Меню

Зарядное устройство для li ion li pol аккумуляторов

Зарядное устройство для li ion li pol аккумуляторов

Понадобилось мне сделать простенькую зарядку для маленьких литиевых аккумуляторов- типа 14500 и 10440. И понеслось…

В запасе были очень хорошие и проверенные ME4057, но мне они показались избыточными- и потому я заказал на Алиэкспрессе клопов LTC4054, благо дешевые, в корпусе SOT-23-5.
Микросхема мне в целом понравилась. Функции свои полностью выполняет, документация по ней доступна: ссылка
Однако, микросхеме присущ ряд недостатков.

Первый: отсутствие нормальной индикации. Микросхема предназначена для работы совместно с микроконтроллером, где-нибудь в мобильнике, потому у нее только одна нога, имеющая три состояния:
1. Жесткая привязка к земле. Идет заряд аккумулятора.
2. Нежесткая привязка к земле. Микросхема готова к работе.
3. Вывод ни к чему не привязан. Недостаточное напряжение питания, или исчо какая неприятность.

У моих экземпляров нога работала так: жесткая привязка- идет заряд, нежесткая привязка- батарейка отсутствует, вывод ни к чему не привязан- зарядка кончилась.
Я повесил туда красный светодиод через резистор, по окончанию зарядки он гаснет.

Сразу обнаружился очередной косяк: если аккумулятор не был оборудован защитой на DW01- светодиод светился одинаково ярко вне зависимости от того, шел ли заряд аккумулятора или аккумулятор отсутствовал. Пробовал шунтировать выход микросхемы емкостью (как на me4057)- светодиод начинал мигать. Проанализировал схему защиты: DW01 подключается к положительному выводу питания через резистор 100 Ом, зашунтирована емкостью 0.1 Мкф. Добавил аналогичную цепочку на выход LTC4054- светодиод стал вести себя как полагается. 🙂 Выходит, микросхема изначально предназначена для работы с защищенными аккумуляторами, но нигде в даташите этого не сказано!

Я применил держатель батареи Blossom (тоже с Алиэкспресса) с хорошими плоскими пружинными контактами- и тут вылез еще один косяк- очень легко вставить аккумулятор неправильно. Микросхема LTC4054 защитой от переполюсовки аккумулятора, к сожалению, не оборудована. 🙁 Я проверил «что будет, если переполюсовать»- ожидаемо пошел белый дым. Посему- пришлось потратить вечер на сочинение простенькой схемки защиты от переполюсовки на двух мосфетах (AO3400 и AO3401, тоже купленных на Алиэкспресс). Кроме того, я добавил зеленый светодиод для удобства, по принципу «красный погас- зеленый загорелся».

Окончательную схему устройства прилагаю:

Испытания показали, что защита работает безукоризненно. Однако, она внесла свои коррективы, и у меня случайно и весьма удачно получилась вот такая индикация:
1. Горит красный светодиод- идет зарядка.
2. Горит зеленый светодиод- зарядка окончена.
3. Горят оба светодиода вполнакала- батарея отсутствует.
4. Горит зеленый светодиод, красный слабо светится- батарея переполюсована.
Микросхема чувствительна к происходящему на выводе «Bat», потому на работу индикации влияют номиналы R5, R6, R7, можете с ними поиграться.

Номиналы токоограничивающих резисторов я не указал сознательно- подберите их под ваши светодиоды (у меня зеленый обычный- 750 Ом, красный сверхяркий- 1.2 КОм).
Rпрог. зависит от зарядного тока, его выбирают по формуле: R=1000/Ichrg, где Ichrg- ток заряда аккумулятора.
Гасящий резистор Rдоп. в даташите указан как «опция», но поставить его весьма желательно- при большом токе заряда микросхема может перегреться и уйти в защиту по теплу, а так- он погасит излишек напряжения и рассеит избыток тепла. Чем больше его номинал и мощность- тем лучше, но выбирать его следует по таблице «Charge Current vs RCC» на странице 12 документации.
Отвод тепла от микросхемы осуществляется через ее выводы, в основном «земляной», посему- при изготовлении платы лучше понаделать больших полигонов, которые сыграют роль теплоотвода.

У меня получилась вот такая маленькая симпатичная платочка, разместившаяся снизу батарейкодержателя:

Источник



Как и чем заряжать li-ion (Li-po) аккумулятор? Лучшие способы

Содержание

  1. Что такое литий-ионный и литий-полимерный аккумулятор, в чем их отличие
  2. Главные правила подзарядки аккумуляторов, каким током заряжать
  3. Способы зарядки аккумуляторов, каким током их заряжать?
  4. СПОСОБ 1. Многоступенчатый.
  5. Способ № 2: При помощи модулей контроля заряда и балансировки
  6. Видео к просмотру: Как и чем зарядить Li-ion и Li-po аккумуляторы 18650, от мобильного и др. Tp4056
  7. Как определить с защитой от перезаряда аккумулятор или нет
  8. РСВ
  9. PCM
  10. Блок BMS
  11. Эффект памяти, старение аккумуляторов, калибровка
  12. Каким образом измерить емкость аккумулятора
  13. Возможные риски при неправильном заряде
  14. Что такое многоступенчатая зарядка?
  15. Аккумуляторы подделки из Китая хуже или лучше?
  16. Рекомендации при эксплуатации для долговечной работы АКБ

В современных гаджетах используются в основном литий-ионные и литий-полимерные аккумуляторы. Они компактны, имеют высокий уровень энергосбережения, практически не имеют “эффекта памяти”. Этими свойствами они и заслужили свою популярность.

Данный вид батарей применяется во многих устройствах – мобильных телефонах, планшетах, также находит свое применение как источник энергии в электромобилях и другой техники. Их срок службы зависит от многих факторов. В первую очередь от условий эксплуатации. Если обращаться с ними правильно и бережно, то 3-4 года они точно прослужат. Сегодня в статье мы как раз и рассмотрим, чем и как их нужно заряжать и какие особенности использования существуют.

Что такое литий-ионный и литий-полимерный аккумулятор, в чем их отличие

В состав литий-ионных и литий-полимерных аккумуляторов входят отрицательные пластины из металлического лития. Литий, как очень лёгкий металл, способен обеспечить оптимальную плотность на единицу массы.

Литий-полимерный аккумулятор – это усовершенствованная версия литий-ионного варианта. Только в качестве электролита, в нём используется полимерный материал.

При покупке смартфона или ноутбука далеко не всегда мы берем во внимание, какой аккумулятор там установлен. И только столкнувшись с какими-то проблемами уже в процессе использования гаджета, мы начинаем разбираться в этом вопросе

Главные правила подзарядки аккумуляторов, каким током заряжать

li-ion аккумуляторы имеют свои срок службы и рассчитаны на определенное количество циклов заряда-разряда.

Читайте также:  Тестер для батареек и аккумуляторов своими руками

Они способны выдержать около 1000 циклов зарядки, после чего становятся непригодными для дальнейшего использования.

Поэтому, если вы хотите, чтобы ресурс на батарее сохранялся как можно дольше, рекомендуем вам следовать нескольким несложным правилам:

  1. Всегда ставьте аккумулятор на зарядку, когда емкость батарей составляет 10-20% от заряда. Никогда не ждите полной разрядки.
  2. Не спешите снимать полностью заряженный гаджет с зарядки. Оставьте его еще на 20-30 минут. За это время происходит зарядка малым током.
  3. Всегда используйте только оригинальное зарядное устройство
  4. Соблюдайте температурный режим. Заряжать аккумулятор нужно в помещении, при температуре выше +10 градусов.

При первой зарядке важно убедиться, что процесс происходит правильно. Сделать это совсем не сложно. Просто регулярно проверяйте температуру устройства, АКБ, всех разъемов и проводов. Сильного нагревания элементов быть не должно, иначе это будет говорить о неисправности.

Способы зарядки аккумуляторов, каким током их заряжать?

