Меню

Зарядное устройство kbch 4 схема

Зарядное устройство kbch 4 схема

Зарядное Устройство для любого шуруповерта и не только

В этой статье рассмотрим проект универсального источника питания, который может быть использован в качестве зарядного устройства для портативных электроинструментов и не только.

Особенность такого источника заключается в том, что он относительно простой и самое важное имеется стабилизация, как выходного напряжения, так и тока, то есть с его помощью можно заряжать и литий-ионные аккумуляторы.

Зарядное Устройство для любого шуруповерта и не только

Проектируя его я ставил задачу сделать универсальное, зарядное устройство для шуруповерта, поэтому диапазон выходного напряжения где-то от 11 до 17 вольт с возможностью регулировки, а ток до 1,3 ампер, также с возможностью регулировки. Этого вполне достаточно для зарядки наиболее ходовых электроинструментов 12, 14,4 и 16,8 вольта, но как уже сказал схема универсальна, выходное напряжение и ток можно сделать иными.

Устройство питается непосредственно от сети, снабжены всеми необходимыми защитами, включая защиту от коротких замыканий и перегрева.

Схема состоит из двух основных частей, сетевого понижающего импульсного блока питания и узла стабилизации тока и напряжения, за счет импульсного принципа преобразования устройство имеет высокий кпд, малые размеры и вес.

Зарядное Устройство для любого шуруповерта и не только

Источник питания построен на основе специализированной микросхемы TNY267 или 268, именно от выбора микросхемы зависит мощность зарядного устройства — это целая линейка специализированных микросхем, которые находят широкое применение во всевозможных зарядных устройствах и адаптеров питания.

Самая мощная из этой линейки TNY268 на основе которой можно построить блоки с мощностью до 23 ватт, фактически схема сетевого преобразователя может быть любой, хоть на сотни ватт, если в этом есть необходимость, важно чтобы преобразователь имел линию обратной связи.

Как мы знаем, для того чтобы обеспечить полноценную стабилизацию тока и напряжения, шим контроллер, на основе которого построен преобразователь, должен иметь два усилителя ошибки, например TL494. Особенностью нашей схемы является то, что стабилизация тока и напряжение реализованы через один единственный канал обратной связи, но вернемся к нашей микросхеме TNY268 — она выбрана неспроста, во-первых блоки питания на основе данных микросхем имеют минимальную обвязку и самое главное импульсный трансформатор имеет всего две обмотки, сетевая и вторичная.

Зарядное Устройство для любого шуруповерта и не только

Дополнительной обмотки мотать в данном случае не нужно, к тому же в самой микросхеме уже есть всё необходимое для работы, включая полноценный шим контроллер, система защиты и даже силовой транзистор это удобно и дешево.

Я сделал несколько источников питания используя микросхемы, как TNY267 так и 268, работают аналогично хорошо.

Вторая часть зарядки состоит из сдвоенного операционного усилителя lm358, источника опорного напряжения tl431 и мелочевки, имеется пара подстроечных резисторов для регулировки тока и напряжения.

Зарядное Устройство для любого шуруповерта и не только

Этот узел наиболее важен, поскольку им можно дополнить любой другой блок питания любой мощности и получить регулируемое по току и напряжению зарядное устройство.

Давайте подробно рассмотрим, как работает этот узел… Первый канал операционного усилителя задействован для стабилизации тока, второй для напряжения, в схеме стабилизации тока имеется токовый шунт, в нашем случае представляющий собой низкоомный, 2-ватный резистор R6.

Опорное напряжение 2,5 вольта задается микросхемой tl431, тут она работает чисто как стабилитрон. Резистор R15 задаёт ток стабилизации, в зависимости от запланированного выходного напряжения необходим пересчёт данного резистора таким образом, чтобы ток стабилизации был в районе 5-10 максимум 20 миллиампер — плюс минус.

Опорное напряжение, через резистивный делитель, подается на инверсный вход операционного усилителя, притом важно заметить что один из резисторов делителя — подстрочный, вращая его мы можем изменять опорное напряжение на инверсном входе операционника.

Зарядное Устройство для любого шуруповерта и не только

На прямой вход, того же канала операционного усилителя поступает падение напряжения с датчика тока, при подключении нагрузки на выход источника по шунту будет протекать определенный ток, что приведет к образованию падения напряжения на нём — это напряжение поступит на прямой вход операционного усилителя, где оно будет сравнено с опорным напряжением на другом входе, если падение напряжения на шунте большие опорного напряжения, на выходе операционного усилителя получим высокий уровень — засветятся соответствующий светодиод и одновременно светодиод оптопары, которая задействована тут в цепи обратной связи.

Зарядное Устройство для любого шуруповерта и не только

Микросхема TNY моментально отреагирует на это и её внутренней транзистор меньше времени будет находиться в открытом состоянии, следовательно меньше мощности пойдет в трансформатор.

Зарядное Устройство для любого шуруповерта и не только

Разумеется при этом уменьшится ток во вторичной цепи, следовательно уменьшится падение напряжения на датчики тока до тех пор, пока напряжение на входах операционного усилителя не уравняться. Точно таким же образом работает функция стабилизации напряжения, которая построена на втором канале операционного усилителя, только на сей раз с опорным напряжением сравнивается часть выходного напряжения, свечение 2 светодиода говорит о том, что блок работает как стабилизатор напряжения, то есть наш источник работает либо, как стабилизатор напряжения, поддерживая выставленное, выходное напряжение, либо в качестве стабилизатора тока, ограничивая выходной ток на заданном уровне, но тут есть один недостаток о котором поговорим в конце.

Подстроечные резисторы — позволят изменять выходные параметры, делители в опорных цепях и датчик тока, рассчитаны именно для указанных параметров, если вам нужны иные значения напряжения и тока придётся пересчитать опорные цепи, но перед тем, как это сделать нужно понять, что всё упирается в мощность преобразователя и выше 23 ватт снимать нельзя, если использована микросхема TNY268 и имеется хорошее охлаждение.

Используя закон ома можно понять позволит ли микросхема построить источник с вашими требованиями, если нет, то можно использовать иную, более мощную схему преобразователя, а узел стабилизации и тока оставить этот.

Трансформатор, сперва важно указать, что наша микросхема работает на фиксированной частоте в 132 килогерца, в моём источнике применен ШЕ-образный, ферритовый трансформатор с начальная проницаемостью 2300, данные намотки указаны именно для этого трансформатора, в случае иных сердечников, обмотки нужно пересчитать, сделать это можно с помощью специализированных программ и приложений для расчета трансформаторов, однотактных обратно-ходовых источников питания.

Необходимо также заметить о наличии не магнитного зазора между половинками сердечника, в данном случае зазор около 0,3-0,4 миллиметров.

