборках обычно нет теплоотвода. Его роль может выполнять резистор повышенной мощности. Одна из типичных причин поломок — в тепловом режиме.

Чтобы исправить ситуацию, для начала нужно выяснить, работает ли источник питания. Если функционирует, его дополняют схемой управления, если нет — ищется другой. Вполне подойдет, например, от ноутбука. Он имеет 18 В на выходе, что вполне достаточно. Остальные детали обычно найти не составляет труда. Они очень мало стоят, можно позаимствовать из другой техники.

Схема блока управления представлена ниже. Используется транзистор KT817, для усиления — КТ818. Нужен радиатор. Примерная площадь — 30−40 см². Здесь будет рассеиваться до 10 Вт

Многие китайские производители пытаются экономить буквально на каждой мелочи. Этого нужно избегать, если нужно более или менее достойное качество. В самодельной схеме есть подстроечник на 1 кОм. Он нужен для точной установки тока. На выходе — резистор на 4,7 Ом. Он рассеивает тепло. Светодиод оповестит об окончании зарядки

Полученная плата управления — примерно со спичечный коробок. Она вполне уместится в заводской коробке. Радиатор для транзистора выносить наружу нет необходимости. Достаточно движения воздуха внутри корпуса

Импульсные

Аналоговые устройства долго заряжаются: в среднем — 3−5 часов. Хотя для бытовых целей это не страшно. Другое дело — профессиональная сфера, где «время — деньги». Стоит такая продукция — соответствующе, в наборе обычно два аккумулятора.

Импульсные зарядки для шуруповерта

Профессионалы чаще используют импульсные зарядные устройства. Они обладают интеллектуальной схемой управления процессом. Время полной зарядки впечатляет: около одного часа. Конечно, можно сделать такой же быстрый аналоговый зарядник, но тогда впечатлять будут его вес и размеры.

Импульсные устройства компактны и безопасны. Высокие качества требуют продуманной, сложной схемы. Однако можно повторить и ее. Схема ниже подходит для работы с никель-кадмиевыми аккумуляторами с третьим сигнальным контактом.

Применяется известный контроллер MAX713. Входное напряжение —25 В. Источник питания — простой, поэтому его схемы здесь нет.

Полученное в итоге зарядное для шуруповерта «отличается умом и сообразительностью». Оно проверяет напряжение и включает режим ускоренного заряда. Аккумулятор готов примерно через 1−1,5 часа. Схема позволяет выбирать:

  • напряжение заряда;
  • тип батареи.

На ней указано значение резистора (R 19) для переключения режимов и положение перемычек. Используя предложенный рисунок, можно отремонтировать поломку. Дополнительным стимулом станет финансовый вопрос. Экономия как минимум в два раза.

Зарядка при неисправном аккумуляторе

Иногда бывает так, что сам шуруповерт работает, но сломался аккумулятор. Есть несколько вариантов решения проблемы:

Схема аккумулятора для шуруповерта

  1. Покупка нового.
  2. Ремонт старого. Если это делать самостоятельно, потребуются специальные знания. К тому же не каждый захочет работать с вредными веществами.
  3. Подключение через блок питания. Например, если в наличии распространенный «китаец» на 14,4 В, подойдет автомобильный аккумулятор. Можно собрать свой из трансформатора на 15−17 В. Потребуются диодный мост (выпрямитель) и термостат для борьбы с перегревом. Остальные компоненты — только для контроля за напряжением на входе и выходе. Стабилизатор не нужен.
  4. «Родной» аккумулятор или его заменители вообще можно исключить из конструкции. Шуруповерт будет питаться от сети напрямую.

Модели с разным напряжением

Мало определиться с типом зарядника и маркой производителя, для приобретения нужно знать еще напряжение своего шуруповерта. Самые распространенные варианты — 12, 14 и 18 В.

Зарядки на 12 В

Схема зарядки на 12 В

Цепь может состоять из транзисторов до 4,4 пФ. Это видно на схеме зарядного устройства для шуруповерта 12 вольт. Проводимость в цепи — 9 мк. Конденсаторы нужны, чтобы контролировать скачки тактовой частоты. Применяемые резисторы — обычно полевые. У зарядных устройств на тетродах есть дополнительный фазовый резистор. Он защищает от электромагнитных колебаний.

Зарядки на 12 В работают с сопротивлением до 30 Ом. Нередко их можно встретить на аккумуляторах на 10 мАч. Среди известных производителей чаще применяет Makita.

Читайте также:  Зарядное устройство для автомобильных аккумуляторов с функцией восстановления

Зарядки на 14 В

На схеме видно, что для зарядок на 14 В нужно пять транзисторов. Другие особенности цепи:

  • микросхема подходит только четырехканальная;
  • конденсаторы — импульсные;
  • для работы с аккумуляторами на 12 мАч нужны тетроды;
  • два диода;
  • проводимость — около 5 мк;
  • средняя емкость резистора — не более 6,3 пФ.

Устройства, созданные по схеме, выдерживают ток до 3,3 А. Триггеры включаются в цепь редко. Исключением является продукция Bosch. У изделий Makita триггеры с успехом заменяются волновыми резисторами.

Зарядки на 18 В

Зарядное устройство для шуруповерта 18 вольт использует в схеме лишь транзисторы переходного типа. К другим особенностям изделий относятся:

  • три конденсатора;
  • тетрод и диодный мост;
  • сеточный триггер;
  • проводимость тока — около 5,4 мк, иногда для ее увеличения применяются хроматические резисторы.

Использование трансиверов повышенной проводимости является особенностью отечественной компании «Интерскол». Токовая нагрузка может доходить до 6 А. Makita часто использует в своих моделях дипольные транзисторы высокого качества.

