Меню

Зарядное устройство для электромобилей своими руками

Зарядные устройства мощностью до 150 кВт для быстрого заряда электромобилей

Зарядная инфраструктура для электромобилей с батарейным питанием (BEV, или ЭБП), совершающих поездки в т. ч. на дальние расстояния, во многом должна быть схожей с традиционной, которая применяется для автотранспорта с двигателями внутреннего сгорания.

Введение

Нельзя не заметить, что городские улицы и автомобильные паркинги претерпевают медленную трансформацию, которая свидетельствует о наступлении эпохи электромобилей. По мере широкого распространения электромобилей с батарейным питанием (BEV, или ЭБП) возрастает спрос на инфраструктуру, использующуюся для их зарядки. И хотя большинству таких электромобилей еще только предстоит конкурировать с традиционным автотранспортом с двигателями внутреннего сгорания (ДВС), задача обеспечить перемещение на дальние расстояния будет решена, если ЭБП станут заряжаться за время, сравнимое со временем обслуживания на АЗС.

В бытовых условиях большинство ЭБП заряжаются либо от источников питания переменного тока, либо с помощью настенного зарядного устройства. Рассчитанные на номинальную мощность до 22 кВт, такие решения позволяют зарядить аккумуляторы автомобиля примерно за 120 минут, чтобы он проехал следующие 200 км. Этого заряда вполне достаточно для коротких поездок. Однако чтобы зарядить батарею примерно за 15 минут, потребуется зарядное устройство постоянного тока с номинальной мощностью 150 кВт. Услуги по зарядке с такой мощностью могут предоставляться на специализированных станциях с необходимой электротехнической инфраструктурой, причем идеальными претендентами на эту роль являются автозаправки, стоянки такси и бензоколонки.

Модульный принцип

В отношении зарядных устройств уже действуют региональные стандарты таких организаций как CharIN в Европе, CHAdeMO в Японии и GB/T в Китае. Эти стандарты определяют все компоненты и характеристики, начиная с разъемов, кабелей и заканчивая значениями напряжений и токов. Дополнительные стандарты предусматривают общие вопросы электробезопасности (IEC 60950), изоляции цепей с помощью опторазвязок (UL1577), а также применение электромагнитных и емкостных (VDE V 0844–11) технологий гальванических развязок. Таким образом, у разработчиков имеется возможность выбрать наилучший вариант реализации зарядного устройства постоянного тока.

На выбор конструкции устройства оказывают влияние многие факторы, в т. ч. габариты, внешний вид и цена. Однако, несмотря на эти требования, зарядные устройства с номинальной мощностью 50–150 кВт строятся по модульному принципу. Они связываются по шине данных с центральной управляющей системой, которая осуществляет биллинг. Кроме того, она выполняет аутентификацию внешних сетей данных и подтверждает подлинность замещающих модулей зарядного устройства. На рисунке 1 представлена стандартная топология зарядного субмодуля с номинальной мощностью 15–40 кВт. Современные 50‑кВт зарядные устройства состоят из трех отдельных аппаратных субмодулей мощностью примерно по 16,5 кВт.

Стандартная топология зарядного субмодуля с номинальной мощностью 15–40 кВт

Рис. 1. Стандартная топология зарядного субмодуля с номинальной мощностью 15–40 кВт

В свою очередь, субмодули реализуются комбинированием трех блоков мощностью 5,5 кВт каждый. Такой модульный принцип построения обеспечивает экономичное масштабирование за счет повторного использования имеющихся субмодулей и проектирования блоков в соответствии с требованиями новых клиентов. В случае отказов модульный принцип упрощает техническое обслуживание и ремонт. С учетом тенденции к сокращению времени зарядки подаваемая мощность возрастает, что приводит к повышению мощности каждого субмодуля для поддержания баланса между производительностью, мощностью и простотой эксплуатации.

Субмодули построены на основе эффективных многоуровневых и многофазных топологий, благодаря чему выделяемое тепло распределяется по имеющемуся объему, а также достигается масштабируемость. Модульный принцип также позволяет производителям быстро реализовать массив зарядных устройств с разными значениями выходной мощности в соответствии с потребностями заказчиков.

Топологии 30‑кВт субмодулей

В диапазоне мощности 15–40 кВт рекомендуется использовать в субмодулях дискретные компоненты (см. рис. 2) с целью обеспечить КПД в пределах 93–95% при выходном напряжении 200–920 VDC (изделия компании CharIN). Входное напряжение, как правило 3‑фазное величиной 380 В АС, выпрямляется с помощью 3‑фазной схемы Виенна.

Предлагаемая схема 30-кВт субмодуля зарядного устройства

Рис. 2. Предлагаемая схема 30-кВт субмодуля зарядного устройства

Далее используются изолированные одинарные DC/DC полномостовые резонансные LLC-преобразователи (рассчитанные на 1200 В) или стек мостовых LLC (на 600–650 В), которые обеспечивают меняющееся выходное напряжение постоянного тока. Если не требуется, чтобы зарядные устройства постоянного тока возвращали энергию в сеть, в каскаде ККМ применяется Виенна-выпрямитель. Этому 3‑фазному 3‑уровневому ШИМ-выпрямителю необходимы только три активных ключа. Его выходным напряжением можно управлять. Этот выпрямитель работает даже при несбалансированной питающей сети или в случае потери одной фазы. Он также сохраняет устойчивость к сбоям благодаря тому, что в случае сбоя управляющей схемы не возникает короткое замыкание на выходе или во входном каскаде. Входной ток имеет синусоидальную форму. Коэффициент мощности разных вариантов исполнения выпрямителей достигает 0,997; коэффициент нелинейных искажений: 5%; КПД: не менее 97%.

Такая топология эффективно реализуется путем комбинации кремниевой и карбидокремниевой технологий. 1200‑В диоды Шоттки CoolSiC 5‑го поколения обеспечивают не зависящую от температуры коммутационную характеристику, стойкость к высоким значениям dv/dt и малое прямое напряжение величиной 1,25 В.

В результате снижаются требования к охлаждению всей системы, и повышается надежность при очень высокой скорости коммутации. Для реализации эффективных решений с оптимизированной стоимостью в паре с этими диодами используются ключи 650‑В IGBT TRENCHSTOP 5 с малым напряжением насыщения VCEsat и низкими коммутационными потерями. В качестве альтернативного варианта, позволяющего повысить КПД, диоды применяются совместно с ключами серии CoolMOS P7 в коммутационном каскаде со встречным включением, благодаря чему значительно сокращаются потери на переключение за счет малого значения EOSS, большему заряду затвора QG и малому RDS(ON) величиной всего 24 мОм.