Как на плате, так и на схеме, точками указаны начала намотки обмоток, если перепутать, работать схема не будет. Для того, чтобы ничего не путать начало намотки желательно промаркировать, например одевая термоусадку на провод.

Зарядное Устройство для любого шуруповерта и не только

Обмотки мотаются в одинаковом направлении, например по часовой стрелке, для начала на голой каркас мотается половина первичной обмотки, вообще можно и всю обмотку сразу, но так правильнее. Обмотку мотаем послойно, каждый слой изолируем, например карбоновым, термостойким скотчем, одного-двух слоев изоляция хватит.

Зарядное Устройство для любого шуруповерта и не только

После намотки и половины первичной обмотки мотаем всю вторичную обмотку целиком, тоже послойно, если она полностью не влезет в один ряд, далее поверх вторичной обмотки ставим изоляцию слоев так 3-4 и мотаем остальную половину первичной обмотки, тем же способом, что и первую половину.

В итоге у нас получается четыре отвода от первичной обмотки, каждые два провода являются цельной обмоткой и начало каждой обмотки мы промаркировали, теперь берём начало одной обмотки и соединяем с концом другой, получим отвод, который в схеме использоваться не будет, как итог мы получаем одну, цельную, первичную обмотку.

Зарядное Устройство для любого шуруповерта и не только

Теперь необходимо собрать трансформатор, не забывая о зазоре между половинками сердечника, для получения зазора можно взять к примеру чек от банкомата, вырезать полоску, сложить вдвое и установить под центральным или крайними краями сердечника.

Далее, стягиваем половинки сердечника скотчем и устанавливаем трансик на плату.

После полной проверки схемы на работоспособность, половинки сердечника для надежности, можно заклеить клеем.

Зарядное Устройство для любого шуруповерта и не только

Выходной дроссель в моем случае намотан на ферритовой гантельки и имеет индуктивность около 15 микрогенри, использован провод 0,7 миллиметров, но практика показала, что дроссель можно вовсе исключить, просто поставив перемычку, на работу это никак не повлияло.

То же самое можно сказать и о сетевом фильтре, так как блок маломощный, особо сильно гадить в сеть он не будет, но естественно с фильтром — правильней.

Идём дальше, в делителях напряжения необходимо использовать точные и стабильные резисторы с допуском 1 процента и меньше, но в любом случае будет некоторый разброс и идеально рассчитать выходное напряжение и ток довольно трудно, но в схеме у нас имеются подстроечные резисторы, которые позволят очень точно выставить выходные параметры источника.

Используя этот принцип можно пересчитать блок под ваши нужды, снять больший ток, большее напряжение, да хоть пуско-зарядное можно сделать, но о нём поговорим в следующих статьях.

Введите электронную почту и получайте письма с новыми поделками.

Если устройство будет работать в герметичном корпусе, без вентиляционных отверстий, то мощность источника необходимо снизить, а на микросхему с применением теплопроводящего клея желательно приклеить небольшой теплоотвод.

Недостатком данных схем является то, что стабилизация тока работать не будет, если на выход схемы не подключен заряжаемый аккумулятор, это происходит по той причине, что при подключении нагрузки, схема автоматически уменьшает выходное напряжение, чтобы поддерживать заданный ток, в какой то момент выходного напряжения становится недостаточным для питания операционного усилителя и опорного источника.

Зарядное Устройство для любого шуруповерта и не только

Если же к выходу подключён аккумулятор, то ранее упомянутые узлы будут питаться от самого аккумулятора, то есть выставить ток заряда необходимо только при подключенном аккумуляторе, именно аккумулятор, а не другая нагрузка.

Фактически вторую часть схемы можно прикрутить к любому импульсному источнику с обратной связью.

Как происходит зарядка думаю вы уже поняли, в холостую без подключенного аккумулятора вращением резистора R11 нужно выставить напряжение окончания заряда, например для трёх последовательно соединенных банок литий-ионных аккумуляторов — это напряжение составляет 12,6 вольта.

Зарядное Устройство для любого шуруповерта и не только

В холостую у нас будет светиться зеленый светодиод, что говорит о работе блока в режиме стабилизации напряжения, далее подключается разряженный аккумулятор, вращением подстрочника R5, выставляем ток заряда. При этом зеленый светодиод потухнет и засветится красный, блок работает в режиме стабилизации тока по мере заряда аккумуляторной батареи, когда ток будет меньше, чем за данный лимит, красный светодиод потухнет и засветится зеленый.

Зарядное Устройство для любого шуруповерта и не только

Важно, выходное напряжение такого источника не должно быть выше 32 вольт — это максимальное питающее напряжение для lm358, который запитан напрямую с выхода источника питания.

Минимальное, выходное напряжение может быть в районе 3 — 3,5 вольт, но лучше сделать от 5 — 6 вольт, если в этом есть необходимость.

Источник



Изготовление устройства зарядного для шуруповёрта своими руками

Зарядное устройство шуруповертов

При использовании шуруповёрта пользователи часто сталкиваются с повреждением зарядного устройства (ЗУ). В первую очередь это связано с нестабильностью параметров электрической сети, к которой подключается устройство заряда, а во вторую — с выходом из строя аккумуляторной батареи. Решается эта проблема двумя способами: покупкой нового зарядного устройства для шуруповёрта или его самостоятельным ремонтом.

Виды зарядных устройств

Популярность шуруповёрта вызвана тем, что он упрощает процесс закручивания или выкручивания различного крепёжного элемента. Характеризуясь мобильностью и небольшими размерами, он незаменим при сборке мебельных конструкций, разборке техники, кровельных и других строительных работах. Своей мобильностью инструмент обязан входящим в его конструкцию аккумуляторным батареям.

Достоинство применения аккумуляторов в возможности их неоднократного использования. Аккумуляторы, отдавая накопленную энергию устройству, периодически сами нуждаются в подзарядке. Для восстановления величины их ёмкости и служат зарядные устройства.

Зарядка аккумулятора шуруповёрта происходит двумя способами: встроенным или внешним зарядным прибором. Встроенное ЗУ позволяет заряжать батарею, не извлекая её из шуруповёрта. Схема восстановления ёмкости расположена непосредственно вместе с аккумулятором. В то время как выносное подразумевает их извлечение и установку в отдельное приспособление для заряда. Различают ЗУ по типу восстанавливаемых батарей. Применяемые аккумуляторы бывают:

  • никель-кадмиевые (NiCd);
  • никель-металл-гидридные (NiMH);
  • литий-ионные (LiIon).

