Меню

Зарядное устройство для планшета вольты

Зарядное устройство для планшета вольты

Чем может быть полезна быстрая зарядка

С увеличением ёмкости аккумуляторов телефонов потребовалось увеличить и мощность зарядных устройств, чтобы достичь маленького времени зарядки, для чего и нужно было увеличивать выходную мощность: напряжение, ток. Таким образом зарядные с Quick Charge 3.0 кроме 5 В могут выдавать 9В/12В/20В +возможность регулировки с шагом 0.2 В (до 12 В).

image

Ввиду распространенности ЗУ с этой технологией появляется интерес использовать их для получения повышенного напряжения без дополнительных преобразователей.

Схема подключения

Представленная схема позволит выводам, настроенным как двухтактный выход, подавать на выводы DN и DP нужные значения напряжения:

Оба вывода к минусу 0 В
Верхний вывод к плюсу, а нижний к минусу 0.6 В
Оба вывода к плюсу 3.3 В

image

Настройка в STM32CubeMX

Нужно настроить четыре любые выводы общего назначения как двухтактный выход (Output Push Pull) без подтяжки (No pull-up and no pull-down) с соответствующими названиями (ПКМ -> Enter User Label).

Описание протокола Quick Charge

QC 2.0 (из документа CHY100)

image

После включения в сеть замыкаются выводы DN, DP и начинает следить за уровнем на выводе DP, подаем на него напряжение от 0.325 В до 2 В (обычно 0.6 В) на время не менее 1.25 с и таким образом происходит вход в режим Быстрой Зарядки. Теперь на DN нужно подать минус (чтобы напряжение на нем упало ниже 0.325 В) на время не менее 1 мс. Остается выставить сочетание напряжения, соответствующее необходимому, согласно таблице:

image

QC 3.0 (из документа FAN6290Q)

В этой версии есть возможность изменять значение напряжения с шагом 200 мВ, для этого нужно выставить сочетание, соответствующее режиму Continuous Mode:

image

Перейти в него можно из любого другого (5В/9В/12В), а потом для увеличения выходного напряжения (DN: 3.3 В, DP: импульс 0.6-3.3-0.6В), а для уменьшения (DP: 0.6 В, DN: 3.3-0.6-3.3В).

image

Программирование

Остается завернуть изменение уровней сигнала согласно алгоритму в код с использованием библиотеки HAL, учитывая понятные ярлыки-названия, установленные в Кубе:

Таким образом получились функции:

Скачать проект в STM32CubeIDE можно на GitHub: Quick-Charge-STM32-HAL

Проверка работы

Остается подключить всё согласно схеме и выполнить функцию для получения нужного напряжения (для испытания используется безымянная китайская зарядка с QC 3.0):

image

Причем выходное напряжение можно изменить в любой момент:

image

При использовании разъема USB Type-C обязательно нужно добавить два резистора 5.1 кОм между CC1, CC2 и GND, чтобы устройство определялось как UFP (Upstream Facing Port).

Определение подключения

В случае, если питание будет подаваться на микроконтроллер уже после подключения, то выполнение нужной функции может выполнятся перед главным циклом один раз.
Если микроконтроллер питается от независимого источника, то выполнение функции можно назначить по внешнему прерыванию (вывод VBUS подключается через стабилизатор 3.3 В) или просто с помощью кнопки — можно сделать свой «триггер».

Проверка на разных ЗУ с USB-A и USB-C

Работоспособность проверена на различных недорогих зарядных, а также на мощных ноутбучных зарядок 65Вт с USB Type-C.

При этом наименьшее выходное напряжение может различаться — так, обычные имели нижний порог 4.2 В, а продвинутые — 3.7 В.

Подробнее в видео

Итого

Хоть стандартом становится технология Power Delivery (PD), но куча современных сетевых зарядных устройств как и многие переносные аккумуляторные ЗУ поддерживают в том числе Quick Charge (QC), что позволит с легкостью получить повышенное напряжения без использования дополнительных преобразователей.