Какой бы производитель шуруповерта ни был выбран, проблему с заменой зарядного устройства можно легко решить. Для этого достаточно хотя бы знать некоторые особенности своего инструмента.

Источник

Простое зарядное для шуруповерта

После года эксплуатации емкость Ni-Cd батарей аккумуляторов двух шуруповёртов резко уменьшилась, а штатное зарядное устройство (ЗУ) не выдержало экспериментов самодеятельных дачных электриков (напряжение сети колебалось в интервале 165…270 В).

Как сделать простое зарядное устройство для шуруповерта своими руками

Вообще-то, штатное зарядное устройство для шуруповерта и при нормальном напряжении вело себя не совсем адекватно, сильно разогревалось, а окончание процесса зарядки установить было невозможно.

Восстановление потерявших ёмкость аккумуляторных батарей (10 шт. Ni-Cd аккумуляторов) я произвёл по методике [1]. В результате одна батарея стала работать удовлетворительно, второй это не помогло, поэтому она была заменена четырьмя Li-Ion аккумуляторами (типоразмер — 18650, ёмкость — 9800 мА ч). Для зарядки этих разных батарей было изготовлено комбинированное зарядное устройство, схема которого показана на сайте.

Ток зарядки определяет суммарная ёмкость конденсаторов С1 и С2 и составляет около 120 мА. Собственное потребление устройства — около 10 мА. Зарядное устройство для шуруповерта допускает значительные колебания напряжения питания, а режим короткого замыкания в цепи нагрузки ему не страшен. Переменный ток выпрямляет диодный мост VD1. Пороговое напряжение, до которого заряжается батарея, устанавливают подстроечными резисторами R9 (Ni-Cd) или R11 (Li-Ion).

Пока батарея не заряжена, ток зарядки протекает через диод VD2, транзисторы VT1 и VT2 закрыты. Светодиод HL1 светит, сигнализируя об этом процессе. При достижении порогового напряжения ток через параллельный стабилизатор напряжения на микросхеме DA1 (который работает как компаратор) резко увеличивается, поэтому последовательно открываются транзисторы VT2 и VT1. В результате ток зарядки протекает через транзистор VT1 и напряжение на нём уменьшается.

В результате светодиод HL1 гаснет, а диод VD2 закрывается, не давая батарее разряжаться. Цепь VD3R7 обеспечивает гистерезис переключения компаратора (примерно 1,8 В), так как после отключения зарядного тока происходит снижение напряжения на батарее. При включении зарядного устройства без подключённой батареи светодиод HL1 кратковременно вспыхивает (частота вспышек определяется ёмкостью конденсатора СЗ). Подобная картина наблюдается и при подключении неисправного аккумулятора с обрывом цепи или малой ёмкостью.

Большинство элементов смонтированы на печатной плате из фольгированного стеклотекстолита, чертёж которой показан на рис. 2. Применены постоянный резистор R1 МЛТ, С2-23, остальные — для поверхностного монтажа типоразмера 1206, конденсаторы С1, С2 использованы из компьютерного импульсного блока питания, можно применить аналогичные, рассчитанные для работы на переменном токе. Оксидный конденсатор СЗ — импортный или К50-6, К50-35. Транзистор IRFZ24N можно заменить транзистором IRFZ34N, IRFZ44N.

Терморезисторы RK1, RK2 можно заменить одним сопротивлением 10…30 Ом, диодный мост 2W10 можно заменить мостом DB107 или четырьмя диодами 1N4007. Такими же диодами можно заменить диоды SMA4007 и КД513А. Светодиод может быть маломощным любого свечения.
Плату размещают на дне пластмассового корпуса подходящего размера, на его верхней крышке сделано отверстие для светодиода, на боковых — отверстия для переключателя, сетевого провода и проводов для подключения аккумуляторной батареи.

Налаживание устройства заключается в установке требуемого порогового напряжения подстроечными резисторами R9 и R11. Вместо аккумулятора временно подключают конденсатор большой ёмкости (2000…5000 мкФ) и вольтметр. Регулировка производится по максимальному показанию вольтметра. Для Li-Ion батареи порог отключения — 16,5 В, так как предельно допустимое напряжение составляет 16,8 В или 4,2В на элемент, порог для Ni-Cd батареи — 15,2 В, так как предельно допустимое напряжение составляет 15,2 В или 1,52В на элемент.

Указанные пороги взяты из имеющейся практики, к сожалению, в различных источниках встречается значительный разброс данного параметра, очевидно, что причиной этому является влияние легирующих присадок и разные условия проведения измерений.

Виды аккумуляторов для шуруповерта

Например, для свинцовых аккумуляторов приведены данные [2] о требуемом напряжении 14,7В при температуре +25 °С, а батарея GP12-4.5-S начинает кипеть уже при 14,1 В, а у автомобильных аккумуляторов такого эффекта не наблюдается.

Можно заряжать и свинцовые аккумуляторы малой ёмкости. При этом пороговое напряжение — 14,2 В или то, что требуется для конкретного типа аккумулятора. Без изменения схемы можно увеличить зарядный ток в несколько раз соответствующим увеличением ёмкости конденсаторов С1 и С2 при соответствующей коррекции печатной платы.

При зарядке аккумуляторной батареи следует соблюдать правила техники безопасности и исключить возможность прикосновения к батарее и другим элементам устройства, поскольку они имеют гальваническую связь с сетью 230 В. Поэтому отключение и подключение заряжаемой батареи следует проводить только при отключённом от сети зарядное устройство. Соответствующую предупреждающую надпись надо обязательно разместить на корпусе устройства.

Источник