Конечная стоимость шуруповёрта не в последнюю очередь зависит от типа используемых батарей и возможностей зарядного устройства. ЗУ выпускаются на 12 вольт, 14,4 вольта и 18 вольт. Кроме этого, ЗУ разделяются по возможностям и могут иметь:

  • индикацию;
  • быструю зарядку;
  • разный тип защиты.
Читайте также:  Зарядное устройство 18в для литиевых аккумуляторов

Наиболее используемые ЗУ используют в работе медленный заряд, обусловленный малым током. Они не содержат в своей конструкции индикацию работы и не отключаются автоматически. Это более справедливо к встроенным приборам восстановления ёмкости. ЗУ, построенные на импульсных схемах, обеспечивают возможность ускоренного заряда. Они автоматически отключаются по достижению требуемой величины напряжения или в случае возникновения аварийной ситуации.

Типы применяемых батарей

Как выбрать зарядку для шуруповертов

Никель-кадмиевые аккумуляторы не испытывают проблем при заряде в ускоренном режиме. Такие батарейки обладают высокой нагрузочной способностью, невысокой ценой и спокойно переносят работы при минусовой температуре. К недостаткам относят: эффект памяти, токсичность, большую скорость саморазряда. Поэтому перед тем, как заряжать такого типа аккумулятор, его необходимо полностью разрядить. Батарея имеет высокую степень саморазряда и быстро разряжается, даже если её не используют. В настоящее время практически не выпускаются из-за своей токсичности. Из всех типов обладают наименьшей ёмкостью.

Никель-металл-гидридные по всем параметрам превосходят NiCd. У них меньше величина саморазряда, меньше выражен эффект памяти. При одинаковых размерах они имеют большую ёмкость. В их составе нет токсичного материала, кадмия. В ценовой категории этот тип занимает среднее положение, поэтому наиболее распространённый тип ёмкостных элементов в шуруповёрте именно он.

Литий-ионные характеризуются высокой ёмкостью и низким значением саморазряда. Эти аккумуляторы плохо переносят перегрев и глубокий разряд. В первом случае они способны взорваться, а во втором уже не смогут восстановить свою ёмкость. Они также способны работать при отрицательных температурах и не имеют эффекта памяти. Использование ЗУ с микроконтроллером позволило защитить батарею от перезаряда, тем самым сделав этот тип наиболее привлекателен к применению. По цене они дороже, чем первые два типа.

Кроме этого, основной характеристикой аккумуляторных батарей, является их ёмкость. Чем выше этот показатель — тем дольше работает шуруповёрт. Единица измерения ёмкости — миллиампер в час (мА/ч). Конструкция батареи заключается в последовательном соединении элементов питания и помещение их в общий корпус. Для Li-Ion напряжение на одном элементе составляет 3,3 вольта, для NiCd и NiMH — 1,2 вольта.

Принцип работы ЗУ

При выходе из строя ЗУ есть смысл сначала попробовать его восстановить. Для проведения ремонта желательно иметь схему прибора заряда и мультиметр. Схемотехника многих приборов заряда построена на микросхеме HCF4060BE. Её схема включения формирует выдержку интервала времени заряда. Она включает в себя цепь кварцевого генератора и 14-разрядный двоичный счётчик, благодаря чему на ней легко реализовывается таймер.

Принцип работы схемы зарядника проще разобрать на реальном примере. Вот как выглядит она в шуруповёрте Интерскол:

Схема самодельного зарядного устройства

Такая схема предназначена для заряда 14,4-вольтовых аккумуляторов. Она имеет светодиодную индикацию, показывающую подключение в сеть, горит светодиод LED2, и процесс заряда, горит LED1. В качестве счётчика используется микросхема U1 HCF4060BE или её аналоги: TC4060, CD4060. Выпрямитель собран на силовых диодах VD1-VD4 типа 1N5408. Транзистор PNP типа Q1 работает в ключевом режиме, к его выводам подключены управляющие контакты реле S3-12A. Работой ключа управляет контроллер U1.

При включении ЗУ переменное напряжение сети 220 вольт через предохранитель поступает на понижающий трансформатор, на выходе которого её значение составляет 18 вольт. Далее, проходя через диодный мост, выпрямляется и попадает на сглаживающий конденсатор C1 ёмкостью 330 мкФ. Величина напряжения на нём равна 24 вольта. Во время подсоединения батареи контактная группа реле находится в разомкнутом положении. Микросхема U1 запитывается через стабилитрон VD6 постоянным сигналом равным 12 вольт.

Когда кнопка «Пуск» SK1 нажата, на 16-й вывод контроллера U1 поступает стабилизированный сигнал через резистор R6. Ключ Q1 открывается и через него поступает ток на выводы реле. Контакты прибора S3-12A замыкаются и начинается процесс зарядки. Диод VD8, включённый параллельно транзистору, защищает его от скачка напряжения, вызванного отключением реле.

Как устроено зарядное устройство

Используемая кнопка SK1 работает без фиксации. При её отпускании всё питание поступает через цепочку VD7, VD6 и ограничительное сопротивление R6. И также питание подаётся на светодиод LED1 через резистор R1. Светодиод загорается, сигнализируя, что начат процесс заряда. Время работы микросхемы U1 настроено на один час работы, после чего питание снимается с транзистора Q1 и, соответственно, с реле. Его контактная группа разрывается и ток заряда пропадает. Светодиод LED1 гаснет.

Этот прибор заряда оборудован схемой защиты от перегрева. Реализуется такая защита с помощью датчика температуры — термопара SA1. Если во время процесса температура достигнет значения более 45 градусов Цельсия, то термопара сработает, микросхема получит сигнал и цепь заряда разорвётся. После окончания процесса напряжение на клеммах батареи достигает 16,8 вольт.

Такой способ зарядки не считается интеллектуальным, ЗУ не может определить, в каком состоянии находится батарея. Из-за чего продолжительность работы шуруповёрта от аккумулятора будет уменьшаться в связи с развитием у него эффекта памяти. То есть ёмкость аккумулятора каждый раз после заряда снижается.

Самодельные приборы для заряда

Самостоятельно сделать зарядку для шуруповёрта на 12 вольт своими руками, по аналогии с той, что применяется в ЗУ Интерскол, довольно просто. Для этого потребуется воспользоваться способностью термореле разрывать контакт при достижении определённой температуры.

Как собрать зарядное устройство

В схеме R1 и VD2 представляют собой датчик прохождения тока заряда, R1 предназначен для защиты диода VD2. При подаче напряжения транзистор VT1 открывается, через него проходит ток и светодиод LH1 начинает светиться. Величина напряжения падает на цепочке R1, D1 и прикладывается к аккумулятору. Ток заряда проходит через термореле. Как только температура аккумулятора, к которому подключено тепловое реле, превысит допустимое значение, оно срабатывает. Контакты реле переключаются, и ток заряда начинает протекать через сопротивление R4, светодиод LH2 загорается, сообщая об окончании заряда.