Несмотря на то, что в теории можно получить даже 20 В, но на практике таких зарядок почти нет. Также стоит учесть, что при подключении слишком мощной нагрузки напряжение будет сильно просаживаться, а некоторые ЗУ вообще уйдут в защиту.

Источник



Зарядное устройство для Android-смартфона: все, что нужно знать

В каких ситуациях можно спокойно заряжать гаджет через неоригинальное зарядное устройство, а когда лучше не рисковать?

Сейчас практически у каждого дома лежит по несколько зарядок: для смартфона, планшета, плеера и других гаджетов. В связи с этим у многих пользователей возникает вопрос: можно ли использовать неродную зарядку? Что будет, если использовать зарядку с планшета для смартфона? Чем опасны китайские аналоги?

Наша обзорная статья постарается ответить на все вопросы и развеять популярные мифы.

Адаптеры (блоки) питания

Виды зарядок и разъемов

Для начала необходимо разобраться, с какими типами зарядок для смартфона и планшета мы чаще всего сталкиваемся в повседневной жизни:

  • MicroUSB. Пожалуй, наиболее распространенный разъем, применяемый для питания мобильных девайсов. Он используется различными производителями на смартфонах и планшетах, работающих под управление программных платформ Android и Windows Phone.
  • Lightning. Особый 8-контактный разъем, который применяется компанией Apple в линейках iPhone, iPad Pro, iPad Mini, iPod Nano и iPod Touch.
  • USB Type-C. Симметричный разъем позволяет не задумываться, какой стороной штекера или кабеля нужно вставлять шнур в разъем, и немного упрощает нашу жизнь. Кроме того, USB Type-C предоставляет более высокую передачу данных и возможность передачи энергии мощностью до 100 Вт, что делает его удобным не только в отношении смартфонов и планшетов, но и более крупных аппаратов — ноутбуков или мониторов. USB Type-C уже начинает «входить в моду», и все больше мобильных производителей оснащают гаджеты новым разъемом вместо microUSB. Подробности читайте здесь.
  • Ноутбуки. Единого стандарта для зарядного устройства ноутбуков пока не существует (возможно, в будущем им станет именно универсальный USB Type-C), поэтому различные модели используют разные разъемы в зависимости от производителя.
Читайте также:  Зарядное устройство samsung sac 48

Большинство мобильных гаджетов используют одинаковые разъемы, чаще всего ими оказываются MicroUSB и USB Type-C, если речь идет о смартфонах и планшетах на Android. Иногда возникают ситуации, когда под рукой просто нет необходимого зарядного устройства, но использовать неродной блок питания не всегда безопасно.

Характеристики зарядных устройств

Для начала нужно определить главные характеристики любой зарядки для смартфона — речь идет о блоке (адаптере) питания, который вставляется в розетку. В зависимости от емкости аккумулятора, типа девайса и других факторов зарядные блоки различаются по своим характеристикам, которые мы должны были изучать еще на уроках физики.

Характеристики адаптера питания

Зарядное устройство от планшета Samsung на 2.0A

На каждом нормальном адаптере питания есть определенная маркировка с указание технических характеристик. Она пригодится в том случае, если придется постоянно питать смартфон от неродной/неоригинальной зарядки.

Еще раз оговоримся: если речь идет о единичных случаях применения неоригинальных приборов, то ничего страшного не случится. Если же вы собираетесь использовать их постоянно, обязательно изучите статью.

На блоках питания производители обязательно оставляют свой логотип, ставят различные маркеры, значки сертификации и ГОСТа, а также указывают действительно полезную информацию:

  • Интервал напряжения электрического тока: как правило, 100-240V (вольт).
  • Частота: на всех наших блоках 50-60Hz.
  • Output (выход) — главная характеристика адаптера питания, обычно выглядит так (5.0V — 1.0A) или так (5.0V — 2.0A).