В двухуровневых резонансных полномостовых LLC-преобразователях используются устройства CoolMOS CFD7 с внутренним быстродействующим диодом, благодаря чему обеспечивается защита в течение критичных рабочих фаз зарядного устройства ЭБП, особенно при запуске двигателя, в случае короткого замыкания на выходе или в режиме пиковой производительности. Такая устойчивость достигается не за счет каких-то дополнительных мер, а исключительно благодаря малым значениям EOSS, QG и заряда обратного восстановления QRR. Ключи этого семейства с разными значениями RDS(ON) позволяют подобрать наиболее приемлемое устройство для каждого класса мощности. Выпрямительный каскад на вторичной стороне построен на 650‑В диодах Шоттки CoolSiC.

Повышение КПД 30‑кВт субмодулей

Перейдя к решению, в котором доля карбидокремниевых устройств больше, можно увеличить КПД той же топологии. Кроме того, повышается надежность схемы за счет меньшего числа компонентов, т. к. снижаются тепловые потери. Вместо многоуровневых решений с высоковольтными DC/DC-преобразователями применяются параллельно установленные полномостовые LLC-преобразователи. Для работы с более высокими напряжениями звена постоянного тока на первичной стороне применяются 1200‑В CoolSiC MOSFET (см. рис. 3).

Резонансный полномостовой LLC-каскад, полностью построенный на SiC-компонентах, в еще большей мере позволяет повысить КПД системы

Рис. 3. Резонансный полномостовой LLC-каскад, полностью построенный на SiC-компонентах, в еще большей мере позволяет повысить КПД системы

Для работы с более высокими напряжениями на вторичной стороне применяются 1200‑В устройства CoolSiC. Сочетание меньшего числа компонентов с меньшим значением RDS(ON) каждого устройства позволяет сократить потери на проводимость. В общей сложности, у реализованных по этому принципу субмодулей – более продолжительный срок службы, более высокая надежность, плотность мощности и коммутационные частоты.

Выбор оптимального драйвера затвора

Управляющие сигналы от микроконтроллера XMC4000 или цифрового сигнального процессора (DSP) подаются на силовые устройства через соответствующий драйвер затвора. Решения на базе технологии КнИ (кремний-на-изоляторе) с реализованным в микросхеме сдвигом уровня и гальваническим разделением сигналов с помощью трансформатора с воздушным сердечником обеспечивают требуемую эффективность при управлении полумостовыми и мостовыми каскадами. К числу критически важных измеряемых параметров относятся задержка на распространение, управляющий ток, устойчивость к броскам напряжения, потери при смещении уровня, коммутационная частота и др.

В рассматриваемых схемах применяются драйверы двух семейств – 1ED и 2EDi. 1EDCx0I12AH – одноканальные изолированные драйверы затвора с трансформаторной развязкой, которые выпускаются в разных корпусах и отвечают требованиям стандарта UL‑1577. Первичная сторона поддерживает широкий ряд напряжений, благодаря чему упрощается подключение к микроконтроллеру или DSP, а вторичная сторона поддерживает режимы работы с биполярными и униполярными сигналами.

Выходной драйвер с полным размахом напряжения упрощает выбор резистора затвора, исключает необходимость во внешнем сильноточном возвратном диоде и улучшает управление dv/dt в конфигурациях с верхним и нижним плечами.

2EDS8265H – быстродействующий двухканальный драйвер затвора с изоляцией между первичной и вторичной сторонами, а также с межканальной изоляцией на выходе. Устройства CoolMOS CFD7 и CoolSiC, используемые на первичной стороне стекового LLC-преобразователя, отлично подавляют синфазный сигнал, обеспечивают быстрое распространение сигнала и высокий управляющий ток.

Быстродействующее зарядное устройство для ЭБП оснащено функцией останова на те случаи, когда выходное устройство не подключено к источнику питания, а защита от просадок напряжения питания (UVLO) обеспечивает надежную работу всего приложения. Использование оптимальной топологии, в которой, например, развязывающие конденсаторы установлены рядом с выводами питания, а паразитная индуктивность уменьшается с помощью заземляющих слоев, обеспечивает хорошие тепловые и электрические характеристики (устойчивость к шуму).

На рисунке 4 представлены структурные схемы одно- и двухканального драйверов затворов EiceDRIVER с трансформаторами с воздушным сердечником.

Структурные схемы одно- и двухканального драйверов затворов EiceDRIVER с трансформаторами с воздушным сердечником

Рис. 4. Структурные схемы одно- и двухканального драйверов затворов EiceDRIVER с трансформаторами с воздушным сердечником

Выводы

Итак, чтобы электромобили с батарейным питанием можно было полноценно использовать при передвижении на небольшие и дальние расстояния, возможности зарядных станций должны во многом быть сходными с теми, которые имеются у автомобилей с двигателями внутреннего сгорания. С этой целью разрабатываются зарядные устройства постоянного тока большой мощности, в т. ч. на 150 кВт.

Зарядные устройства с такими габаритами строятся по модульному принципу, т. е. совмещают в себе несколько силовых модулей, чтобы обеспечить требуемую выходную мощность. Если рассматривать зарядные устройства, обладающие высоким КПД, повышенной надежностью, хорошими тепловыми характеристиками, малым размером и стоимостью, становится очевидным, что карбидокремниевые компоненты станут играть важную роль в разработке требуемых решений. Их можно комбинировать с имеющимися кремниевыми MOSFET-ключами или с карбидокремниевыми ключами в тех случаях, когда необходимо обеспечить максимальный КПД при сравнительно малом количестве компонентов. Модули с воздушным охлаждением мощностью 30 кВт и выше, в которых применяются соответствующие драйверы затворов и управляющая электроника, отвечают требованиям международных стандартов по зарядке.

Источник



11 примеров: схемы на самодельное зарядное устройство для автомобильного аккумулятора

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки. Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей. Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

Ответы на 5 часто задаваемых вопросов

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.
Читайте также:  Купить зарядное устройство для беспроводной мыши

Ещё важно знать: 3 нюанса об эксплуатации

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

  1. Стек.
  2. Сонар.
  3. Hyundai.