Схема на двух транзисторах

Ещё одно простое устройство можно выполнить на доступных элементах. Эта схема работает на двух транзисторах КТ829 и КТ361.

Самодельные зарядочные устройства

Величина тока заряда управляется транзистором КТ361 к коллектору, которого подключён светодиод. Этот транзистор также управляет состоянием составного элемента КТ829. Как только ёмкость батареи начинает увеличиваться, ток заряда уменьшается и светодиод соответственно плавно гаснет. Сопротивлением R1 задаётся максимальный ток.

Момент полного заряда батареи определяется необходимым напряжением на ней. Требуемая величина выставляется переменным резистором на 10 кОм. Чтобы её проверить, понадобится поставить вольтметр на клеммах подключения батареи, не подключая её саму. В качестве источника постоянного напряжения используется любой выпрямительный блок, рассчитанный на ток не менее одного ампера.

Использование специализированной микросхемы

Производители шуруповёртов стараются снизить цены на свою продукцию, часто это достигается путём упрощения схемы ЗУ. Но такие действия приводят к быстрому выходу из строя самой батареи. Применяя универсальную микросхему, предназначенную именно для ЗУ компании MAXIM MAX713, можно добиться хороших показателей процесса заряда. Вот как выглядит схема зарядного устройства для шуруповёрта на 18 вольт:

Как по схеме собрать зарядочное устройство для шуруповерта

Микросхема MAX713 позволяет заряжать никель-кадмиевые и никель-металл-гидридные аккумуляторы в режиме быстрого заряда, током до 4 C. Она умеет отслеживать параметры батареи и при необходимости снижать ток автоматически. По окончании зарядки схема на основе микросхемы практически не потребляет энергии от аккумулятора. Может прерывать свою работу по времени или при срабатывании термодатчика.

HL1 служит для индикации питания, а HL2 — для отображения быстрого заряда. Настройка схемы заключается в следующем. Для начала выбирается зарядный ток, обычно его значение составляет величину равную 0,5 C, где C — ёмкость аккумулятора в амперчасах. Вывод PGM1 соединяется с плюсом напряжения питания (+U). Мощность выходного транзистора рассчитывается по формуле P=(Uвх — Uбат)*Iзар, где:

  • Uвх – наибольшее напряжение на входе;
  • Uбат – напряжение на аккумулятор;
  • Iзар – зарядный ток.

Сопротивление R1 и R6 рассчитывается по формулам: R1=(Uвх-5)/5, R6=0.25/Iзар. Выбор времени, через которое зарядный ток отключится, определяется подключением контактов PGM2 и PGM3 к разным выводам. Так, для 22 минут PGM2 оставляется неподключенным, а PGM3 соединяется с +U, для 90 минут PGM3 коммутируется с 16 ногой микросхемы REF. Когда понадобится увеличить время зарядки до 180 минут PGM3 закорачивают с 12 ногой MAX713. Наибольшее время 264 минуты достигается соединением PGM2 со второй ногой, а PGM3 с 12 ногой микросхемы.

Зарядка шуруповёрта без зарядного

Восстановить батарею без помощи ЗУ несложно, но многие не представляют, как. Зарядить аккумулятор шуруповёрта без зарядного устройства можно, используя любой блок питания с постоянным напряжением. Величина его должна быть равной или немного больше значения напряжения заряжаемого аккумулятора. Например, для 12V батареи можно взять выпрямитель для зарядки автомобиля. С помощью клеммных зажимов и проводов подключить, соблюдая полярность, их друг к другу минут на тридцать, при этом контролируя температуру батареи.

А можно провести доработку и устройства питания с большим напряжением, воспользовавшись простым интегральным стабилизатором. Микросхема LM317 позволяет управлять входным сигналом до 40 вольт. Понадобится два стабилизатора: один включается по схеме стабилизации напряжения, а второй — тока. Такую схему можно применить и при переделке ЗУ, не имеющего узлов контроля процесса зарядки.

Принцип работы зарядочного устройства

Зарядка для шуруповерта

Работает схема совсем несложно. Во время работы образуется падение напряжения на резисторе R1, его хватает для того, чтобы засветился светодиод. По мере заряда ток в цепи падает. Через некоторое время напряжение на стабилизаторе будет малым и светодиод погаснет. Резистор Rx задаёт наибольший ток. Его мощность выбирается не менее 0,25 ватт. При использовании такой схемы аккумулятор не сможет перегреваться, поскольку устройство автоматически отключается при полном заряде батареи.

Часто можно встретить вредные советы, что зарядить аккумулятор можно, используя диодный мост и лампу накаливания на 100 Вт. Так делать категорически нельзя, потому что отсутствует гальваническая развязка и, кроме смертельного поражения электрическим током, существует большая вероятность взрыва батареи.

Originally posted 2018-04-06 09:06:40.

Источник

Практические схемы универсальных зарядных устройств для аккумуляторов

Ситуация была терпимой до того момента, пока не появилась необходимость в массовой подготовке и, соответственно, зарядке батарей. Понадобилось изготовить несколько универсальных ЗУ — недорогих, работающих в широком диапазоне входных и выходных напряжений и зарядных токов.

К этому моменту у меня уже была линейка отработанных схем, осталось лишь воплотить схему в готовое устройство, и попутно поделиться своими решениями. Вдруг камрадам пригодится!

Содержание / Contents

  • 1 Схема ЗУ № 1 (TL494)
  • 2 Калибровка порога и гистерезиса зарядного устройства
  • 3 Схема ЗУ № 2 (TL494)
  • 4 Схема ЗУ № 3 (TL494)
  • 5 Схема ЗУ № 3а (TL494)
  • 6 Схема ЗУ № 4 (TL494)
  • 7 Схема ЗУ № 5 (MC34063)
  • 8 Схема ЗУ № 6 (UC3843)
  • 9 Схема ЗУ № 7 (TL494)
  • 10 Схема № 8
  • 11 Конструкция зарядного устройства

Предлагаемые ниже схемы ЗУ были разработаны для зарядки литий-ионных аккумуляторов, но существует возможность зарядки и других типов аккумуляторов и составных батарей (с применением однотипных элементов, далее — АБ).

Все представленные схемы имеют следующие основные параметры:
• входное напряжение 15-24 В;
• ток заряда (регулируемый) до 4 А;
• выходное напряжение (регулируемое) 0,7 — 18 В (при Uвх=19В).

Все схемы были ориентированы на работу с блоками питания от ноутбуков либо на работу с другими БП с выходными напряжениями постоянного тока от 15 до 24 Вольт и построены на широко распространенных компонентах, которые присутствуют на платах старых компьютерных БП, БП прочих устройств, ноутбуков и пр.