Давайте поговорим о вариантах и особенностях зарядки li-ion и li-po аккумуляторов. На полностью заряженном аккумуляторе напряжение составляет 4.15-4.2 В. На полностью разряженном 2.5-2.8 В. Существует оптимальное значение зарядного тока и оно должно составлять от трети до половины его емкости. Вопрос емкости индивидуален и имеет разное значение для каждой отдельной модели. Узнать его можно в сопроводительной документации или прямо на корпусе прибора.

Вообще существует два основных способа зарядки аккумуляторов – простой и многоступенчатый.

Простой способ заключается в том, что устройство заряжает аккумулятор до тех пор, пока он не сообщит о полной зарядке (Пока напряжение на его клеммах не достигнет значения 4.2 В). На самом деле основная масса бюджетных зарядных устройств работает по такому принципу.

СПОСОБ 1. Многоступенчатый.

В наше время он активно используется в подавляющем большинстве качественных гаджетов. И это на самом деле здорово, так как данный вариант продлевает срок службы батареи.

Давайте поподробнее рассмотрим самые популярные устройства и способы зарядки с их помощью.

Способ № 1: С помощью мульти-зарядного устройства IMAX B6 80W

Существует специальное мульти-зарядное устройство IMAX B6 80W. Использовать его для зарядки очень удобно, так как в нем реализована возможность автоматически устанавливать ток в процессе зарядки. Это важно, чтобы не было перезаряда. Перезаряд может вызвать повреждение и, даже, взрыв.

Данное устройство позволяет заряжать аккумуляторы на основе лития и никеля. Для этого в устройстве есть меню настроек, где можно указать тип батарей, настроить D.Peak чувствительность, настроить разъёмы USB и тд.

Если в процессе настройки вы допустите какие-то ошибки, например выбор не того типа аккумулятора, устройство оповестит вас об ошибке и зарядка не начнется. Это позволит сохранить не только ваш аккумулятор, но и нервную систему.

Программное обеспечение данного устройства было протестировано и проверено системой двойного контроля, поэтому максимальная безопасность никаких сомнений не вызывает.

Также его можно подключить к компьютеру и с помощью специальной программы Log View (от компании SCYRC) посмотреть графики на основе логов зарядки-разрядки.

Способ № 2: При помощи модулей контроля заряда и балансировки

(- модули защиты 2s,3S,4s,5s 10-100A (с AliExpress))

(- Flight Power V Balancer)

Чем заряжать литий ионные батарейки каждый решает сам. Можно воспользоваться покупным зарядным устройством, а можно собрать зарядку самостоятельно. Все, что нужно для этого сделать – это купить готовый модуль TP4056 и собрать совсем несложную схему.

Основное преимущество данного решения – низкая стоимость. Цена вопроса при заказе на Aliexpress примерно 30 рублей.

Схема включения зарядного модуля ЕЗ4056 1А

Такой модуль отлично подойдет для аккумуляторов емкостью 2000-3000 мАч. По сути можно будет заряжать модели и большей емкости. Единственное, время на это понадобится несколько больше.

Есть еще одна отличная и несложная в реализации схема. Она позволит заряжать током до 800 мА. Единственный ее минус – она имеет свойство сильно нагреваться. Но волноваться из-за этого не стоит. Так как у нее есть встроенная защита от перегрева.

При желании схему можно существенно упростить. Для этого нужно исключить один или оба светодиода и транзистор. Тогда она будет выглядеть совсем элементарно и состоять из пары резисторов и одного кондера.

Ток заряда считается в амперах и по формуле l=1000/R. Выставлять сразу большой ток не стоит. Сначала лучше проверить, насколько сильно будет греться микросхема.

Радиатор использовать у вас вряд ли получится. Возможно, что и к лучшему, так как далеко не факт, что он будет эффективным из-за высокого теплового сопротивления.

Еще важный момент – микросхема LTC4054 может иметь разную маркировку: LTH7 или LTADY. Их отличие в том, что LTH7 справится с зарядкой даже сильно севшего аккумулятора. А вот LTADY эта задача будет не под силу.

Модули защиты 2s,3S,4s,5s 10-100A (с AliExpress)

Нельзя оставлять без внимания и модули защиты 2s,3S,4s,5s 10-100A. Заказать их можно с AliExpress. Выглядят они вот так:

У данного устройства есть несколько особенностей.

  1. Высокоточное обнаружение напряжения.
  2. Зарядное устройство использует высокое напряжение
  3. Встроенная защита от перегрузки и коротких замыкании
  4. Транзистор MOS позволяет управлять зарядкой и разрядкой аккумулятора
  5. Низкое напряжение в режиме ожидания

Поэтому для тех, кто находится в поисках недорого и удобного варианта эта модель подойдет просто идеально.

Еще одно устройство, которое всегда придет на помощь IMAXRC B4 DC IMAX-B4. Использовать его совсем не сложно. Просто подключаете его и наблюдаете за индикатором. Как только он начнет светится зеленым, устройство заряжено и готово к использованию.

К особенностям данной модели можно отнести:

  1. Автоматическую зарядку и балансировку
  2. Автоматическое определение оптимального тока
  3. Понятную и простую индикацию световым сигналом
Читайте также:  Аккумуляторы трейд ин краснодар

Flight Power V Balancer

И последнее устройство, которое мы сегодня рассмотрим, называется Flight Power V Balancer. Это очень мощный балансир, который можно использовать со всеми типами зарядных устройств. Его использование самое безопасное и позволяет продлить срок службы аккумуляторов. Он также оснащен светодиодным индикатором, который отображает степень зарядки.

Видео к просмотру: Как и чем зарядить Li-ion и Li-po аккумуляторы 18650, от мобильного и др. Tp4056

Существуют универсальные зарядные устройства, которые подходят для подключения и к бытовой технике 220В, и к бортовой сети 12В. Все они оснащены корпусом, кабелем с вилкой, преобразователем в виде трансформатора, стабилизатором напряжения, контролем зарядки и светодиодным индикатором.

Кроме этого, в некоторых моделях есть и другие элементы – например, вольтметр или амперметр, дополнительный дисплей и так далее. Пользоваться ими удобно и совершенно несложно.

К таким моделям можно отнести зарядное устройство mh12210, есть и ряд других вариантов, которые при необходимости вы без труда найдете в любом магазине электроники.

Как определить с защитой от перезаряда аккумулятор или нет

Как правильно заряжать li-ion аккумуляторы и разберемся с аббревиатурами PCB, BMS и PCM, PCB

В данном виде аккумуляторов нельзя допускать глубокой разрядки и перезаряда. Так как для них это опасно и из-за несоблюдения этих факторов они могут намного быстрее выйти из строя.

Именно поэтому, для контроля за состоянием батареи, некоторые производители встраивают в нее PCB модуль. Его задача как раз-таки не допустить глубокой разрядки или, наоборот, перезаряда.

Поэтому перед покупкой аккумулятора важно выяснить, оснащен он модулем PCB или нет. Потому что если данный элемент отсутствует, вам придется следить за состоянием батареи самостоятельно.

Модуль PCM работает несколько по-иному. Во-первых, он встраивается не в элемент, а в устройство. К примеру, в смартфон. То есть, если плата PCB следит только за уровнем зарядки, то PCM занимается полностью управлением процесса – обеспечивает ток, контролирует температуру и напряжение.

По факту выступает узлом, который называется контроллером зарядки и который ее отключает, когда прибор зарядился. Либо делает это принудительно, если возникли проблемы с напряжением или другие неисправности.

Блок BMS

Его можно найти в аккумуляторах, составленных из батарей, включенных последовательно. Например, так устроены АКБ любого ноутбука. Как правило, при эксплуатации аккумуляторы теряют ёмкость по-разному. Один элемент всегда разряжается быстрее, чем другой. В результате один блок может быть полностью разряжен, тогда как остальные «тянут» и благодаря этому напряжение в целом будет в норме. И как раз задача модуля BMS – контролировать состояние каждого элемента и не допустить, чтобы напряжение в какой-то части стало критическим. Именно поэтому BMS часто называют балансиром.

Эффект памяти, старение аккумуляторов, калибровка

Вообще эффекта памяти у литий-ионного аккумулятора нет. Ни специальной “тренировки”, ни “калибровки” нового устройства не требуется.