Фирмы хорошо зарекомендовали себя на рынке, а потому о надежности и функциональности переживать при покупке не следует.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт

ЗУ на 12 вольт

ЗУ на 12 вольт

Посмотрите на картинке на схему ЗУ на 12 В. Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Схема ЗУ Рассвет 2

Посмотрите на картинке на схему зарядного устройства Рассвет 2. Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ

Умное ЗУ

Умное ЗУ

Посмотрите на картинке принципиальную схему умного зарядного устройства. Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания на 12 вольт — 10 ампер.

1 схема промышленного ЗУ

11 примеров: схемы на самодельное зарядное устройство для автомобильного аккумулятора

Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства

Инверторный вид

Инверторный вид

Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20: «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника

Схема Электроника

Схема Электроника

1 схема мощного ЗУ

Мощное ЗУ

Мощное ЗУ

Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.

2 схемы советского ЗУ

Советское ЗУ

Советское ЗУ

Многие уже могли видеть советское зарядное устройство. Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Электрон 3М

Схема Электрон 3М

Схема Электрон 3М

Источник

Зарядные устройства для электромобилей: типы, скорость зарядки

Электромобиль в наши дни перестал быть фантастикой и превратился в реальное, ставшее привычным транспортное средство. Такой вид автомобиля весьма экономичен, ведь его не нужно заправлять дорогим бензином или дизельным топливом, которые к тому же загрязняют атмосферу. Однако батарею электромобиля необходимо заряжать, и именно об этом и пойдет речь далее. Мы узнаем все о том, что такое зарядное устройство электромобиля, какие бывают его виды, от чего зависит время зарядки и многое другое.

  1. Устройство электрокара
  2. Что такое зарядное устройство электромобиля
  3. От чего зависит скорость зарядки АКБ
  4. Методы зарядки и типы ЗУ для электромобилей
  5. Зарядка от бытовой розетки 220 вольт
  6. Зарядка от бензогенератора
  7. Зарядка от сети с напряжением 380 Вольт (одно- или трехфазная цепь)
  8. Быстрая зарядка постоянным током
  9. Беспроводная зарядка
  10. Наиболее распространенные способы зарядки
  11. Стоимость зарядных устройств
  12. Как часто придется заряжать электрокар
  13. Где и как можно зарядить электрический автомобиль
  14. Подведем итоги
  15. Зарядка для электромобиля: Видео

Устройство электрокара

Зарядное устройство

Если же говорить об электрокаре в целом, то он не имеет значительных отличий от обычных машин с ДВС. В основном разница – только в двигателе. И так как электромотор работает на электричестве, ему нужна емкая и мощная батарея вместо бака для жидкого топлива в обычных авто. В остальном же машины практически не имеют существенный различий. В электрокаре та же система подвески, кузов и так далее.

Многие электромобили построены на базе бензиновых машин. Это означает, что производитель просто устанавливает электромотор и батарею в обычный автомобиль вместо ДВС

Конечно, существует множество других тонкостей и незначительных конструктивных отличий.

Что такое зарядное устройство электромобиля

Электромобиль имеет, по сути, такую же батарею, как, например, ноутбук или мобильный телефон. Разница только в объеме и мощности. Это означает, что и для зарядки используется такое же зарядное устройство, как для любого другого гаджета. Разница только в мощности и силе зарядного тока. А также в том, что ЗУ для электрокаров имеют большие размеры, поэтому в карман или в рюкзак их не положишь. Также производители электрокаров используют свои уникальные разъемы. Но об этом мы поговорим ниже.

Зарядка (ЗУ) для электромобиля – это устройство, которое преобразует переменный ток высокого напряжения (220 вольт в однофазной цепи или 380 вольт в трехфазной) в постоянный ток с напряжением, соответствующим напряжению батареи машины. Такие ЗУ могут быть разного типа:

  • стационарные – настенные шкафы, стойки и так далее;
  • портативные устройства – можно возить с собой в багажнике электрокара.

Неважно, как выглядит или какого типа зарядка, в любом случае это всего лишь устройство, которое преобразует один вид электроэнергии в другой, соответствующий техническим параметрам электрокара.

Если говорить о визуальном представлении, то это некий гаджет, который подключается к источнику питания посредством обыкновенной бытовой розетки или к специальному разъему (в зависимости от того, как вы заряжаете свой автомобиль). С другой стороны устройство имеет соответствующий разъем для подключения к электромобилю. Так выглядит портативная зарядка.

Портативная зарядка

Стационарные устройства подключаются в сети электропитания посредством однофазной или трехфазной цепи. Здесь важно знать, что трехфазная цепь дает больше мощности, а это означает, что увеличивается и скорость зарядки батареи. По сути, это стационарная станция, которую можно установить в гараже. Такие же станции установлены и на электрозаправочных станциях и на стоянках для электрокаров.

Станция всегда подключена к электрической сети. А для подключения к машине имеется соответствующий шнур (электрокабель), на конце которого находится разъем для подключения к электромобилю.

Электрический кабель

В самом электромобиле также имеется встроенное оборудование, необходимое для зарядки батареи. Если проследить цепь от разъема для подключения ЗУ до батареи (внутри электромобиля), то наиболее важным компонентом здесь является контроллер силы тока и уровня заряда батареи.

Контроллер пропускает определенную максимальную силу тока и автоматически отключает подачу электроэнергии к батарее при достижении 100% уровня заряда. Также контроллер регулирует уровень заряда между секциями батареи, чтобы каждый элемент АКБ имел одинаковый уровень заряда, не перегревался, не закипал и не вышел из строя.

От чего зависит скорость зарядки АКБ

Скорость зарядки любой батареи, в том числе и электромобиля, зависит прежде всего от силы тока. Чем выше сила тока, тем выше скорость. Но здесь важно понимать, что быстрая зарядка значительно сокращает срок службы батареи. Поэтому производители стараются найти определенный баланс, создавая такие ЗУ, которые наносят минимальный вред АКБ и при этом способны заряжать батареи достаточно быстро.

Если говорить об обычных батареях, то они заряжаются током небольшой силы (в бытовых условиях максимум 2-3 ампера). И обычной бытовой розетки более чем достаточно для таких целей.

Зарядка от сети 220 Вольт

Но в электромобилях батарея довольно большая и мощная. Поэтому для ее зарядки требуется больше мощности. Сила тока в этом случае может достигать 60-80 ампер (при зарядке от станции постоянного тока сила тока достигает 250 Ампер). И такой силы тока обычная бытовая розетка выдать не способна. Поэтому скорость зарядки от бытовой розетки будет медленной.