↑ Схема ЗУ № 1 (TL494)

ЗУ на схеме 1 является мощным генератором импульсов, работающим в диапазоне от десятков до пары тысяч герц (частота варьировалась при исследованиях), с регулируемой шириной импульсов.
Зарядка АБ производится импульсами тока, ограниченного обратной связью, образованной датчиком тока R10, включенным между общим проводом схемы и истоком ключа на полевом транзисторе VT2 (IRF3205), фильтром R9C2, выводом 1, являющимся «прямым» входом одного из усилителей ошибки микросхемы TL494.

На инверсный вход (вывод 2) этого же усилителя ошибки подается регулируемое посредством переменного резистора PR1, напряжение сравнения с встроенного в микросхему источника опорного напряжения (ИОН — вывод 14), меняющего разность потенциалов между входами усилителя ошибки.
Как только величина напряжения на R10 превысит значение напряжения (установленного переменным резистором PR1) на выводе 2 микросхемы TL494, зарядный импульс тока будет прерван и возобновлен вновь лишь при следующем такте импульсной последовательности, вырабатываемой генератором микросхемы.
Регулируя таким образом ширину импульсов на затворе транзистора VT2, управляем током зарядки АБ.

Читайте также:  Автомобильные зарядные устройства для нокиа

Транзистор VT1, включенный параллельно затвору мощного ключа, обеспечивает необходимую скорость разрядки затворной емкости последнего, предотвращая «плавное» запирание VT2. При этом амплитуда выходного напряжения при отсутствии АБ (или прочей нагрузки) практически равна входному напряжению питания.

При активной нагрузке выходное напряжение будет определяться током через нагрузку (её сопротивлением), что позволит использовать эту схему в качестве драйвера тока.

При заряде АБ напряжение на выходе ключа (а, значит, и на самой АБ) в течении времени будет стремиться в росте к величине, определяемой входным напряжением (теоретически) и этого, конечно, допустить нельзя, зная, что величина напряжения заряжаемого литиевого аккумулятора должна быть ограничена на уровне 4,1 В (4,2 В). Поэтому в ЗУ применена схема порогового устройства, представляющего из себя триггер Шмитта (здесь и далее — ТШ) на ОУ КР140УД608 (IC1) или на любом другом ОУ.

При достижении необходимого значения напряжения на АБ, при котором потенциалы на прямом и инверсном входах (выводы 3, 2 — соответственно) IC1 сравняются, на выходе ОУ появится высокий логический уровень (практически равный входному напряжению), заставив зажечься светодиод индикации окончания зарядки HL2 и светодиод оптрона VH1 который откроет собственный транзистор, блокирующий подачу импульсов на выход U1. Ключ на VT2 закроется, заряд АБ прекратится.

По окончании заряда АБ он начнет разряжаться через встроенный в VT2 обратный диод, который окажется прямовключенным по отношению к АБ и ток разряда составит приблизительно 15-25 мА с учетом разряда кроме того через элементы схемы ТШ. Если это обстоятельство кому-то покажется критичным, в разрыв между стоком и отрицательным выводом АБ следует поставить мощный диод (лучше с малым прямым падением напряжения).

Гистерезис ТШ в этом варианте ЗУ выбран таким, что заряд вновь начнется при понижении величины напряжения на АБ до 3,9 В.

Это ЗУ можно использовать и для заряда последовательно соединенных литиевых (и не только) АБ. Достаточно откалибровать с помощью переменного резистора PR3 необходимый порог срабатывания.
Так, например, ЗУ, собранный по схеме 1, функционирует с трехсекционной последовательной АБ от ноутбука, состоящей из сдвоенных элементов, которая была смонтирована взамен никель-кадмиевой АБ шуруповерта.
БП от ноутбука (19В/4,7А) подключен к ЗУ, собранному в штатном корпусе ЗУ шуруповерта взамен оригинальной схемы. Зарядный ток «новой» АБ составляет 2 А. При этом транзистор VT2, работая без радиатора нагревается до температуры 40-42 С в максимуме.
ЗУ отключается, естественно, при достижении напряжения на АБ=12,3В.

Гистерезис ТШ при изменении порога срабатывания остается прежним в ПРОЦЕНТНОМ отношении. Т.е., если при напряжении отключения 4,1 В, повторное включение ЗУ происходило при снижении напряжения 3,9 В, то в данном случае повторное включение ЗУ происходит при снижении напряжения на АБ до 11,7 В. Но при необходимости глубину гистерезиса можно изменить.

↑ Калибровка порога и гистерезиса зарядного устройства

Калибровка происходит при использовании внешнего регулятора напряжения (лабораторного БП).
Выставляется верхний порог срабатывания ТШ.
1. Отсоединяем верхний вывод PR3 от схемы ЗУ.
2. Подключаем «минус» лабораторного БП (далее везде ЛБП) к минусовой клемме для АБ (самой АБ в схеме во время настройки быть не должно), «плюс» ЛБП — к плюсовой клемме для АБ.
3. Включаем ЗУ и ЛБП и выставляем необходимое напряжение (12,3 В, например).
4. Если горит индикация окончания заряда, вращаем движок PR3 вниз (по схеме) до гашения индикации (HL2).
5. Медленно вращаем движок PR3 вверх (по схеме) до зажигания индикации.
6. Медленно снижаем уровень напряжения на выходе ЛБП и отслеживаем значение, при котором индикация вновь погаснет.
7. Проверяем уровень срабатывания верхнего порога еще раз. Хорошо. Можно настроить гистерезис, если не устроил уровень напряжения, включающий ЗУ.
8. Если гистерезис слишком глубок (включение ЗУ происходит при слишком низком уровне напряжения — ниже, например, уровня разряда АБ, выкручиваем движок PR4 влево (по схеме) или наоборот, — при недостаточной глубине гистерезиса, — вправо (по схеме). При изменении глубины гистерезиса уровень порога может сместиться на пару десятых долей вольта.
9. Сделайте контрольный прогон, поднимая и опуская уровень напряжения на выходе ЛБП.

Настройка токового режима еще проще.
1. Отключаем пороговое устройство любыми доступными (но безопасными) способами: например, «посадив» движок PR3 на общий провод устройства или «закорачивая» светодиод оптрона.
2. Вместо АБ подключаем к выходу ЗУ нагрузку в виде 12-вольтовой лампочки (например, я использовал для настройки пару 12V ламп на 20 Вт).
3. Амперметр включаем в разрыв любого из проводов питания на входе ЗУ.
4. Устанавливаем на минимум движок PR1 (максимально влево по схеме).
5. Включаем ЗУ. Плавно вращаем ручку регулировки PR1 в сторону роста тока до получения необходимого значения.
Можете попробовать поменять сопротивление нагрузки в сторону меньших значений ее сопротивления, присоединив параллельно, скажем, ещё одну такую же лампу или даже «закоротить» выход ЗУ. Ток при этом не должен измениться значительно.