Каким образом измерить емкость аккумулятора

Вполне естественно, что в процессе эксплуатации емкость уменьшается и перестает соответствовать значениям, которые указаны на корпусе. Но если возникнет необходимость узнать реальную емкость аккумулятора, это вполне возможно сделать. Вариантов, как это сделать – два.

Один из них – использовать специальный прибор, который называется “Аймак”. Это устройство включает в себя тестер, вольтметр, амперметр и многое другое. Единственный его минус – дорогая стоимость. Поэтому намного проще для большинства пользователей будет воспользоваться USB-тестером. По ценовой политике он намного приемлемее, а точность измерения при этом на очень приличном уровне.

Чтобы узнать реальную емкость батарей, сперва ее нужно полностью зарядить, а после разрядить через ту или иную нагрузку, включив между элементом и нагрузкой тестер. Вход прибора нужно подключить к элементу питания, а выход – к нагрузке. В качестве нее можно использовать полуваттный резистор сопротивлением 8-16 Ом.

Возможные риски при неправильном заряде

Вполне естественно, что существует определенные риски, которые могут возникнуть при неправильном заряде. Поэтому, чтобы аккумуляторы прослужили как можно дольше, перед их использованием нужно внимательно изучить инструкцию. Не менее важно и зарядное устройство подобрать правильно. Нельзя заряжать батарей при температуре ниже 5 градусов и выше 50 градусов по Цельсию. Нагревание АКБ в процессе зарядки вполне естественно. Главное, чтобы они были комфортны на ощупь. Если нагрев более сильный, устройство нужно вытащить из розетки.

Что такое многоступенчатая зарядка?

Данный метод состоит из трех этапов. Сразу же после подключения зарядного устройства контроллер измеряет напряжение на батарее. При показателях ниже 2,5 В производится зарядка малым (около 0,02-0,1 С) током до тех пор, пока напряжение не поднимется до 2,8 В. В случае, если изначально оно выше, этот этап просто пропускается.

Далее зарядный ток увеличивается до значения 0,5 С (нормальный заряд) или 1 С (ускоренный заряд). И данный этап заканчивается тогда, когда напряжение на элементе повышается до 4.1-4.2 В

Когда на элементе устанавливается стабильное напряжение 4.14-4.25 В, производится подзарядка небольшим током. И заканчивается этап тогда, как только значение тока уменьшается до 0,05 С.

Тут важно знать, что третий этап занимает довольно много времени. Но при этом обязательным не является. Если нет возможности и желания ждать, можно ограничиться вторым этапом. Потому что в этот период батарея набирает практически всю емкость (90-95%)

Аккумуляторы подделки из Китая хуже или лучше?

Лучше всего использовать родной, оригинальный аккумулятор. Только так вы можете быть уверены, что с устройством при зарядке все будет в порядке и никаких проблем не возникнет.

Хотя, конечно, есть и неоригинальные зарядные устройства вполне достойного качества.

Рекомендации при эксплуатации для долговечной работы АКБ

Ни в коем случае нельзя допускать перегрева при длительной работе батарей. Потому что литии – активный щелочной металл. И вполне естественно, что при его нагреве может начаться реакция, которая приведет к воспламенению. Строго запрещается держать литий-ионные батарей вблизи открытого огня и нужно избегать прямых солнечных лучей. Особенно это касается смартфонов и ноутбуков.

Читайте также:  Аккумулятор для люмия 640 дуал сим

Внимательно стоит относиться и к переохлаждению. Низкие температуры не так опасны и никаких страшных последствий они не вызовут. Зато снизят емкость батареи. Хранить литий ионные батареи лучше в заряженном состоянии, не допускать нарушения полярности при установке, замыкания контактов

Не нужно также разбирать аккумуляторный элемент. Это также небезопасно.

Источник

Как заряжать и правильно эксплуатировать литий─полимерный аккумулятор?

В современных гаджетах используется всё больше литий─полимерных аккумуляторов. Этот тип батарей появился не так давно. Их конструкция и используемые материалы постепенно совершенствуются. Li─Pol аккумуляторы можно встретить в планшетах, некоторых моделях смартфонов и ноутбуков. Также они широко используются в игрушках и моделях на радиоуправлении. К нам приходит довольно много вопросов о том, как заряжать такие аккумуляторы. Об этом уже упоминалось в некоторых статьях. Поскольку эта тема пользуется большим спросом, мы решили вынести её в отдельную заметку.

Особенности литий─полимерных аккумуляторов

Этот вид литиевых батарей был разработан в результате совершенствования конструкции и функционирования литий─ионных АКБ. В последних используется жидкий электролит, из-за чего возникает ряд проблем при их эксплуатации. В результате специалисты разработали литий─полимерные аккумуляторы, которые имеют аналогичный принцип действия, но несколько иную конструкцию и другой электролит.

Литий─полимерный аккумулятор В Li─Pol аккумуляторах был использован сухой электролит, представляющий собой твёрдый полимера. Выглядит он как пластиковая плёнка. Структура полимера такова, что ток он не проводит. Однако не мешает обмену ионами, подразумевающему передвижение через него заряженных ионов. То есть, этот полимерный материал выступает как в роли электролита, так и непроводящего тока сепаратора между электродами. Кроме того, в современных образцах литий─полимерных аккумуляторах добавлен гелеобразный электролит с ионами лития.

Источник

Зарядное устройство для Li-Pol аккумуляторов на LTC4054, улучшенная версия.

Понадобилось мне сделать простенькую зарядку для маленьких литиевых аккумуляторов- типа 14500 и 10440. И понеслось…

В запасе были очень хорошие и проверенные ME4057, но мне они показались избыточными- и потому я заказал на Алиэкспрессе клопов LTC4054, благо дешевые, в корпусе SOT-23-5.
Микросхема мне в целом понравилась. Функции свои полностью выполняет, документация по ней доступна: ссылка
Однако, микросхеме присущ ряд недостатков.

Первый: отсутствие нормальной индикации. Микросхема предназначена для работы совместно с микроконтроллером, где-нибудь в мобильнике, потому у нее только одна нога, имеющая три состояния:
1. Жесткая привязка к земле. Идет заряд аккумулятора.
2. Нежесткая привязка к земле. Микросхема готова к работе.
3. Вывод ни к чему не привязан. Недостаточное напряжение питания, или исчо какая неприятность.

У моих экземпляров нога работала так: жесткая привязка- идет заряд, нежесткая привязка- батарейка отсутствует, вывод ни к чему не привязан- зарядка кончилась.
Я повесил туда красный светодиод через резистор, по окончанию зарядки он гаснет.

Сразу обнаружился очередной косяк: если аккумулятор не был оборудован защитой на DW01- светодиод светился одинаково ярко вне зависимости от того, шел ли заряд аккумулятора или аккумулятор отсутствовал. Пробовал шунтировать выход микросхемы емкостью (как на me4057)- светодиод начинал мигать. Проанализировал схему защиты: DW01 подключается к положительному выводу питания через резистор 100 Ом, зашунтирована емкостью 0.1 Мкф. Добавил аналогичную цепочку на выход LTC4054- светодиод стал вести себя как полагается. 🙂 Выходит, микросхема изначально предназначена для работы с защищенными аккумуляторами, но нигде в даташите этого не сказано!

Я применил держатель батареи Blossom (тоже с Алиэкспресса) с хорошими плоскими пружинными контактами- и тут вылез еще один косяк- очень легко вставить аккумулятор неправильно. Микросхема LTC4054 защитой от переполюсовки аккумулятора, к сожалению, не оборудована. 🙁 Я проверил «что будет, если переполюсовать»- ожидаемо пошел белый дым. Посему- пришлось потратить вечер на сочинение простенькой схемки защиты от переполюсовки на двух мосфетах (AO3400 и AO3401, тоже купленных на Алиэкспресс). Кроме того, я добавил зеленый светодиод для удобства, по принципу «красный погас- зеленый загорелся».