Для полного заряда батареи от сети в 220 вольт может потребоваться до 24 часов. Но обычно большинство электрокаров заряжаются от бытовой розетки около 16 часов.

Чтобы ускорить зарядку, нужно повысить напряжение. А сделать это можно только при помощи трехфазной цепи питания. Но к этому вопросу мы вернемся ниже.

Существует максимальный показатель силы тока. Если превысить его, то это может привести не только к потере емкости батареи, но и к полному выходу из строя АКБ, а также к ее взрыву

Также на скорость влияет и емкость самой батареи. Соответственно, чем больше емкость АКБ, тем больше времени потребуется для ее заполнения.

Методы зарядки и типы ЗУ для электромобилей

Как уже было сказано выше, существуют разные зарядки для электромобилей. Отличия между ними заключаются не только в портативности, но и в различных схемах питания. А некоторые зарядки вообще работают без проводов.

Итак, существуют следующие типы ЗУ для электрокаров:

  • от бытовой розетки в 220 вольт;
  • от сети с напряжением 380 вольт. Может иметь два типа:
    • однофазная цепь;
    • трехфазная цепь;
  • постоянным током;
  • беспроводная;
  • от бензогенератора;
  • От солнечной батареи.

Зарядка от солнечной батареи

Последний вариант не самый эффективный, поэтому зарядка от солнечной батареи применяется некоторыми производителями электромобилей лишь для незначительного увеличения запаса хода.

Дело в том, что для эффективной зарядки АКБ электрокара солнечная панель должна иметь очень большие размеры и внушительный вес (даже с учетом современных технологий). Но автомобиль имеет некоторые ограничения по размерам. И так как батареи как правило размещают на крыше авто, то таких размеров достаточно лишь для незначительной подзарядки.

Конечно, возможность полностью зарядить электромобиль при помощи солнечной панели имеется. Для этого вам потребуется оставить машину под прямыми солнечными лучами на несколько дней.

Остальные типы ЗУ более эффективны, но также имеют определенные различия между собой. Поэтому давайте разберем их подробнее.

Зарядка от бытовой розетки 220 вольт

Зарядка электромобиля от розетки 220 В осуществляется посредством подключения портативного зарядного устройства, которое подсоединяется к сети электропитания посредством обычной вилки. Такое ЗУ прилагается в комплекте с автомобилем, имеет относительно небольшие габариты и вес, благодаря чему его всегда можно возить с собой в багажнике авто.

Это самый старый и универсальный способ зарядки электромобиля, так как обычную бытовую розетку можно найти практически где угодно. Но при этом скорость зарядки является самой медленной, так как бытовая сеть с напряжением 220 вольт не способна выдать большую силу тока, необходимую для быстрого заполнения током батареи.

Но есть и положительный момент. Такой метод является щадящим для батареи, так как ёмкость АКБ в этом случае будет сохраняться максимально длительный срок.

Читайте также:  Зарядное устройство для автомобильных аккумуляторов оренбург

Зарядка от бензогенератора

Зарядка от бензогенератора

Зарядка электромобиля от бензогенератора схожа по своему принципу на зарядку от бытовой розетки. Дело в том, что бензиновый генератор вырабатывает тот же переменный ток, напряжение которого зависит от диодного моста и конечной схемы преобразования тока.

В России и странах СНГ бензогенераторы вырабатывают 220 вольт, как и в бытовой розетке. Но мощность в том случае зависит уже от типа генератора. Как правило, такие устройства значительно уступают бытовым электросетям, так как бензогенератор имеет определенные ограничения.

Наибольшим распространением пользуются генераторы мощностью от 600 Вт до 2 кВт. Для сравнения, бытовая розетка может выдать максимальную мощность около 4 кВт

Конечно, существуют и более мощные бензиновые генераторы, однако они встречаются довольно редко, да и стоимость их весьма высока. В любом случае зарядить электромобиль таким способом вполне возможно, но скорость зарядки будет напрямую зависеть от мощности генератора. В этом случае применяются все те же портативные ЗУ.

Зарядка от сети с напряжением 380 Вольт (одно- или трехфазная цепь)

Зарядка электромобиля от 380 В способна значительно сократить время. При помощи повышения напряжения увеличивается и мощность сети, а также сила тока. Но важно понимать, что портативные ЗУ не рассчитаны на такое напряжение. Поэтому потребуется устанавливать стационарное зарядное устройство, которое будет подключено к сети с напряжением 380 вольт. При этом подключение можно выполнить двумя типами:

  • однофазная схема;
  • трехфазная схема.

Второй вариант способен обеспечить большей мощностью и ускорить процедуру полной зарядки АКБ. Разница между этими схемами заключается лишь в том, что однофазная цепь питания использует только одну фазу (линию) с напряжением 380 вольт. Во втором же случае используется три линии, подключенные параллельно. При этом напряжение остается неизменным, но мощность сети возрастает втрое. Следовательно, значительно возрастает и максимальная сила тока.

Подобные зарядные установки уже имеют свои коннекторы для подключения к электромобилю. При этом для разных стран используются различные стандарты:

  • В США и странах Азии используется тип разъема J Максимальная мощность, передаваемая таким коннектором, ограничена 7,4 кВт. Данный разъем имеет пять контактов.

Разъем на пять контактов

  • Mennekes – применяется в европейских странах, в том числе в России и странах СНГ. Имеет семь контактов. Максимальная передаваемая мощность может достигать 43 кВт при условии трехфазной цепи питания или 7,4 кВт в условиях однофазной цепи. Максимальная сила тока не должна превышать 63 Ампера, а напряжение – не более 400 вольт.

Зарядка Mennekes

Для организации такой зарядной станции вам потребуется разрешение от городских властей и городских электросетей.

Быстрая зарядка постоянным током

Зарядка электрокара постоянным током – это самый мощный и быстрый способ, так как такая схема питания позволяет достичь наибольшей силы тока. Максимальное значение может колебаться в пределах 125 ампер. Для подключения к такой станции используется коннектор типа CHAdeMO.

Коннектор типа CHAdeMO

Подобные станции устанавливаются на специализированных зарядных станциях и стоянках. Максимальное напряжение не должно превышать 500 вольт, а мощность – 62 кВт. Существуют комбинированные зарядные станции и соответствующими коннекторами (CCS combo 2).