Остановимся на последней характеристике подробнее. 5.0V — стандартный показатель, но значение силы тока бывает разным в зависимости от адаптера и гаджета, который им заряжается. Как правило, сила тока на блоках питания составляет 1.0A (для смартфонов) или 2.0A (для планшетов) . Бывают случаи, когда сила тока составляет, например, 0.85A, 2.1A, 1.5A.

Зарядка Sony 850mA

Зарядное устройство для смартфона Sony на 0.85A (850mA)

Неоригинальные зарядные устройства

Зарядное устройство с большей силой тока . Если сила тока превышает показатель, потребляемый вашим гаджетом, ничего страшного произойти не должно. Дело в том, что литий-ионный аккумулятор оборудован специальной защитной платой, которая предотвращает перезаряд/переразряд, а иногда даже короткое замыкание. Более того, современные смартфоны оснащены контроллерами питания, которые не позволяют им принимать ток большей силы, чем необходим данной батарее.

Блок питания Huawei 1.0A

Зарядное устройство от смартфона Huawei на 1.0A

Несмотря на эту защиту, заряжать гаджет от блока питания с более высоким показателем силы тока (А) нежелательно, поскольку опыт и форумы говорят о том, что телефон сильно нагревается, а батарея быстрее выходит из строя.

Зарядное устройство с меньшей силой тока . Специалисты не рекомендуют использовать более слабую зарядку. В таком случае аккумулятор будет запрашивать больше энергии, которое зарядное устройство обеспечить не может. Это может привести к перегреву как блока, так и гаджета, а иногда даже к короткому замыканию и возгоранию.

Блок зарядки ASUS 2.0A

Зарядное устройство для планшета ASUS Nexus 7 на 2.0A

Зарядка от другого производителя . Многие пользователи жалуются, что при использовании китайского зарядного устройства с аналогичными силой тока и напряжением процесс занимает больше времени, чем требуется при применении оригинального зарядника.

Блок зарядки Apple 1.0A

Зарядное устройство для iPhone 5/5S на 1.0A

Проблема в том, что у разных мобильных производителей нет общепринятого стандарта кодирования нагрузочной способности блока питания. Из-за этого гаджет одного бренда не всегда «понимает» зарядку, изготовленную на заводе другой компании. В таком случае процесс зарядки осуществляется в безопасном режиме 500 mA (0,5A) и намного медленнее, что также может привести к перегреву. Бывают ситуации, когда устройство вообще не распознает подключаемый к нему кабель как зарядку.

Читайте также:  Зарядное устройство авто charger

Вывод. Рекомендуем применять родное зарядное устройство или официально совместимое с ним от известного производителя (выбрать можно на Яндекс.Маркете). Конечно, в непредвиденных ситуациях можно сделать исключение, но не стоит делать это регулярно. Также изучите и примите к сведению правила зарядки смартфонов.

Источник

Зарядка от прикуривателя, для планшета, телефона и ноутбука. Как не спалить свой девайс?

Еще один распространенный вопрос, который приходит ко мне на блог, касается зарядки для различных гаджетов в автомобиль. Например, как заряжать телефон мы уже поговорили, однако с планшетами и даже с ноутбуками, не совсем понятно. В общем, очень полезная статья постараюсь расставить все по полочкам и почему иногда можно просто спалить свой девайс …

Зарядка от прикуривателя

Итак, давайте начнем собственно с «зарядников» от прикуривателя для телефона, какие они бывают?

Для телефона

Нужно понимать – для того чтобы зарядить смартфон нужно иметь напряжение около 5 Вольт, и силу тока минимум 0,5 Ампера, как максимум который я встречал 2 Ампера, для очень больших батарей. Самый универсальный ток и напряжение на выходе – это 5 Вольт и 1 Ампер!

характеристики

Запомните это важно. Смотреть нужно на выходе такого «зарядника» обычно есть надпись «OUTPUT». Такое напряжение не убьет ваш телефон, а батарея прослужит долго! По формам они также отличаются. Сейчас основных вида всего два:

1) Это уже с готовым кабелем, втыкаем одним концом в прикуриватель, другим в определенную модель телефона и идет зарядка. Такой тип сейчас отмирает, потому как он не универсален. ТО есть если заряжает, скажем SONY то Samsung «подпитать» не сможет! Однако сейчас идут глобализации у многих компаний и поэтому выходы становятся одинаковы.