Окончательную схему устройства прилагаю:

Испытания показали, что защита работает безукоризненно. Однако, она внесла свои коррективы, и у меня случайно и весьма удачно получилась вот такая индикация:
1. Горит красный светодиод- идет зарядка.
2. Горит зеленый светодиод- зарядка окончена.
3. Горят оба светодиода вполнакала- батарея отсутствует.
4. Горит зеленый светодиод, красный слабо светится- батарея переполюсована.
Микросхема чувствительна к происходящему на выводе «Bat», потому на работу индикации влияют номиналы R5, R6, R7, можете с ними поиграться.

Номиналы токоограничивающих резисторов я не указал сознательно- подберите их под ваши светодиоды (у меня зеленый обычный- 750 Ом, красный сверхяркий- 1.2 КОм).
Rпрог. зависит от зарядного тока, его выбирают по формуле: R=1000/Ichrg, где Ichrg- ток заряда аккумулятора.
Гасящий резистор Rдоп. в даташите указан как «опция», но поставить его весьма желательно- при большом токе заряда микросхема может перегреться и уйти в защиту по теплу, а так- он погасит излишек напряжения и рассеит избыток тепла. Чем больше его номинал и мощность- тем лучше, но выбирать его следует по таблице «Charge Current vs RCC» на странице 12 документации.
Отвод тепла от микросхемы осуществляется через ее выводы, в основном «земляной», посему- при изготовлении платы лучше понаделать больших полигонов, которые сыграют роль теплоотвода.

У меня получилась вот такая маленькая симпатичная платочка, разместившаяся снизу батарейкодержателя:

Источник

Зарядное устройство для li ion li pol аккумуляторов

Зарядное устройство для li ion li pol аккумуляторов

«С» значит Capacity

Часто встречается обозначение вида «xC». Это просто удобное обозначения тока заряда или разряда аккумулятора с долях его ёмкости. Образовано от английского слова «Capacity» (вместимость, ёмкость).
Когда говорят о зарядке током 2С, или 0.1С, обычно имеют в виду, что ток должен составлять (2 × емкость аккумулятора)/h или (0.1 × емкость аккумулятора)/h соответственно.
Например, аккумулятор емкостью 720 mAh, для которого ток заряда составляет 0.5С, надо заряжать током 0.5 × 720mAh/h = 360 мА, это относится и к разряду.

Основные характеристики литиевых аккумуляторов

Есть два основных типа литиевых аккумуляторов: Li-ion и Li-polymer.
Li-ion — литий-ионная батарея, Li-polymer — литий-полимерная батарея.
Отличие их в технологии изготовления. Li-ion имеют жидкий или гелевый электролит, а Li-polymer — твердый.
Это отличие повлияло на диапазон рабочих температур, немного на напряжение и на форму корпуса, которую можно придать готовому изделию. Ещё — на внутреннее сопротивление, но тут много зависит от качества изготовления.
Li-ion: -20 … +60°C; 3,6 V
LI-polymer: 0 .. +50°С; 3,7 V
Для начала надо разобраться, что это за вольты такие.
Производитель пишет нам 3,6 V, но это среднее напряжение. Обычно в даташитах пишут диапазон рабочих напряжений 2,5 V … 4,2 V.
Когда я первый раз столкнулся с литиевыми аккумуляторами, то долго изучал даташиты.
Ниже представлены их графики разряда при разных условиях.

Рис. 1. При температуре +20°C

Рис. 2. При разных температурах эксплуатации

Из графиков становится понятно, что рабочее напряжение при разряде 0,2С и температуре +20°C составляет 3,7 V … 4,2 V. Безусловно, батареи можно соединить последовательно и получить нужное нам напряжение.
На мой взгляд очень удобный диапазон напряжений, который подходит под многие конструкции, где используется 4,5V — они прекрасно работают. Да и соединив их 2 шт. получим 8,4 V, а это почти 9 V. Я их ставлю во все конструкции, где идёт батарейное питание и уже забыл, когда последний раз покупал батарейки.

Есть у литиевых аккумуляторов нюанс: их нельзя заряжать выше 4,2 V и разряжать ниже 2,5 V. Если разрядить ниже 2,5 V, восстановить не всегда удается, а выкидывать жалко. Значит, нужна защита от сверхразряда. Во многих батареях она уже встроена в виде мелкой платы, и её просто не видно в корпусе.

Схема защиты аккумулятора от сверхразряда

Бывает, попадаются аккумуляторы без защиты, тогда приходится собирать самому. Сложности это не представляет. Во-первых есть ассортимент специализированных микросхем. Во-вторых, кажется есть собранные модули у китайцев.

А в-третьих, мы рассмотрим, что можно собрать по теме из подножных материалов. Ведь не у всех есть в наличии современные чипы или привычка отовариваться на АлиЭкспресс.
Я пользуюсь вот такой суперпростой схемой многие годы и ни разу аккумулятор не вышел из строя!

Рис. 3.
Конденсатор можно не ставить, если нагрузка не импульсная и стабильно потребляющая. Диоды любые маломощные, их количество надо подобрать по напряжению отключения транзистора.
Транзисторы я применяю разные, в зависимости от наличия и тока потребления устройства, главное чтоб напряжение отсечки было ниже 2,5 V, т.е. чтоб он открылся от напряжения аккумулятора.

Настраивать схему лучше на монтажке. Берём транзистор и подавая на затвор напряжение через резистор сопротивлением 100 Ом … 10 К, проверяем напряжение отсечки. Если оно не более 2,5 V, то экземпляр годен, далее подбираем диоды (количество и иногда тип), чтобы транзистор начинал закрываться при напряжении примерно 3 V.
Теперь подаем напряжение от БП и проверяем чтобы схема срабатывала при напряжении примерно 2,8 — 3 V.
Иными словами, если напряжение на аккумуляторе опустится ниже порогового, которые мы установили, то транзистор закроется и отключит нагрузку от питания, предотвратив тем самым вредный глубокий разряд.

Особенности процесса зарядки литиевого аккумулятора

Что ж, наш аккумулятор разрядился, теперь пора его безопасно зарядить.
Как и с разрядкой, с зарядкой тоже не всё так просто. Максимальное напряжение на банке должно быть не более 4,2 V ±0.05 V! При превышении этого значения литий переходит в металлическое состояние и может произойти перегрев, возгорание и даже взрыв аккумулятора.

Заряд аккумуляторов осуществляется по достаточно простому алгоритму: заряд от источника постоянного напряжения 4.20 Вольт на элемент, с ограничением тока в 1С.
Заряд считается завершенным, когда ток упадет до 0.1-0.2С. После перехода в режим стабилизации напряжения при токе в 1С, аккумулятор набирает примерно 70-80% емкости. Для полной зарядки необходимо время около 2-х часов.
К зарядному устройству предъявляются достаточно жесткие требования по точности поддержания напряжения в конце заряда, не хуже ±0.01 Вольт на банку.

Обычно схема ЗУ имеет обратную связь — автоматически подбирается такое напряжение, чтобы ток, проходящий через аккумулятор, был равен необходимому. Как только это напряжение становится равно 4.2 Вольтам (для описываемого аккумулятора), больше поддерживать ток в 1С нельзя — далее напряжение на аккумуляторе возрастёт слишком быстро и сильно.

В этот момент аккумулятор заряжен обычно на 60%-80%, и для зарядки остальных 40%-20% без взрывов ток требуется снизить. Проще всего это сделать, поддерживая постоянное напряжение на аккумуляторе, и он сам возьмет такой ток, который ему необходим.
При снижении этого тока до 30-10 мА аккумулятор считается заряженным.

Для иллюстрации всего вышеописанного привожу график заряда, снятый с подопытного аккумулятора:

Рис. 4.
В левой части графика, подсвеченной синим, мы видим постоянный ток 0.7 А, в то время как напряжение постепенно поднимается с 3.8 В до 4.2 В.
Также видно, что за первую половину заряда аккумулятор достигает 70% своей емкости, в то время как за оставшееся время — всего 30%.

Зарядные устройства для литиевых аккумуляторов

У китайцев можно заказать по почте с бесплатной доставкой модули зарядных устройств. Модули контроллера зарядки TP4056 с гнездом мини-USB и защитой можно взять очень недорого.

А можно сделать самому простое или не очень простое зарядное устройство, в зависимости от вашего опыта и возможностей.