CCS combo 2

Такой тип ЗУ способен выдать самые высокие показатели:

  • мощность 0 до 100 кВт;
  • сила тока – до 200 ампер;
  • напряжение – до 500 вольт.

При всех своих достоинствах, при зарядке электромобиля данным способом срок службы батареи значительно снижается. Поэтому использовать его стоит только в крайних случаях, когда время не терпит, а батарея автомобиля разряжена.

Беспроводная зарядка

Некоторые производители электромобилей занимаются разработками беспроводных зарядных станций. Их работа заключается в том, чтобы специальная платформа генерировала мощное электромагнитное поле. Автомобиль также оснащается специальным устройством (катушкой), которое способно преобразовывать магнитное поле в электроэнергию. В этом случае автомобилю достаточно просто заехать на соответствующую платформу и стоять на ней до полной зарядки АКБ.

На данный момент существуют беспроводные ЗУ, которые способны выдавать максимум 20 кВт, что довольно много для такого типа. Однако разработчики на этом не останавливаются, и уже ведутся работы над созданием беспроводной зарядной станции с мощностью до 50 кВт.

Главное преимущество данного типа ЗУ заключается в его универсальности: вам не нужны провода и разъемы для подключения к автомобилю.

Наиболее распространенные способы зарядки

Популярный способ зарядки

Наибольшим распространением в наше время в европейских странах, в том числе в России и странах СНГ, пользуются зарядки от бытовых розеток, так как именно этим способом можно зарядить свой электрокар в гаражных условиях.

Если же говорить об электрозаправочных станциях, то в этом случае чаще используются цепи трехфазного питания. Также трехфазные зарядки можно устанавливать и в гаражах, получив предварительно разрешение от городских электросетей.

Зарядные станции с постоянным током встречаются довольно редко, в основном в США и странах Азии, а также некоторых европейских государствах. Устанавливать их в гараже нет смысла, так как они портят батарею. И если вы оставляете машину на ночь в гараже, то лучше зарядить батарею от обычной розетки или установить ЗУ с трехфазным питанием.

Стоимость зарядных устройств

В наше время можно купить практически любую зарядку для электромобиля, как портативную, так и стационарную. Стоимость будет зависеть от производителя и мощность устройства. А выбор осуществляется по типу разъема и способу подключения (трехфазная или однофазная цепь).

Зарядную станцию мощностью в 22 кВт при подключении к трехфазной цепи в Москве можно приобрести по стоимости около 257 000 рублей. Быстрая зарядная станция прямого тока стоит около 2 500 000 рублей. Сумма может значительно варьироваться в зависимости от производителя и мощности устройства

Многие энтузиасты собирают зарядки самостоятельно, а также переделывают ЗУ, увеличивая их мощность и, следовательно, эффективность. Но переделка зарядки требует соответствующих знаний в радиоэлектронике.

Как часто придется заряжать электрокар

Как часто заряжать авто

Как уже говорилось выше, оборудование для зарядки электромобилей влияет только на скорость зарядки батареи. Но ответ на вопрос, как часто придется заряжать автомобиль, зависит только от манеры езды и ежедневного пробега. Кроме этого, многое зависит от самой батареи и оптимизаций, которые указываются в технических характеристиках.

Также немаловажным является и запас хода авто. Ведь некоторые автомобили могут проезжать на одном заряде не больше 100 км, другие – свыше 500 км. Поэтому однозначного ответа просто нет. Одни электрокары нужно заряжать несколько раз в день (в зависимости от пробега и манеры езды), другие смогут ездить несколько дней.

Где и как можно зарядить электрический автомобиль

В наше время сети электрозаправочных станций активно развиваются, постоянно устанавливаются новые точки, специализированные стоянки для электрокаров и так далее.

На данный момент многие АЗС уже оборудованы специальными ЗУ для электромобилей. Кроме этого, при наличии портативной зарядки вы сможете зарядить свой автомобиль в любом месте, где есть доступ к бытовой розетке. Многие придорожные кафе и гостиницы разрешают подключить электромобиль для зарядки, естественно, за отдельную плату.

Подведем итоги

Учитывая темпы развития электромобилей, можно сделать вывод, что это перспективный вид транспорта. А постоянно развивающиеся сети электрозаправок в скором времени позволят без ограничений ездить не только в пределах города, но и на загородных трассах. Более того, благодаря наличию портативных ЗУ уже сегодня можно сделать остановку на ночь и зарядить батарею в придорожной гостинице.

Зарядка для электромобиля: Видео

Источник

Как правильно зарядить электромобиль в домашних условиях

Подошел к вопросу системно: пришел в свое ТСЖ и сказал, что хочу заряжать свой электромобиль на нашем подземном паркинге. Но бюрократы так просто сдаваться не собирались. Завязалась официальная переписка. Их первый ответ был: «Заряжать нельзя — это опасно, потому что машина может взорваться». Я парировал: «Взрываться в ней нечему, в отличие от обычных машин, в баках которых по 60–80 л взрывоопасного бензина». Тогда ТСЖ выдвинуло другую версию: «В процессе зарядки электромобиль будет выделять серную кислоту — это тоже опасно». На что я ответил: «Испарения серной кислоты происходят при зарядке свинцовых аккумуляторов, которые, кстати, есть в любой машине, а вот в электромобилях литий-ионные аккумуляторы — они герметичны, и там нет никаких испарений, вот и сертификат соответствия безопасности на машину могу приложить». Тут крыть уже было нечем, но началась эпопея с самой розеткой.

«Платите за аренду»

Я попросил разрешения поставить мне счетчик, чтобы платить за потребленную электроэнергию, ТСЖ несколько месяцев придумывало технические условия и наконец выдало результат: «Вы ставите счетчик, но прокладываете к этому счетчику кабель от вводного распределительного устройства по стене. А поскольку кабель будет висеть на нашей стене — платите за аренду каждого метра».

Насчитали аж 15 тыс. руб. в месяц. На этом переговоры прервались, поскольку для меня потерялся смысл в обладании электромобилем: ведь одно из его преимуществ — это значительная экономия на топливе.

Выбора не оставалось: в подземном паркинге есть технические розетки, от такой я и начал заряжаться. В результате все-таки договорились следующим образом. Поскольку счетчик мне поставить не дали, то единственное, что можно посчитать, — километры. Машина проехала столько-то, в паспорте написано, что расход — 150 Вт/км. Заряжаюсь я на работе и дома пополам. В итоге за 2 года я заплатил 2400 руб.