В процессе испытаний устройства выяснилось, что частоты в диапазоне 100-700 Гц оказались оптимальными для этой схемы при условии использования IRF3205, IRF3710 (минимальный нагрев). Так как TL494 используется неполно в этой схеме, свободный усилитель ошибки микросхемы можно использовать, например, для работы с датчиком температуры.

Следует иметь в виду и то, что при неправильной компоновке даже правильно собранное импульсное устройство будет работать некорректно. Поэтому не следует пренебрегать опытом сборки силовых импульсных устройств, описанном в литературе неоднократно, а именно: все одноименные «силовые» соединения следует располагать на кратчайшем расстоянии относительно друг друга (в идеале — в одной точке). Так, например, точки соединения такие, как коллектор VT1, выводы резисторов R6, R10 (точки соединения с общим проводом схемы), вывод 7 U1 — следует объединить практически в одной точке либо посредством прямого короткого и широкого проводника (шины). То же касается и стока VT2, вывод которого следует «повесить» непосредственно на клемму «-» АБ. Выводы IC1 также должны находиться в непосредственной «электрической» близости к клеммам АБ.

↑ Схема ЗУ № 2 (TL494)

Схема 2 не сильно отличается от схемы 1, но если предыдущая версия ЗУ была придумана для работы с АБ шуруповерта, то ЗУ на схеме 2 задумывалось, как универсальное, малогабаритное (без лишних элементов настройки), рассчитанное для работы как с составными, последовательно включенными элементами числом до 3-х, так и с одиночными.

Как видно, для быстрой смены токового режима и работы с разным количеством последовательно соединенных элементов, введены фиксированные настройки с подстроечными резисторами PR1-PR3 (установка тока), PR5-PR7 (установка порога окончания зарядки для разного количества элементов) и переключателей SA1 (выбор тока зарядки) и SA2 (выбор количества заряжаемых элементов АБ).
Переключатели имеют по два направления, где вторые их секции переключают светодиоды индикации выбора режима.

Ещё одно отличие от предыдущего устройства — использование второго усилителя ошибки TL494 в качестве порогового элемента (включенного по схеме ТШ), определяющего окончание зарядки АБ.

Ну, и, конечно, в качестве ключа использован транзистор р-проводимости, что упростило полное использование TL494 без применения дополнительных компонентов.

Методика настройки порогов окончания зарядки и токовых режимов такая же, как и для настройки предыдущей версии ЗУ. Разумеется, для разного количества элементов, порог срабатывания будет меняться кратно.

При испытании этой схемы был замечен более сильный нагрев ключа на транзисторе VT2 (при макетировании использую транзисторы без радиатора). По этой причине следует использовать другой транзистор (которого у меня просто не оказалось) соответствующей проводимости, но с лучшими токовыми параметрами и меньшим сопротивлением открытого канала, либо удвоить количество указанных в схеме транзисторов, включив их параллельно с раздельными затворными резисторами.

Использование указанных транзисторов (в «одиночном» варианте) не критично в большинстве случаев, но в данном случае размещение компонентов устройства планируется в малогабаритном корпусе с использованием радиаторов малого размера или вовсе без радиаторов.

↑ Схема ЗУ № 3 (TL494)

В ЗУ на схеме 3 добавлено автоматическое отключение АБ от ЗУ с переключением на нагрузку. Это удобно для проверки и исследования неизвестных АБ. Гистерезис ТШ для работы с разрядом АБ следует увеличить до нижнего порога (на включение ЗУ), равного полному разряду АБ (2,8-3,0 В).

↑ Схема ЗУ № 3а (TL494)

Схема 3а — как вариант схемы 3.

↑ Схема ЗУ № 4 (TL494)

ЗУ на схеме 4 не сложнее предыдущих устройств, но отличие от предыдущих схем в том, что АБ здесь заряжается постоянным током, а само ЗУ является стабилизированным регулятором тока и напряжения и может быть использовано в качестве модуля лабораторного источника питания, классически построенного по «даташитовским» канонам.

Такой модуль всегда пригодится для стендовых испытаний как АБ, так и прочих устройств. Имеет смысл использование встроенных приборов (вольтметр, амперметр). Формулы расчета накопительных и помеховых дросселей описаны в литературе. Скажу лишь, что использовал готовые различные дроссели (с диапазоном указанных индуктивностей) при испытаниях, экспериментируя с частотой ШИМ от 20 до 90 кГц. Особой разницы в работе регулятора (в диапазоне выходных напряжений 2-18 В и токов 0-4 А) не заметил: незначительные изменения в нагреве ключа (без радиатора) меня вполне устраивали. КПД, однако, выше при использовании меньших индуктивностей.
Лучше всего регулятор работал с двумя последовательно соединенными дросселями 22 мкГн в квадратных броневых сердечниках от преобразователей, интегрированных в материнские платы ноутбуков.

↑ Схема ЗУ № 5 (MC34063)

На схеме 5 вариант ШИ-регулятора с регулировкой тока и напряжения выполнена на микросхеме ШИМ/ЧИМ MC34063 с «довеском» на ОУ CA3130 (возможно использование прочих ОУ), с помощью которого осуществляется регулировка и стабилизация тока.
Такая модификация несколько расширила возможности MC34063 в отличии от классического включения микросхемы позволив реализовать функцию плавной регулировки тока.

↑ Схема ЗУ № 6 (UC3843)

На схеме 6 — вариант ШИ-регулятора выполнен на микросхеме UC3843 (U1), ОУ CA3130 (IC1), оптроне LTV817. Регулировка тока в этом варианте ЗУ осуществляется с помощью переменного резистора PR1 по входу токового усилителя микросхемы U1, выходное напряжение регулируется с помощью PR2 по инвертирующему входу IC1.
На «прямом» входе ОУ присутствует «обратное» опорное напряжение. Т.е., регулирование производится относительно «+» питания.

В схемах 5 и 6, при экспериментах использовались те же наборы компонентов (включая дроссели). По результатам испытаний все перечисленные схемы мало в чем уступают друг другу в заявленном диапазоне параметров (частота/ток/напряжение). Поэтому схема с меньшим количеством компонентов предпочтительнее для повторения.

↑ Схема ЗУ № 7 (TL494)

ЗУ на схеме 7 задумывалось, как стендовое устройство с максимальной функциональностью, потому и по объему схемы и по количеству регулировок ограничений не было. Данный вариант ЗУ так же выполнен на базе ШИ-регулятора тока и напряжения, как и вариант на схеме 4.
В схему введены дополнительно режимы.
1. «Калибровка — заряд» — для предварительной установки порогов напряжения окончания и повтора зарядки от дополнительного аналогового регулятора.
2. «Сброс» — для сброса ЗУ в режим заряда.
3. «Ток — буфер» — для перевода регулятора в токовый или буферный (ограничение выходного напряжения регулятора в совместном питании устройства напряжением АБ и регулятора) режим заряда.