Схема простого зарядного устройства на LM317

Рис. 5.
Схема с применением LM317 обеспечивает достаточно точную стабилизацию напряжения, которое устанавливается потенциометром R2.
Стабилизация тока не столь критична, как стабилизация напряжения, поэтому достаточно стабилизировать ток с помощью шунтирующего резистора Rx и NPN-транзистора (VT1).

Необходимый ток зарядки для конкретного литий-ионного (Li-Ion) и литий-полимерного (Li-Pol) аккумулятора выбирается путём изменения сопротивления Rx.
Сопротивление Rx приблизительно соответствует следующему отношению: 0,95/Imax.
Указанное на схеме значение резистора Rx соответствует току в 200 мА, это примерное значение, зависит так же от транзистора.

LM317 надо снабдить радиатором в зависимости от тока заряда и входного напряжения.
Входное напряжение должно быть выше напряжения аккумулятора минимум на 3 Вольта для нормальной работы стабилизатора, что для одной банки составляет?7-9 V.

Схема простого зарядного устройства на LTC4054

Рис. 6.
Можно выпаять контролер заряда LTC4054 из старого сотового телефона, к примеру, Samsung (C100, С110, Х100, E700, E800, E820, P100, P510).

Рис. 7. У этого мелкого 5-ногого чипа маркировка «LTH7» или «LTADY»

Вдаваться в мельчайшие подробности работы с микросхемой я не буду, всё есть в даташите. Опишу только самые необходимые особенности.
Ток заряда до 800 мА.
Оптимальное напряжение питания от 4,3 до 6 Вольт.
Индикация заряда.
Защита от КЗ на выходе.
Защита от перегрева (снижение тока заряда при температуре больше 120°).
Не заряжает аккумулятор при напряжении на нём ниже 2,9 V.

Ток заряда задается резистором между пятым выводом микросхемы и землей по формуле
I=1000/R,
где I — ток заряда в Амперах, R — сопротивление резистора в Омах.

Индикатор разрядки литиевого аккумулятора

Вот простая схема, которая зажигает светодиод, когда батарея разряжена и её остаточное напряжение близко к критическому.

Рис. 8.
Транзисторы любые маломощные. Напряжение зажигания светодиода подбирается делителем из резисторов R2 и R3. Схему лучше подключать после блока защиты, чтоб светодиод не разрядил аккумулятор совсем.

Нюанс долговечности

Производитель обычно заявляет 300 циклов, но если заряжать литий всего на 0,1 Вольта меньше, до 4.10 В, то количество циклов возрастает до 600 и даже более.

Эксплуатация и меры предосторожности

Можно с уверенностью сказать, что литий-полимерные аккумуляторы самые «нежные» аккумуляторы из существующих, то есть требуют обязательного соблюдения нескольких несложных, но обязательных правил, из-за несоблюдения которых случаются неприятности.
1. Не доспускается заряд до напряжения, превышающего 4.20 Вольт на банку.
2. Не доспускается короткое замыкание аккумулятора.
3. Не доспускается разряд токами, превышающими нагрузочную способность или нагревающими аккумулятор выше 60°С. 4. Вреден разряд ниже напряжения 3.00 Вольта на банку.
5. Вреден нагрев аккумулятора выше 60°С. 6. Вредна разгерметизация аккумулятора.
7. Вредно хранение в разряженном состоянии.

Читайте также:  Аккумулятор для машины уаз патриот

Невыполнение первых трех пунктов приводит к пожару, остальных — к полной или частичной потере ёмкости.

Из практики многолетнего использования могу сказать, что ёмкость аккумуляторов изменяется мало, но увеличивается внутреннее сопротивление и аккумулятор начинает работать меньше по времени при больших токах потребления — создаётся впечатление, что ёмкость упала.
По этому я обычно ставлю ёмкость побольше, какую позволяют габариты устройства, и даже старые банки, которым лет по десять, работают вполне прилично.

Для не очень больших токов подходят старые аккумуляторы от сотовых.

Из старой ноутбучной батареи можно вытащить много вполне рабочих аккумуляторов формата 18650.

Где я применяю литиевые батареи

Давно переделал шуруповерт и электроотвертку на литий. Пользуюсь этими инструментами нерегулярно. Теперь даже через год неиспользования они работают без подзарядки!

Маленькие батареи ставлю в детские игрушки, часы и т.д., где с завода стояли 2-3 «таблеточных» элемента. Там где нужно ровно 3V добавляю один диод последовательно и получается как раз.

Ставлю в светодиодные фонарики.

В тестер вместо дорогой и малоёмкой «Кроны 9V» установил 2 банки и забыл все проблемы и лишние затраты.

Вообще ставлю везде, где получается, вместо батареек.

Где я покупаю литий и полезности по теме

Продаются батареи всех видов, ёмкостей и форм-факторов в Китае. По этой же ссылке найдёте модули зарядок и пр. полезности для самодельщиков.

На счёт ёмкости китайцы обычно врут и она меньше написанной.

Честные Sanyo 18650
А вот аккумуляторы Sanyo 18650 подороже, зато и ёмкость честная и качество на высоте — менял в ноутбуке.

Контроллеры заряда на TP4056 с USB-разъёмом настолько малы, что можно встраивать их непосредственно в устройство и заряжать от USB ПК или от USB-зарядки для телефона.

А есть отдельно чипы-контроллеры TP4056 SO-8 для встраивания на свою плату.

Малогабаритные литий-полимерные аккумуляторы, разной ёмкости и размеров. Выводы сделаны проводами, что для нас очень удобно. Обычно есть защита.

Файлы

В архиве даташиты на некоторые аккумуляторы и чип LTC4054.

Источник



Как выбрать зарядное устройство для аккумуляторов

Каждого из нас окружает множество электронных приборов, питающихся от батареек – портативная фото- и аудиотехника, измерительные приборы, фонарики. Ну и игрушки, разумеется.

И у многих рано или поздно возникает мысль заменить все эти батарейки аккумуляторами. Пусть последние и стоят раз в десять дороже, но ведь циклов зарядки-перезарядки они выдерживают не одну сотню, так что экономия должна быть налицо.

Человек приобретает пачку аккумуляторов, какое-нибудь зарядное устройство, но через некоторое время все возвращается «на круги своя». ЗУ валяется в глубине шкафа, выработавшие ресурс аккумуляторы выброшены, а вся портативная техника опять питается батарейками. Причин у такого разочарования может быть две:

1. Изначально некачественные аккумуляторы. Очень многие недорогие китайские аккумуляторы грешат неравномерной емкостью комплекта, быстрым саморазрядом и несоответствием характеристик, заявленным на упаковке, реальным.

Пример комплекта новых китайских аккумуляторов с заявленной емкостью 3000 мА ч. Реальная емкость – от 320 до 516 мА·ч. Первая же быстрая зарядка по таймеру отправит такой комплект в мусор.

2. Неправильно подобранное зарядное устройство. Покупка первого попавшегося ЗУ может привести к сильному снижению ресурса заряжаемых аккумуляторов, а то и к выходу их из строя. Чтобы добиться максимальной отдачи, следует подобрать подходящее по характеристикам зарядное устройство.

Характеристики зарядных устройств для аккумуляторов

Первое, с чем следует определиться при подборе ЗУ – это тип и типоразмер аккумуляторов, которые будут на нём заряжаться. Аккумуляторы разного типа заряжаются разным напряжением, установка аккумулятора одного типа в ЗУ другого может привести к выходу их из строя.

Никель-металлогидридные (Ni-MH) и никель-кадмиевые (Ni-Cd) аккумуляторы выпускаются в наиболее распространенных типоразмерах ААА («мизинчиковые») и АА («пальчиковые»). Реже встречаются типоразмеры AAAA, С, D, SC и «Крона». Типовое напряжение таких аккумуляторов чуть ниже, чем у аналогичных батареек – 1,2 В вместо 1,5 В. Исключение составляют аккумуляторы типоразмера «Крона» – они выпускаются напряжением 7,2 и 8,4 В.