Цыпулев-2

Спасительный кабель

Но есть и другой выход, я им в конце концов и воспользовался. Протянул от квартиры кабель (уже после моего квартирного счетчика) в паркинг по общедомовому стояку, обойдя аренду стены при помощи стандартного провода для бытовой проводки. Это электроэнергия от моей квартиры, за которую я плачу по счетчику. Все законно. И главное — никакой дополнительной мощности дому для этого не требуется.

Однако не всегда есть возможность протянуть кабель из квартиры. Иногда в подземном паркинге нет кабель-каналов в стояках, а иногда нет и самого подземного паркинга, а только стоянка на улице. Это заставило меня задуматься над более универсальным решением.

20140806_img_1271

Электромобили — в массы!

Так мой опыт положил начало разработке типового проектного решения подключения зарядных станций для многоквартирных домов.

Как известно, мощность на дом выделяется в расчете на максимальное потребление, плюс еще закладывается резерв в 10–20%. То есть даже в моменты пикового потребления вся выделенная мощность не используется на 100%. Эта система позволяет подключать сколько угодно станций для зарядки электромобилей или обычных розеток. Подключают не к конкретной квартире, а к вводному распределительному устройству, уже после общедомового счетчика. Само присоединение осуществляется отдельной линией, выделенной только на нужды зарядки с отдельным счетчиком на каждую зарядку. Подключение производится через промежуточное устройство, которое называется «приоритезатор нагрузки». Его функция — измерять ток в сети дома. Если протекающий ток превышает максимальное значение (которое задается примерно на 10% меньше максимальной мощности, выделенной на дом), устройство автоматически производит отключение питания зарядных станций или розеток. Как только значение тока падает до нижней заданной границы, то есть дом начинает потреблять меньше электроэнергии, устройство автоматически подключает обратно питание зарядных станций и зарядка продолжается. Таким образом, если в доме есть излишек энергии, его пускают на зарядку электромобилей, если мощности не хватает, то на период перегрузки зарядка приостанавливается.

Три совета начинающим электромобилистам

Итак, может ли обычный житель многоквартирного дома обеспечить себе розетку для электромобиля? Да, может.

IMG_0692

Для этого нужно произвести три действия.

Первое: написать заявление в управляющую компанию или ТСЖ с просьбой организовать вам технический учет на месте вашей стоянки.

Второе: вы можете предложить вашей УК типовое проектное решение, разработанное и согласованное компанией МОЭСК, по подключению зарядной инфраструктуры к сетям многоквартирного жилого дома. Техническое решение предусматривает возможность без увеличения мощности (и следовательно без дополнительных затрат) обеспечить зарядку в те моменты, когда полная мощность дома не востребована — как правило, это 99,9% времени.

Третье: техническую часть реализует ТСЖ или же любая компания, имеющая лицензию на проведение таких работ. Абсолютно очевидно, что владельцу электромобиля придется побороться — и с бюрократическим аппаратом ТСЖ, и с консерватизмом главных инженеров управляющих компаний.

Все эти действия стоят того, ведь и в электромобили на российских дорогах мало кто верил, однако на улицах их становится все больше.

Где найти розетку для электромобиля? С этим вопросом сталкивается каждый его владелец в России, поскольку зарядная инфраструктура у нас только начинает развиваться. В идеале — во время рабочего дня машина должна заряжаться рядом с офисом на специальной станции, а ночью — рядом с домом. Но почти все мы живем в многоквартирных домах, и розетка в квартире тут не поможет. Я выбрал более цивилизованный путь — запасся аргументами для общения с ТСЖ и обычным кабелем.

Где найти розетку для электромобиля? С этим вопросом сталкивается каждый его владелец в России, поскольку зарядная инфраструктура у нас только начинает развиваться. В идеале — во время рабочего дня машина должна заряжаться рядом с офисом на специальной станции, а ночью — рядом с домом. Но почти все мы живем в многоквартирных домах, и розетка в квартире тут не поможет. Я выбрал более цивилизованный путь — запасся аргументами для общения с ТСЖ и обычным кабелем.

Понравилась заметка? Подпишись и будешь всегда в курсе!

Источник

Электромобиль своими руками: как, зачем и сколько это стоит

Электромобиль своими руками: как, зачем и сколько это стоит

Сегодня электротранспорт подается маркетологами, как носитель самых прогрессивных технологий в автомобилестроении. И многие уверены, что электромобиль может быть либо дорогим, как Nissan Leaf или Mitsubishi i-MiEV, либо очень дорогим – как Tesla. Однако члены дружного сообщества электромобилистов-самодельщиков знают, что это не так! В простейшем рукотворном варианте «машина на батарейках» значительно дешевле своих промышленных аналогов и не требует инновационных технологий и материалов. Поэтому немало элементарных электромобилей ездит рядом с нами по дорогам под личиной обычных бензиновых моделей – просто мы об этом не знаем!

Читайте также:  Мега маг авто портативное зарядное устройство цена

«Электромобиль версии 1.0» – машина базового уровня, сделать которую может за полгода в гараже фактически любой рукастый мужик, умеющий ремонтировать автомобиль и обладающий начальными знаниями в электротехнике. Цель этой статьи, конечно же, не вручить читателю четкую инструкцию по применению, а дать, как сегодня модно говорить, «дорожную карту» понимания того, что электромобиль – это просто! Рассказал «Колесам» об этом один из самых авторитетных российских электромобилистов-самодельщиков Игорь Корхов, администратор крупнейшего тематического форума electrotransport.ru, успешно строивший законченные конструкции собственных электромобилей, а в данный момент ездящий на модернизированой Lada Ellada.