Применено реле для коммутации батареи из режима «заряд» в режим «нагрузка».

Работа с ЗУ аналогична работе с предыдущими устройствами. Калибровка осуществляется переводом тумблера в режим «калибровка». При этом контакт тумблера S1 подключает пороговое устройство и вольтметр к выходу интегрального регулятора IC2. Выставив необходимое напряжение для предстоящей зарядки конкретной АБ на выходе IC2, с помощью PR3 (плавно вращая) добиваются зажигания светодиода HL2 и, соответственно, срабатывания реле К1. Уменьшая напряжение на выходе IC2, добиваются гашения HL2. В обоих случаях контроль осуществляется встроенным вольтметром. После установки параметров срабатывания ПУ, тумблер переводится в режим заряда.

Читайте также:  Зарядное устройство dynacore d 2sn на 2 аккумулятора v mount

↑ Схема № 8

В режиме калибровки тумблер S1 отключает реле от плюса источника питания для предотвращения неуместных срабатываний. При этом работает индикация срабатывания ТШ.
Тумблер S2 осуществляет (при необходимости) принудительное включение реле К1 (только при отключенном режиме калибровки). Контакт К1.2 необходим для смены полярности амперметра при переключении батареи на нагрузку.
Таким образом однополярный амперметр будет контролировать и ток нагрузки. При наличии двухполярного прибора, этот контакт можно исключить.

↑ Конструкция зарядного устройства

В этом корпусе дополнительно смонтированы зажимы для подключения источника переменного тока (трансформатора). Соответственно, внутри дополнительно смонтирован диодный мост с конденсаторным сглаживающим фильтром.

Спасибо за внимание!

Камрад, рассмотри датагорские рекомендации

🌻 Купон до 1000₽ для новичка на Aliexpress

Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке. Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.

🌼 Полезные и проверенные железяки, можно брать

Куплено и опробовано читателями или в лаборатории редакции.

Источник

Поделки своими руками для автолюбителей

Зарядное Устройство для любого шуруповерта и не только

В этой статье рассмотрим проект универсального источника питания, который может быть использован в качестве зарядного устройства для портативных электроинструментов и не только.

Особенность такого источника заключается в том, что он относительно простой и самое важное имеется стабилизация, как выходного напряжения, так и тока, то есть с его помощью можно заряжать и литий-ионные аккумуляторы.

Зарядное Устройство для любого шуруповерта и не только

Проектируя его я ставил задачу сделать универсальное, зарядное устройство для шуруповерта, поэтому диапазон выходного напряжения где-то от 11 до 17 вольт с возможностью регулировки, а ток до 1,3 ампер, также с возможностью регулировки. Этого вполне достаточно для зарядки наиболее ходовых электроинструментов 12, 14,4 и 16,8 вольта, но как уже сказал схема универсальна, выходное напряжение и ток можно сделать иными.

Устройство питается непосредственно от сети, снабжены всеми необходимыми защитами, включая защиту от коротких замыканий и перегрева.

Схема состоит из двух основных частей, сетевого понижающего импульсного блока питания и узла стабилизации тока и напряжения, за счет импульсного принципа преобразования устройство имеет высокий кпд, малые размеры и вес.

Зарядное Устройство для любого шуруповерта и не только

Источник питания построен на основе специализированной микросхемы TNY267 или 268, именно от выбора микросхемы зависит мощность зарядного устройства — это целая линейка специализированных микросхем, которые находят широкое применение во всевозможных зарядных устройствах и адаптеров питания.

Самая мощная из этой линейки TNY268 на основе которой можно построить блоки с мощностью до 23 ватт, фактически схема сетевого преобразователя может быть любой, хоть на сотни ватт, если в этом есть необходимость, важно чтобы преобразователь имел линию обратной связи.

Как мы знаем, для того чтобы обеспечить полноценную стабилизацию тока и напряжения, шим контроллер, на основе которого построен преобразователь, должен иметь два усилителя ошибки, например TL494. Особенностью нашей схемы является то, что стабилизация тока и напряжение реализованы через один единственный канал обратной связи, но вернемся к нашей микросхеме TNY268 — она выбрана неспроста, во-первых блоки питания на основе данных микросхем имеют минимальную обвязку и самое главное импульсный трансформатор имеет всего две обмотки, сетевая и вторичная.

Зарядное Устройство для любого шуруповерта и не только

Дополнительной обмотки мотать в данном случае не нужно, к тому же в самой микросхеме уже есть всё необходимое для работы, включая полноценный шим контроллер, система защиты и даже силовой транзистор это удобно и дешево.

Я сделал несколько источников питания используя микросхемы, как TNY267 так и 268, работают аналогично хорошо.

Вторая часть зарядки состоит из сдвоенного операционного усилителя lm358, источника опорного напряжения tl431 и мелочевки, имеется пара подстроечных резисторов для регулировки тока и напряжения.

Зарядное Устройство для любого шуруповерта и не только

Этот узел наиболее важен, поскольку им можно дополнить любой другой блок питания любой мощности и получить регулируемое по току и напряжению зарядное устройство.

Давайте подробно рассмотрим, как работает этот узел… Первый канал операционного усилителя задействован для стабилизации тока, второй для напряжения, в схеме стабилизации тока имеется токовый шунт, в нашем случае представляющий собой низкоомный, 2-ватный резистор R6.

Опорное напряжение 2,5 вольта задается микросхемой tl431, тут она работает чисто как стабилитрон. Резистор R15 задаёт ток стабилизации, в зависимости от запланированного выходного напряжения необходим пересчёт данного резистора таким образом, чтобы ток стабилизации был в районе 5-10 максимум 20 миллиампер — плюс минус.

Опорное напряжение, через резистивный делитель, подается на инверсный вход операционного усилителя, притом важно заметить что один из резисторов делителя — подстрочный, вращая его мы можем изменять опорное напряжение на инверсном входе операционника.

Зарядное Устройство для любого шуруповерта и не только

На прямой вход, того же канала операционного усилителя поступает падение напряжения с датчика тока, при подключении нагрузки на выход источника по шунту будет протекать определенный ток, что приведет к образованию падения напряжения на нём — это напряжение поступит на прямой вход операционного усилителя, где оно будет сравнено с опорным напряжением на другом входе, если падение напряжения на шунте большие опорного напряжения, на выходе операционного усилителя получим высокий уровень — засветятся соответствующий светодиод и одновременно светодиод оптопары, которая задействована тут в цепи обратной связи.

Зарядное Устройство для любого шуруповерта и не только

Микросхема TNY моментально отреагирует на это и её внутренней транзистор меньше времени будет находиться в открытом состоянии, следовательно меньше мощности пойдет в трансформатор.