Литий-ионные (li-ion), литий-полимерные (Li-pol), литий-железо-фосфатные (LiFePO4) типовые аккумуляторы выпускаются в цилиндрических корпусах различного размера (10440, 14500, 14650 и т.д.), различных призматических корпусах и типоразмера «Крона».

Цифровое обозначение цилиндрического корпуса соответствует длине и диаметру аккумулятора – так, аккумуляторы типоразмера 18650 имеют диаметр в 18 мм и 65 мм длины. Однако размеры эти не точные – у различных производителей размеры корпуса могут незначительно отличаться, кроме того, модели с встроенной схемой защиты имеют на несколько мм большую длину.

Некоторые типоразмеры сходны с Ni-MH и Ni-Cd: так, ААА по размерам близок к 10440, АА к 14250 и т.д. Но это не говорит об их взаимозаменяемости – напряжение аккумуляторных элементов на основе лития отличается от напряжения Ni-MH и Ni-Cd аккумуляторов: цилиндрические имеют напряжение 3,6 В, типоразмера «Крона» — 9 В.

Поэтому нельзя устанавливать аккумуляторы одного типа в ЗУ другого. Встречаются универсальные зарядные устройства, но с ними следует быть осторожным: не все они определяют тип аккумулятора автоматически, некоторые требуют установки переключателя в нужное положение. Для тех ЗУ, которые умеют определять тип аккумулятора, желательно наличие ЖК-дисплея – это позволяет убедиться, что электроника устройства определила тип аккумулятора правильно.

Ток зарядки зависит от типа и емкости заряжаемого аккумулятора. Для Ni-MH аккумуляторов существует три режима зарядки:

-капельный, током 0,1С (10% от величины емкости – например, 100 мА для аккумулятора емкостью 1000 мА·ч);

-быстрый (0,1 – 0,5С);

-ускоренный (0,5 – 1С);

Капельный режим имеет множество недостатков:

— большая продолжительность (для полной зарядки аккумулятору следует сообщить 140-160% емкости, поэтому длительность её будет составлять 14-16 часов);

— снижение ресурса заряжаемых аккумуляторов;

— невозможность определения окончания зарядки по падению напряжения.

Как видно из графика, при 0,1С уже заметно снижение емкости аккумулятора. При дальнейшем снижении зарядного тока снижение емкости увеличивается.

Плюс один – в этом режиме перезаряд аккумулятора не грозит скорым его повреждением, поэтому строгого контроля над параметрами зарядки не требуется. Только в этом режиме можно бесконтрольно использовать простые ЗУ без таймера и контроля спада напряжения. Но имейте в виду, что срок жизни аккумуляторов в этом случае будет ниже, чем если бы использовались другие режимы зарядки.

Что делать, если ток ЗУ превышает 0,1С, а таймера или контроля зарядки на нем нет? Засекать время вручную. Это будет уже быстрый режим и продолжительность его можно высчитать по формуле

t – продолжительность зарядки в часах, С – емкость аккумулятора, I з – ток зарядки, 1,4 — коэффициент, учитывающий тепловые потери при зарядке.

Имейте в виду, что эта формула подразумевает полный разряд аккумулятора. Если аккумулятор разряжен наполовину, то половину высчитанного по формуле времени будет идти перезаряд. Перезаряд аккумулятора токами выше 0,1С чреват его повреждением из-за возрастания температуры и давления внутри аккумулятора.

Ускоренный заряд осуществлять на «неумных» ЗУ не рекомендуется. Реальная емкость аккумуляторов часто не соответствует «нарисованной» – особенно после нескольких циклов заряда-разряда. А перезаряд при ускоренном режиме очень быстро выводит аккумулятор из строя.

Для Ni-Cd аккумуляторов все примерно так же, за исключением того, что давление в них возрастает быстрее и перезаряда они боятся больше, чем Ni-MH. Поэтому при самостоятельном расчете времени зарядки рекомендуется использовать меньший коэффициент:

Li-ion и Li-pol аккумуляторы следует заряжать только с постоянным контролем параметров зарядки. Перезаряда они не выносят, а зарядка их производится током, зависящим от текущего напряжения на аккумуляторе. Заряжать их рекомендуется только на «умных» устройствах.

Если вам не хочется разбираться с параметрами аккумуляторов и подбирать под них зарядное устройство, выбирайте ЗУ с некоторым количеством аккумуляторов в комплекте. В этом случае можно быть уверенным, что тип, типоразмер и токи зарядки устройства соответствуют аккумуляторам.

Однако это не значит, что покупка такого ЗУ– наилучший выход. Для сохранения привлекательности на фоне других зарядных устройств производитель часто комплектует такие наборы дешевыми слабыми аккумуляторами и примитивными ЗУ с минимумом функций. Увидев на полке магазина два похожих зарядных устройства по одной цене, многие предпочтут то, которое укомплектовано аккумуляторами, и не станут разбираться в достоинствах второго. И зря – потому что в итоге экономию он мог бы дать заметно большую.

Читайте также:  Какую зарядное устройство для аккумулятора aaa

Простые зарядные устройства зачастую не имеют никаких функций контроля зарядки – даже если на таком ЗУ присутствует световая индикация, обычно она совершенно бесполезна и индикатор просто горит все время, пока устройство включено в сеть.

Таймер безопасности позволяет установить время, в течение которого будет производиться зарядка. При наличии таймера можно не опасаться «убить» весь комплект, забыв выключить ЗУ в нужный момент. Время высчитывается по вышеприведенной формуле. Однако если шаг установки таймера слишком велик, то в некоторых случаях его использование может привести к снижению емкости комплекта. Тогда может помочь опция подзарядки малым током.

Так, если получилось необходимое время зарядки 10 ч, а таймер устанавливается только на 8 и на 16, то в первом случае будет недозаряд и снижение емкости, а во втором – перезаряд и опасность повреждения. Если же у ЗУ есть опция подзарядки малым током, то можно выставить таймер на 8ч – по окончании зарядки устройство переключится на режим подзарядки, безопасно дозарядив аккумулятор до полной емкости.

Контроль спада напряжения (-dV метод) и контроль температуры используются в интеллектуальных ЗУ для определения окончания зарядки. При быстрой и ускоренной зарядке напряжение на аккумуляторе слегка снижается в момент полного заряда. Устройство, определяющее это снижение (-dV), способно быстро и безопасно зарядить аккумулятор до его максимальной емкости.

Контроль температуры, во-первых, гарантирует безопасность зарядки. При несоблюдении параметров зарядки или при неисправности аккумулятора, его температура может вырасти до опасных значений. Кроме того, высокая температура аккумулятора свидетельствует о возросшем внутри него давлении. Отсутствие контроля температуры может привести к взрыву аккумулятора.

Во-вторых, контроль температуры позволяет более точно определить окончание зарядки. Контроль спада напряжения может давать сбои в некоторых режимах зарядки. Но окончание зарядки также характеризуется резким возрастанием температуры (dT) и устройство, определяющее это возрастание поможет полностью зарядить аккумулятор, не повредив его.

Немаловажен также контроль неисправности аккумулятора. Простые ЗУ, не имеющие этой опции, будут пытаться заряжать комплект, даже если один из аккумуляторов вышел из строя. Часто после этого происходит следующее – владелец комплекта вставляет его в свое устройство, видит, что оно работает считанные минуты (или вообще не работает) и выкидывает весь комплект, хотя неисправен в нем только один аккумулятор.

Защита от переполюсовки и короткого замыкания позволят продлить жизнь самого ЗУ. Зачастую контроль неисправности аккумулятора включает защиту от короткого замыкания, но если её нет, то замыкание внутри аккумулятора может привести к перегреву зарядного устройства, его повреждению и даже воспламенению.

Еще одна неприятная особенность простых ЗУ – отсутствие индивидуальных каналов зарядки, что не позволяет заряжать неполный комплект аккумуляторов и снижает срок их службы в том случае, если они имеют разную емкость или неравномерный остаточный заряд. Устройство с индивидуальными каналами зарядки контролирует каждый аккумулятор отдельно – аккумуляторы с разной емкостью будут заряжаться оптимальным для них током до полного заряда каждого из них.