обычный

Зарядка от прикуривателя, для планшета, телефона и ноутбука. Как не спалить свой девайс?

2) Универсальный с USB портами. Тут уже выбор получше, как правило есть два – три порта USB в которые вы можете воткнуть кабель от своего телефона и выбрать нужные показатели амперов. Например, у меня есть такая зарядка и там есть два выхода на 1 Ампер, и на 2,5 Ампера.

универсальный

Зарядка от прикуривателя, для планшета, телефона и ноутбука. Как не спалить свой девайс?

два выхода

Зарядка от прикуривателя, для планшета, телефона и ноутбука. Как не спалить свой девайс?

Большой плюс еще и то, что там обычные порты, то есть вы можете заряжать не только телефоны но и другие девайсы.

Для планшета

Почему не подойдет зарядка от телефона для планшета? Очень распространённый вопрос! В своем большинстве, планшеты используют другой ток заряда. Обычно это 9 Вольт и все те же 1 – 2 Ампера на выходе.

для планшета

напряжение и ток для планшета

А как мы уже сверху разобрали, для смартфона нужно 5 Вольт, если вы гипотетически «воткнете» телефонную зарядку в планшет – то контроллер у последнего просто выгорит! Попадаете на дорогостоящий ремонт. Поэтому запомните – нельзя, использовать телефонные зарядные устройства для планшетных компьютеров.

Так что же делать, как зарядить?

Если честно, то сейчас производители электроники начали так называемое «укрупнение». Суть проста – сделать один универсальный разъем – который подойдет как для сотовых, так и для планшетников! Тогда можно будет «запитаться» напрямую от прикуривателя, главное выбрать правильный ток.

Однако очень много девайсов, которые используют старый не универсальный разъем с другими характеристиками. И тут выхода два:

1) Купить зарядное устройство специально для планшетного компьютера.

2) Использовать специальные POWER BANK, у которых есть выходы под все девайсы, даже под ноутбуки. Суть такова – его «питаем» от прикуривателя, а устройства от него. Также плюс такого «аппарата», он может питать вас вдали от машины.

POWERBANK

Ноутбуки

Про ноутбук ничего не сказал – но тут практически такая же ситуация как со вторым «претендентом». Опять нужно определять потребляемое напряжение и амперы. Забегая вперед скажу оно может быть – 19 Вольт, и примерно 3,5 А, это много!

ноутбук

Поэтому заряжать достаточно проблематично! Даже через POWER BANK. Тут сложно отказаться от розетки. Конечно, продаются специальные устройства именно для ноутбуков – в прикуриватель, но это дополнительное устройство и причем недешевое.

Про альтернативные источники, опять же скажу пару слов – на многих Китайских сайтах, можно без проблем заказать солнечные батареи, которые подойдут практически всем гаджетам. Однако из минусов, это то что солнца нет, заряда тоже, да и ток там слабый длительное время заряда. Посмотрите мое видео, там в середине есть про солнечные батареи.

Читайте также:  Лучшие зарядные устройства для автомобильных аккумуляторов 2021

Подводя итог ребята, можно констатировать факты, сейчас практически нет универсального устройства, которое будет питать все ваши гаджеты в машине от прикуривателя. Если смартфон и планшет можно запитать от POWER BANK, то вот с ноутбуком не так все просто.
Но технологии не стоят на месте, скоро как я думаю, будет придумано что-то подходящее на все устройства.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов

Источник

Как получить 9В/12В от зарядного с Quick Charge (на примере STM32)

Чем может быть полезна быстрая зарядка

С увеличением ёмкости аккумуляторов телефонов потребовалось увеличить и мощность зарядных устройств, чтобы достичь маленького времени зарядки, для чего и нужно было увеличивать выходную мощность: напряжение, ток. Таким образом зарядные с Quick Charge 3.0 кроме 5 В могут выдавать 9В/12В/20В +возможность регулировки с шагом 0.2 В (до 12 В).

image

Ввиду распространенности ЗУ с этой технологией появляется интерес использовать их для получения повышенного напряжения без дополнительных преобразователей.