Зарядное Устройство для любого шуруповерта и не только

Разумеется при этом уменьшится ток во вторичной цепи, следовательно уменьшится падение напряжения на датчики тока до тех пор, пока напряжение на входах операционного усилителя не уравняться. Точно таким же образом работает функция стабилизации напряжения, которая построена на втором канале операционного усилителя, только на сей раз с опорным напряжением сравнивается часть выходного напряжения, свечение 2 светодиода говорит о том, что блок работает как стабилизатор напряжения, то есть наш источник работает либо, как стабилизатор напряжения, поддерживая выставленное, выходное напряжение, либо в качестве стабилизатора тока, ограничивая выходной ток на заданном уровне, но тут есть один недостаток о котором поговорим в конце.

Подстроечные резисторы — позволят изменять выходные параметры, делители в опорных цепях и датчик тока, рассчитаны именно для указанных параметров, если вам нужны иные значения напряжения и тока придётся пересчитать опорные цепи, но перед тем, как это сделать нужно понять, что всё упирается в мощность преобразователя и выше 23 ватт снимать нельзя, если использована микросхема TNY268 и имеется хорошее охлаждение.

Используя закон ома можно понять позволит ли микросхема построить источник с вашими требованиями, если нет, то можно использовать иную, более мощную схему преобразователя, а узел стабилизации и тока оставить этот.

Трансформатор, сперва важно указать, что наша микросхема работает на фиксированной частоте в 132 килогерца, в моём источнике применен ШЕ-образный, ферритовый трансформатор с начальная проницаемостью 2300, данные намотки указаны именно для этого трансформатора, в случае иных сердечников, обмотки нужно пересчитать, сделать это можно с помощью специализированных программ и приложений для расчета трансформаторов, однотактных обратно-ходовых источников питания.

Необходимо также заметить о наличии не магнитного зазора между половинками сердечника, в данном случае зазор около 0,3-0,4 миллиметров.

Как на плате, так и на схеме, точками указаны начала намотки обмоток, если перепутать, работать схема не будет. Для того, чтобы ничего не путать начало намотки желательно промаркировать, например одевая термоусадку на провод.

Зарядное Устройство для любого шуруповерта и не только

Обмотки мотаются в одинаковом направлении, например по часовой стрелке, для начала на голой каркас мотается половина первичной обмотки, вообще можно и всю обмотку сразу, но так правильнее. Обмотку мотаем послойно, каждый слой изолируем, например карбоновым, термостойким скотчем, одного-двух слоев изоляция хватит.

Зарядное Устройство для любого шуруповерта и не только

После намотки и половины первичной обмотки мотаем всю вторичную обмотку целиком, тоже послойно, если она полностью не влезет в один ряд, далее поверх вторичной обмотки ставим изоляцию слоев так 3-4 и мотаем остальную половину первичной обмотки, тем же способом, что и первую половину.

В итоге у нас получается четыре отвода от первичной обмотки, каждые два провода являются цельной обмоткой и начало каждой обмотки мы промаркировали, теперь берём начало одной обмотки и соединяем с концом другой, получим отвод, который в схеме использоваться не будет, как итог мы получаем одну, цельную, первичную обмотку.

Зарядное Устройство для любого шуруповерта и не только

Теперь необходимо собрать трансформатор, не забывая о зазоре между половинками сердечника, для получения зазора можно взять к примеру чек от банкомата, вырезать полоску, сложить вдвое и установить под центральным или крайними краями сердечника.

Далее, стягиваем половинки сердечника скотчем и устанавливаем трансик на плату.

После полной проверки схемы на работоспособность, половинки сердечника для надежности, можно заклеить клеем.

Зарядное Устройство для любого шуруповерта и не только

Выходной дроссель в моем случае намотан на ферритовой гантельки и имеет индуктивность около 15 микрогенри, использован провод 0,7 миллиметров, но практика показала, что дроссель можно вовсе исключить, просто поставив перемычку, на работу это никак не повлияло.

То же самое можно сказать и о сетевом фильтре, так как блок маломощный, особо сильно гадить в сеть он не будет, но естественно с фильтром — правильней.

Идём дальше, в делителях напряжения необходимо использовать точные и стабильные резисторы с допуском 1 процента и меньше, но в любом случае будет некоторый разброс и идеально рассчитать выходное напряжение и ток довольно трудно, но в схеме у нас имеются подстроечные резисторы, которые позволят очень точно выставить выходные параметры источника.

Используя этот принцип можно пересчитать блок под ваши нужды, снять больший ток, большее напряжение, да хоть пуско-зарядное можно сделать, но о нём поговорим в следующих статьях.

Введите электронную почту и получайте письма с новыми поделками.

Если устройство будет работать в герметичном корпусе, без вентиляционных отверстий, то мощность источника необходимо снизить, а на микросхему с применением теплопроводящего клея желательно приклеить небольшой теплоотвод.

Недостатком данных схем является то, что стабилизация тока работать не будет, если на выход схемы не подключен заряжаемый аккумулятор, это происходит по той причине, что при подключении нагрузки, схема автоматически уменьшает выходное напряжение, чтобы поддерживать заданный ток, в какой то момент выходного напряжения становится недостаточным для питания операционного усилителя и опорного источника.

Зарядное Устройство для любого шуруповерта и не только

Если же к выходу подключён аккумулятор, то ранее упомянутые узлы будут питаться от самого аккумулятора, то есть выставить ток заряда необходимо только при подключенном аккумуляторе, именно аккумулятор, а не другая нагрузка.

Фактически вторую часть схемы можно прикрутить к любому импульсному источнику с обратной связью.

Как происходит зарядка думаю вы уже поняли, в холостую без подключенного аккумулятора вращением резистора R11 нужно выставить напряжение окончания заряда, например для трёх последовательно соединенных банок литий-ионных аккумуляторов — это напряжение составляет 12,6 вольта.

Зарядное Устройство для любого шуруповерта и не только

В холостую у нас будет светиться зеленый светодиод, что говорит о работе блока в режиме стабилизации напряжения, далее подключается разряженный аккумулятор, вращением подстрочника R5, выставляем ток заряда. При этом зеленый светодиод потухнет и засветится красный, блок работает в режиме стабилизации тока по мере заряда аккумуляторной батареи, когда ток будет меньше, чем за данный лимит, красный светодиод потухнет и засветится зеленый.

Зарядное Устройство для любого шуруповерта и не только

Важно, выходное напряжение такого источника не должно быть выше 32 вольт — это максимальное питающее напряжение для lm358, который запитан напрямую с выхода источника питания.

Минимальное, выходное напряжение может быть в районе 3 — 3,5 вольт, но лучше сделать от 5 — 6 вольт, если в этом есть необходимость.

Источник