Особенно важно наличие индивидуальных каналов на ЗУ с большим количеством слотов для зарядки.

Функция разряда весьма полезна при зарядке неравномерно разряженного комплекта Ni-MH и особенно – Ni-Cd аккумуляторов. Последние имеют ярко выраженный «эффект памяти» и зарядка недоразряженного аккумулятора неминуемо приведет к снижению его емкости. При наличии функции разряда ЗУ может перед зарядкой выполнить полный разряд аккумуляторов. Функция реализуется по разному – в некоторых моделях это отдельный режим, который следует применять к недоразряженным аккумуляторам, в некоторых этап разряда является частью программы зарядки и может выполняться автоматически.

Проверка емкости аккумуляторов поможет определить их фактическую емкость. Это весьма полезная опция, позволяющая эффективно использовать ресурс комплекта. Вовремя заменяя «ослабшие» элементы, можно продлить жизнь остальных аккумуляторов комплекта.

Обратите также внимание на питание ЗУ – среди них есть как работающие от сети 220 В, так и от прикуривателя автомобиля или порта USB. В последнем случае многие ЗУ требуют подключения к двухамперному порту для полноценного использования всех режимов зарядки – рекомендуется использовать такие с соответствующим блоком питания и не подключать их к USB-портам планшетов и ноутбуков.

Варианты выбора зарядных устройств для аккумуляторов

Простые ЗУ для АА и ААА типоразмеров без таймера и контроля зарядки можно использовать в капельном режиме и с ручным контролем времени в быстром режиме зарядки Ni-MH и Ni-Cd аккумуляторов.

Наличие таймера на ЗУ незначительно повышает его цену, зато поможет сохранить аккумуляторы, если вы вдруг забудете снять их с зарядки.

Если вы хотите сразу купить подходящие друг к другу аккумуляторы и зарядное устройство, выбирайте среди ЗУ с аккумуляторами в комплекте.

ЗУ, питающееся от автомобильного прикуривателя, поможет зарядить аккумуляторы фотоаппарата или фонарика где-нибудь в дороге.

Чтобы по максимуму использовать ресурс комплекта аккумуляторов, выбирайте среди зарядных устройств с индивидуальными каналами зарядки.

Для зарядки Li-ion и Li-pol и аккумуляторов потребуется соответствующее зарядное устройство.

Источник

Как заряжать и правильно эксплуатировать литий─полимерный аккумулятор?

В современных гаджетах используется всё больше литий─полимерных аккумуляторов. Этот тип батарей появился не так давно. Их конструкция и используемые материалы постепенно совершенствуются. Li─Pol аккумуляторы можно встретить в планшетах, некоторых моделях смартфонов и ноутбуков. Также они широко используются в игрушках и моделях на радиоуправлении. К нам приходит довольно много вопросов о том, как заряжать такие аккумуляторы. Об этом уже упоминалось в некоторых статьях. Поскольку эта тема пользуется большим спросом, мы решили вынести её в отдельную заметку.

Особенности литий─полимерных аккумуляторов

Этот вид литиевых батарей был разработан в результате совершенствования конструкции и функционирования литий─ионных АКБ. В последних используется жидкий электролит, из-за чего возникает ряд проблем при их эксплуатации. В результате специалисты разработали литий─полимерные аккумуляторы, которые имеют аналогичный принцип действия, но несколько иную конструкцию и другой электролит.

Литий─полимерный аккумулятор В Li─Pol аккумуляторах был использован сухой электролит, представляющий собой твёрдый полимера. Выглядит он как пластиковая плёнка. Структура полимера такова, что ток он не проводит. Однако не мешает обмену ионами, подразумевающему передвижение через него заряженных ионов. То есть, этот полимерный материал выступает как в роли электролита, так и непроводящего тока сепаратора между электродами. Кроме того, в современных образцах литий─полимерных аккумуляторах добавлен гелеобразный электролит с ионами лития.

Источник

Li-ion и Li-polymer аккумуляторы в наших конструкциях

«С» значит Capacity

Часто встречается обозначение вида «xC». Это просто удобное обозначения тока заряда или разряда аккумулятора с долях его ёмкости. Образовано от английского слова «Capacity» (вместимость, ёмкость).
Когда говорят о зарядке током 2С, или 0.1С, обычно имеют в виду, что ток должен составлять (2 × емкость аккумулятора)/h или (0.1 × емкость аккумулятора)/h соответственно.
Например, аккумулятор емкостью 720 mAh, для которого ток заряда составляет 0.5С, надо заряжать током 0.5 × 720mAh/h = 360 мА, это относится и к разряду.

Основные характеристики литиевых аккумуляторов

Есть два основных типа литиевых аккумуляторов: Li-ion и Li-polymer.
Li-ion — литий-ионная батарея, Li-polymer — литий-полимерная батарея.
Отличие их в технологии изготовления. Li-ion имеют жидкий или гелевый электролит, а Li-polymer — твердый.
Это отличие повлияло на диапазон рабочих температур, немного на напряжение и на форму корпуса, которую можно придать готовому изделию. Ещё — на внутреннее сопротивление, но тут много зависит от качества изготовления.
Li-ion: -20 … +60°C; 3,6 V
LI-polymer: 0 .. +50°С; 3,7 V
Для начала надо разобраться, что это за вольты такие.
Производитель пишет нам 3,6 V, но это среднее напряжение. Обычно в даташитах пишут диапазон рабочих напряжений 2,5 V … 4,2 V.
Когда я первый раз столкнулся с литиевыми аккумуляторами, то долго изучал даташиты.
Ниже представлены их графики разряда при разных условиях.

Рис. 1. При температуре +20°C

Рис. 2. При разных температурах эксплуатации

Из графиков становится понятно, что рабочее напряжение при разряде 0,2С и температуре +20°C составляет 3,7 V … 4,2 V. Безусловно, батареи можно соединить последовательно и получить нужное нам напряжение.
На мой взгляд очень удобный диапазон напряжений, который подходит под многие конструкции, где используется 4,5V — они прекрасно работают. Да и соединив их 2 шт. получим 8,4 V, а это почти 9 V. Я их ставлю во все конструкции, где идёт батарейное питание и уже забыл, когда последний раз покупал батарейки.

Есть у литиевых аккумуляторов нюанс: их нельзя заряжать выше 4,2 V и разряжать ниже 2,5 V. Если разрядить ниже 2,5 V, восстановить не всегда удается, а выкидывать жалко. Значит, нужна защита от сверхразряда. Во многих батареях она уже встроена в виде мелкой платы, и её просто не видно в корпусе.

Читайте также:  Ибп без аккумуляторе включается

Схема защиты аккумулятора от сверхразряда

Бывает, попадаются аккумуляторы без защиты, тогда приходится собирать самому. Сложности это не представляет. Во-первых есть ассортимент специализированных микросхем. Во-вторых, кажется есть собранные модули у китайцев.

А в-третьих, мы рассмотрим, что можно собрать по теме из подножных материалов. Ведь не у всех есть в наличии современные чипы или привычка отовариваться на АлиЭкспресс.
Я пользуюсь вот такой суперпростой схемой многие годы и ни разу аккумулятор не вышел из строя!

Рис. 3.
Конденсатор можно не ставить, если нагрузка не импульсная и стабильно потребляющая. Диоды любые маломощные, их количество надо подобрать по напряжению отключения транзистора.
Транзисторы я применяю разные, в зависимости от наличия и тока потребления устройства, главное чтоб напряжение отсечки было ниже 2,5 V, т.е. чтоб он открылся от напряжения аккумулятора.

Настраивать схему лучше на монтажке. Берём транзистор и подавая на затвор напряжение через резистор сопротивлением 100 Ом … 10 К, проверяем напряжение отсечки. Если оно не более 2,5 V, то экземпляр годен, далее подбираем диоды (количество и иногда тип), чтобы транзистор начинал закрываться при напряжении примерно 3 V.
Теперь подаем напряжение от БП и проверяем чтобы схема срабатывала при напряжении примерно 2,8 — 3 V.
Иными словами, если напряжение на аккумуляторе опустится ниже порогового, которые мы установили, то транзистор закроется и отключит нагрузку от питания, предотвратив тем самым вредный глубокий разряд.