Кузов

Из чего состоит электромобиль начального уровня, который несложно построить на гаражном «стапеле»? Кузов от машины-донора с рулевым управлением, подвеской, трансмиссией и тормозами, электродвигатель постоянного тока, агрегатированный со штатной ручной КПП, пакет батарей с контроллером, педаль акселератора, от которой контроллер получает сигнал и ряд вспомогательных узлов, которые можно даже привносить в конструкцию не сразу, а позже – после первых пробных выездов, коих с таким нетерпением ждет душа гаражного инженера…

В качестве кузовного донора, как правило, берут переднеприводную машину, чтобы не терять энергию на трение в крестовинах кардана и гипоидной передаче заднего моста. Стараются найти машинку полегче, в идеале до 600–700 килограммов, хотя это не всегда удается – большинство авто избыточно тяжелы с точки зрения постройки электромобиля. В свое время весьма популярна среди гаражных электромобильщиков была Таврия – кузов легкий и отменная «катучесть» – на ровной дороге можно было буквально пальцем толкать! Но Таврии почти все, увы, сгнили уже. Популярны Golf-ы первого–второго поколения, Daihatsu Mira и тому подобные небольшие машинки. «Катучесть» стараются увеличивать за счет особых шин – так называемых «зеленых»: узких и допускающих давление 2,7 и более атмосфер для устранения потерь на деформацию резины.

Двигатель

Самыми распространенными двигателями для самоделок начального уровня были и по-прежнему являются тяговые моторы ДС-3.6 от болгарских вилочных складских электропогрузчиков типа «Балканкар EB-687». Это двигатели последовательного возбуждения, питающиеся постоянным током с напряжением 80 вольт, мощностью 3,6 киловатта. Выглядит такой мотор, как цилиндрический бочонок, весит 66 килограммов. Это далеко не самый лучший по характеристикам массы и экономичности мотор, но он легкодоступен и популярен у начинающих конструкторов электромобилей. Приобрести такой «движок» можно в меру своего везения – кому-то он перепадет за спасибо, кто-то найдет за 5–10 тысяч рублей. В принципе, такая стоимость оправдана – мотор не скоростной, но имеет великолепный крутящий момент, вытягивает на любую горку даже на третьей передаче, прост в монтаже, неприхотлив.

Трансмиссия

В «Варианте 1.0» не встретишь мотор-колес и прочих прогрессивных электромобильных «нанотехнологий». Делается, как проще, а проще всего срастить электродвигатель с уже существующей на автомобиле-доноре трансмиссией – ручной КПП с главной передачей и дифференциалом, через ШРУСы переднего привода со ступицами и передними колесами.— Собственно, корзина и диск сцепления, его привод (гидравлический или тросовый), да и сама левая педаль удаляются – это лишний вес, и они нам больше не нужны. – рассказывает Игорь Юрьевич, — Переключать скорости мы, правда, все же будем – но редко и без разъединения валов мотора и КПП – просто втыкая передачи рукояткой коробки. Включается нужная передача без сцепления совершенно спокойно как перед началом движения, так и на ходу: бросаешь газ, подводишь рукоятку КПП, синхронизаторы срабатывают – и едем дальше.

Третью передачу используем для езды по городу, четвертую – по загородной трассе, вторую – по буеракам. Первая вообще никогда не используется, момент на колесах такой, что их просто прокручивает при легком касании акселератора!

Чтобы установить электромотор под капот, нужны две основные «хендмейд»-детали: переходная плита и переходная втулка, с помощью которых электродвигатель соединяется с «родной» ручной коробкой передач автомобиля. Плита соединяет электромотор и КПП, а втулка – вал мотора и первичный вал КПП.

Плита легко делается своими руками из толстолистовой стали или алюминия – достаточно наличия слесарных навыков среднего уровня, болгарки и дрели.

Переходную втулку, соединяющую валы электромотора и КПП, также сделать несложно с помощью дяди Васи-токаря и сварки – с одной стороны втулка должна совмещаться с валом электродвигателя, а с другой к ней приваривается шлицевая часть, вырезанная из диска сцепления той коробки, с которой мы соединяем электромотор.

Батарея

Батарея для электроавто — только литий-железо-фосфат, иных вариантов нет! Про стартерные свинцовые батареи, кажущиеся привлекательными для начала, «на попробовать», забудьте сразу и навсегда – они категорически непригодны, просто деньги на ветер. Несколько зарядок-разрядок – и аккумуляторы отправятся в пункт приема цветмета! Тяговые свинцовые батареи тоже долго не живут, поскольку при их массе емкость всегда будет недостаточной, а это означает избыточно большой потребляемый ток в расчете на одну батарею. При таких токах не держится и тяговый свинец. Так что исключительно «лиферы», хотя это и недешево.

Упрощенный расчет параметров и стоимости батареи выглядит так: предположим, что нам надо набрать 100-вольтовую батарею – на такое напряжение рассчитано довольно много моторов. Напряжение одной «лифер-банки»–- 3,3 вольта: значит, нам нужно соединить последовательно 30 банок. Но второй важный параметр батареи – емкость. Поскольку «банки» одинаковые, емкость одной = емкость всей батареи. «Банка» хорошего качества стоит примерно 1,5 доллара за 1 ампер-час, а 30-амперчасовая батарейка начального уровня обеспечит машине весом до тонны 25–30 километров запаса хода.

30 ампер-часов х $1,5 = $45 за одну банку$45 х 30 банок = $1350 $ за всю батарею

В общем, батарея небюджетна, и это лишь емкость, пригодная для первых экспериментов – по-хорошему, её нужно увеличивать хотя бы вдвое.

Заряжают аккумуляторы электромобиля чаще всего полусамодельными зарядными устройствами, сделанными на основе дешевых списанных блоков питания, насыщавших резервные аккумуляторы на базовых станциях сотовой связи – там они работают совместно с 48-вольтовыми свинцовыми батареями. Таких блоков нужно две штуки – их соединяют последовательно, внутренняя регулировка позволяет поднять напряжение каждого до 64 вольт и зарядить батареи для большинства распространенных электромоторов, используемых EV-самодельщиками.

К слову, штатный 12-вольтовый аккумулятор, как правило, остается на своем месте – от него удобно питать разные штатные же потребители – звуковой сигнал, стеклоочистители, стеклоподъемники, «музыку», свет и т. п. Позже, в качестве одного из первых апгрейдов, его можно заменить на DC/DC конвертер ватт на триста, делающий 12 вольт из 100.

Прочие узлы

Собственно, помимо мотора, трансмиссии и батареи в простейшем электромобиле имеется еще ряд узлов – как необходимых, так и устанавливаемых по желанию. Категорически необходимым является, конечно же, контроллер управления двигателем. В простейшем варианте он может быть изготовлен самостоятельно на относительно недорогих и широко распространенных деталях, а датчиком педали газа послужит датчик угла поворота дроссельной заслонки от инжекторного ВАЗа. Можно купить контроллер у отечественных самодельщиков, выписать фабричный из Китая или заказать с eBay бэушный брендовый блок от Curtis – обойдется модуль в 250–300$.