Схема подключения

Представленная схема позволит выводам, настроенным как двухтактный выход, подавать на выводы DN и DP нужные значения напряжения:

Оба вывода к минусу 0 В
Верхний вывод к плюсу, а нижний к минусу 0.6 В
Оба вывода к плюсу 3.3 В

image

Настройка в STM32CubeMX

Нужно настроить четыре любые выводы общего назначения как двухтактный выход (Output Push Pull) без подтяжки (No pull-up and no pull-down) с соответствующими названиями (ПКМ -> Enter User Label).

Описание протокола Quick Charge

QC 2.0 (из документа CHY100)

image

После включения в сеть замыкаются выводы DN, DP и начинает следить за уровнем на выводе DP, подаем на него напряжение от 0.325 В до 2 В (обычно 0.6 В) на время не менее 1.25 с и таким образом происходит вход в режим Быстрой Зарядки. Теперь на DN нужно подать минус (чтобы напряжение на нем упало ниже 0.325 В) на время не менее 1 мс. Остается выставить сочетание напряжения, соответствующее необходимому, согласно таблице:

image

QC 3.0 (из документа FAN6290Q)

В этой версии есть возможность изменять значение напряжения с шагом 200 мВ, для этого нужно выставить сочетание, соответствующее режиму Continuous Mode:

image

Перейти в него можно из любого другого (5В/9В/12В), а потом для увеличения выходного напряжения (DN: 3.3 В, DP: импульс 0.6-3.3-0.6В), а для уменьшения (DP: 0.6 В, DN: 3.3-0.6-3.3В).

image

Программирование

Остается завернуть изменение уровней сигнала согласно алгоритму в код с использованием библиотеки HAL, учитывая понятные ярлыки-названия, установленные в Кубе:

Таким образом получились функции:

Скачать проект в STM32CubeIDE можно на GitHub: Quick-Charge-STM32-HAL

Проверка работы

Остается подключить всё согласно схеме и выполнить функцию для получения нужного напряжения (для испытания используется безымянная китайская зарядка с QC 3.0):

image

Причем выходное напряжение можно изменить в любой момент:

image

При использовании разъема USB Type-C обязательно нужно добавить два резистора 5.1 кОм между CC1, CC2 и GND, чтобы устройство определялось как UFP (Upstream Facing Port).

Определение подключения

В случае, если питание будет подаваться на микроконтроллер уже после подключения, то выполнение нужной функции может выполнятся перед главным циклом один раз.
Если микроконтроллер питается от независимого источника, то выполнение функции можно назначить по внешнему прерыванию (вывод VBUS подключается через стабилизатор 3.3 В) или просто с помощью кнопки — можно сделать свой «триггер».

Проверка на разных ЗУ с USB-A и USB-C

Работоспособность проверена на различных недорогих зарядных, а также на мощных ноутбучных зарядок 65Вт с USB Type-C.

При этом наименьшее выходное напряжение может различаться — так, обычные имели нижний порог 4.2 В, а продвинутые — 3.7 В.

Подробнее в видео

Итого

Хоть стандартом становится технология Power Delivery (PD), но куча современных сетевых зарядных устройств как и многие переносные аккумуляторные ЗУ поддерживают в том числе Quick Charge (QC), что позволит с легкостью получить повышенное напряжения без использования дополнительных преобразователей.

Несмотря на то, что в теории можно получить даже 20 В, но на практике таких зарядок почти нет. Также стоит учесть, что при подключении слишком мощной нагрузки напряжение будет сильно просаживаться, а некоторые ЗУ вообще уйдут в защиту.

Источник