Особенности процесса зарядки литиевого аккумулятора

Что ж, наш аккумулятор разрядился, теперь пора его безопасно зарядить.
Как и с разрядкой, с зарядкой тоже не всё так просто. Максимальное напряжение на банке должно быть не более 4,2 V ±0.05 V! При превышении этого значения литий переходит в металлическое состояние и может произойти перегрев, возгорание и даже взрыв аккумулятора.

Заряд аккумуляторов осуществляется по достаточно простому алгоритму: заряд от источника постоянного напряжения 4.20 Вольт на элемент, с ограничением тока в 1С.
Заряд считается завершенным, когда ток упадет до 0.1-0.2С. После перехода в режим стабилизации напряжения при токе в 1С, аккумулятор набирает примерно 70-80% емкости. Для полной зарядки необходимо время около 2-х часов.
К зарядному устройству предъявляются достаточно жесткие требования по точности поддержания напряжения в конце заряда, не хуже ±0.01 Вольт на банку.

Обычно схема ЗУ имеет обратную связь — автоматически подбирается такое напряжение, чтобы ток, проходящий через аккумулятор, был равен необходимому. Как только это напряжение становится равно 4.2 Вольтам (для описываемого аккумулятора), больше поддерживать ток в 1С нельзя — далее напряжение на аккумуляторе возрастёт слишком быстро и сильно.

В этот момент аккумулятор заряжен обычно на 60%-80%, и для зарядки остальных 40%-20% без взрывов ток требуется снизить. Проще всего это сделать, поддерживая постоянное напряжение на аккумуляторе, и он сам возьмет такой ток, который ему необходим.
При снижении этого тока до 30-10 мА аккумулятор считается заряженным.

Для иллюстрации всего вышеописанного привожу график заряда, снятый с подопытного аккумулятора:

Рис. 4.
В левой части графика, подсвеченной синим, мы видим постоянный ток 0.7 А, в то время как напряжение постепенно поднимается с 3.8 В до 4.2 В.
Также видно, что за первую половину заряда аккумулятор достигает 70% своей емкости, в то время как за оставшееся время — всего 30%.

Зарядные устройства для литиевых аккумуляторов

У китайцев можно заказать по почте с бесплатной доставкой модули зарядных устройств. Модули контроллера зарядки TP4056 с гнездом мини-USB и защитой можно взять очень недорого.

А можно сделать самому простое или не очень простое зарядное устройство, в зависимости от вашего опыта и возможностей.

Схема простого зарядного устройства на LM317

Рис. 5.
Схема с применением LM317 обеспечивает достаточно точную стабилизацию напряжения, которое устанавливается потенциометром R2.
Стабилизация тока не столь критична, как стабилизация напряжения, поэтому достаточно стабилизировать ток с помощью шунтирующего резистора Rx и NPN-транзистора (VT1).

Необходимый ток зарядки для конкретного литий-ионного (Li-Ion) и литий-полимерного (Li-Pol) аккумулятора выбирается путём изменения сопротивления Rx.
Сопротивление Rx приблизительно соответствует следующему отношению: 0,95/Imax.
Указанное на схеме значение резистора Rx соответствует току в 200 мА, это примерное значение, зависит так же от транзистора.

LM317 надо снабдить радиатором в зависимости от тока заряда и входного напряжения.
Входное напряжение должно быть выше напряжения аккумулятора минимум на 3 Вольта для нормальной работы стабилизатора, что для одной банки составляет?7-9 V.

Схема простого зарядного устройства на LTC4054

Рис. 6.
Можно выпаять контролер заряда LTC4054 из старого сотового телефона, к примеру, Samsung (C100, С110, Х100, E700, E800, E820, P100, P510).

Рис. 7. У этого мелкого 5-ногого чипа маркировка «LTH7» или «LTADY»

Вдаваться в мельчайшие подробности работы с микросхемой я не буду, всё есть в даташите. Опишу только самые необходимые особенности.
Ток заряда до 800 мА.
Оптимальное напряжение питания от 4,3 до 6 Вольт.
Индикация заряда.
Защита от КЗ на выходе.
Защита от перегрева (снижение тока заряда при температуре больше 120°).
Не заряжает аккумулятор при напряжении на нём ниже 2,9 V.

Ток заряда задается резистором между пятым выводом микросхемы и землей по формуле
I=1000/R,
где I — ток заряда в Амперах, R — сопротивление резистора в Омах.

Индикатор разрядки литиевого аккумулятора

Вот простая схема, которая зажигает светодиод, когда батарея разряжена и её остаточное напряжение близко к критическому.

Рис. 8.
Транзисторы любые маломощные. Напряжение зажигания светодиода подбирается делителем из резисторов R2 и R3. Схему лучше подключать после блока защиты, чтоб светодиод не разрядил аккумулятор совсем.

Нюанс долговечности

Производитель обычно заявляет 300 циклов, но если заряжать литий всего на 0,1 Вольта меньше, до 4.10 В, то количество циклов возрастает до 600 и даже более.

Эксплуатация и меры предосторожности

Можно с уверенностью сказать, что литий-полимерные аккумуляторы самые «нежные» аккумуляторы из существующих, то есть требуют обязательного соблюдения нескольких несложных, но обязательных правил, из-за несоблюдения которых случаются неприятности.
1. Не доспускается заряд до напряжения, превышающего 4.20 Вольт на банку.
2. Не доспускается короткое замыкание аккумулятора.
3. Не доспускается разряд токами, превышающими нагрузочную способность или нагревающими аккумулятор выше 60°С. 4. Вреден разряд ниже напряжения 3.00 Вольта на банку.
5. Вреден нагрев аккумулятора выше 60°С. 6. Вредна разгерметизация аккумулятора.
7. Вредно хранение в разряженном состоянии.

Невыполнение первых трех пунктов приводит к пожару, остальных — к полной или частичной потере ёмкости.

Из практики многолетнего использования могу сказать, что ёмкость аккумуляторов изменяется мало, но увеличивается внутреннее сопротивление и аккумулятор начинает работать меньше по времени при больших токах потребления — создаётся впечатление, что ёмкость упала.
По этому я обычно ставлю ёмкость побольше, какую позволяют габариты устройства, и даже старые банки, которым лет по десять, работают вполне прилично.

Для не очень больших токов подходят старые аккумуляторы от сотовых.

Из старой ноутбучной батареи можно вытащить много вполне рабочих аккумуляторов формата 18650.

Где я применяю литиевые батареи

Давно переделал шуруповерт и электроотвертку на литий. Пользуюсь этими инструментами нерегулярно. Теперь даже через год неиспользования они работают без подзарядки!

Маленькие батареи ставлю в детские игрушки, часы и т.д., где с завода стояли 2-3 «таблеточных» элемента. Там где нужно ровно 3V добавляю один диод последовательно и получается как раз.

Ставлю в светодиодные фонарики.

В тестер вместо дорогой и малоёмкой «Кроны 9V» установил 2 банки и забыл все проблемы и лишние затраты.

Вообще ставлю везде, где получается, вместо батареек.

Где я покупаю литий и полезности по теме

Продаются батареи всех видов, ёмкостей и форм-факторов в Китае. По этой же ссылке найдёте модули зарядок и пр. полезности для самодельщиков.

На счёт ёмкости китайцы обычно врут и она меньше написанной.

Честные Sanyo 18650
А вот аккумуляторы Sanyo 18650 подороже, зато и ёмкость честная и качество на высоте — менял в ноутбуке.

Контроллеры заряда на TP4056 с USB-разъёмом настолько малы, что можно встраивать их непосредственно в устройство и заряжать от USB ПК или от USB-зарядки для телефона.

А есть отдельно чипы-контроллеры TP4056 SO-8 для встраивания на свою плату.

Малогабаритные литий-полимерные аккумуляторы, разной ёмкости и размеров. Выводы сделаны проводами, что для нас очень удобно. Обычно есть защита.

Файлы

В архиве даташиты на некоторые аккумуляторы и чип LTC4054.

Источник