Дополнительных узлов, которые не являются обязательными для пробной (а то и вообще!) поездки – немало. Например, печка, из которой выкидывается жидкостный радиатор и устанавливается вместо него электрический ТЭН. Или, скажем, вакуумный насос для усилителя тормозов. Поскольку двигатель внутреннего сгорания на машине отсутствует, исчезает и разрежение впускного коллектора, необходимое для работы вакуумного усилителя тормозов. Поэтому многие самодельщики ставят электрические вспомогательные насосы ВУТ, заимствованные от машин типа Volvo XC90, Ford Kuga и т. п.

Впрочем, все зависит от проекта – на легком электромобиле даже апгрейд тормозов делают далеко не все, поскольку роль «вакуумника» отчасти выполняет рекуперативное торможение двигателем, да и немало машин с завода не имели вакуумного усилителя в принципе, вполне неплохо тормозя. Без него, к примеру, производились не только небезызвестный ВАЗ-«копейка», но и Таврия, Ока в некоторые годы и так далее.

Цены и деньги

Машина-донор, электромотор, контроллер – все это гибко варьируется и здесь можно «кроить» в меру хитрости и желаний. Можно купить автомобиль-донор тысяч за 100–150 в приличном состоянии по кузову, можно тысяч за 50 – но с необходимостью жестянки, сварки, малярки. Можно купить электродвигатель от престарелого болгарского погрузчика, а можно подержанный или новый американский мотор, спроектированный специально для электромобилей. Можно приобрести промышленный контроллер управления тягой двигателя, а можно спаять и самому, если есть навыки. То же самое касается и всего остального, кроме батареи. Тут особенно «скроить» ничего не удастся: цены на новые литий-феррум банки везде приблизительно одинаковые, вопрос в емкости. Хорошая 80–100-вольтовая батарея на приблизительно сто километров пробега обойдется по сегодняшним деньгам в 4–5 тысяч долларов. Можно, конечно, начать с малоемкого аккумулятора с перспективой наращивания (ведь даже короткая первая поездка воодушевляет и дает понимание, что трудишься не зря!), но надо понимать, что маленькую емкость нужно как можно скорее увеличивать, поскольку её недостаток ведет к повышению тока отдачи от каждой отдельной банки вплоть до опасных ударных величин, укорачивающих им жизнь… Пока будешь рассусоливать с покупкой второй половины, умрет первая.

Так выгодно ли строить электромобиль? Даже опытный самодельщик и фактически гуру гаражного EV-строения Игорь Корхов считает, что на первом месте тут все же хобби, а «обмануть систему» можно лишь весьма условно — это будет граничить с самообманом. Дело в том, что конечный результат нельзя оценивать чисто по стоимости пройденного километра, как многим кажется – приходится брать в расчет и комфорт, и функциональность, и безопасность машины, и просто ощущение от того, чем владеешь. Вот, допустим, новая бензиновая Лада Гранта — стоит она от 360 тыс. рублей, что приблизительно равняется 5 500 $. Самый бюджетный электромобиль на базе какого-нибудь VW Golf ранних поколений обойдется в столько же по комплектующим – плюс время, просиженное на тематических форумах, и вложенный собственный труд. В результате на одной чаше весов – пусть и отечественный, но пахнущий новизной и беспроблемный автомобиль на гарантии, а на другой – немолодой и внешне потрепанный «электросамопал» в стадии бесконечной доделки, без возможности дозаправки топливом в пути, в первое время (а то и навсегда) без кондиционера, усилителя тормозов и тому подобного.

Ну или, скажем, следующая планка — Hyundai Solaris. Новым он стоит от 600 000 рублей, что составляет около 9 200 $. Подобную же сумму придется затратить, если строить электромобиль на базе более-менее свежего кузова иномарки, который прилично выглядит снаружи и имеет не убитый салон, купив к этому кузову хороший американский электромотор, надежный фирменный контроллер Curtis и набрав емкую батарею. Однако на выходе – в общем-то, почти то же самое, что и в первом случае… У Соляриса в козырях максимальная скорость и динамика, возможность пополнять запас топлива повсеместно, а не только в личном гараже, где есть розетка, все преимущества новой и надежной машины с массой функциональных удобств, гарантии и прочее. Самоделка же, пусть и более приличная внутри и снаружи, остается самоделкой – машиной с существенными ограничениями по дальности пробега и возможности заправки, вечным конструктором, тренажером для рук и ума.

Выводы

С точки зрения приложения рук и ума для человека, любящего автомобили и технологии, постройка электромашины, безусловно, оправдана! Хобби это, конечно, затратное, но все познается в сравнении — причем, в сравнении не с олигархическими крайностями вроде коллекционирования яичек Фаберже, а со вполне распространенными и массовыми техническими прикладными увлечениями. Скажем, любителю рыбалки средненькая надувная лодчонка с подвесным двигателем известной марки сил эдак в десять выльется как минимум в две трети простейшего электромобиля.

Хороший квадрокоптер с камерой стоит не меньше. На этом фоне постройка электромобиля ничуть не выделяется – нормальная такая мужская забава…

Не меньшая привлекательность постройки электромобиля «Версии 1.0» в том, что результат достижим для многих, а не только для избранных — не надо быть «инженером 80-го уровня», чтобы сочленить электродвигатель с КПП, проложить силовую и управляющую проводку и разместить в багажнике батареи. В простейшем варианте конструкции да с многочисленными советами отзывчивого электромобильного коммьюнити в интернете работа будет приятной и почти наверняка успешной.

Однако, пока не подешевели эффективные батареи и не распространились недорогие комплекты тяговых моторов и контроллеров, как это произошло с китами для электровелосипедов, электромобиль гаражной постройки в отношении стоимости эксплуатации вряд ли будет серьезным конкурентом бюджетным бензиновым авто и тем более – газифицированным машинам… В случае стремления к экономии вложиться в установку пропанового газового оборудования – проще и выгоднее…

Фото любезно предоставил американский самодельщик Брюс, тщательно документировавший все этапы постройки в домашних условиях своего электромобиля на базе пикапа-хэтчбека Suzuki Mighty Boy 1985 года.

Опрос Заинтересовались темой постройки электромобиля?
Ваш голос Всего голосов: практика электромобиль Евгений Балабас

Источник