Меню

Зарядное устройства для 12в аккумулятора lm317



Схемы зарядных устройств с использованием LM317, LM338

В настоящей статье мы обсудим несколько простых схем зарядных устройств, предназначенных для зарядки аккумуляторов 12 В. Эти устройства очень простые и недорогие по своей конструкции, но при

этом обладают высокой точностью в поддержании выходного напряжения и тока.
Все предложенные здесь схемы контролируют выходной ток. Это означает, что поступающий в аккумулятор ток никогда не будет выходить за предварительно определенный, фиксированный уровень.

Примечание: Если вам нужно зарядное устройство для аккумуляторов с мощным током, то ваши потребности могут быть удовлетворены данными конструкциями устройств зарядки свинцово-кислотных аккумуляторов.

— Простейшее зарядное устройство для аккумуляторов 12 В

Как я неоднократно повторял во многих статьях, основным критерием безопасной зарядки аккумулятора является поддержание максимально входного напряжения, величина которого чуть ниже напряжения зарядки, указанного в спецификации аккумулятора, а также поддержание тока на уровне, не вызывающем нагрев аккумулятора.

При соблюдении этих двух условий вы можете заряжать любой аккумулятор, используя простую, приведённую схему.

В приведенной, простейшей схеме, выход трансформатора составляет 12 В. Это означает, что пиковое напряжение после выпрямления будет составлять 12 х 1.41 = 16.92 В. Хотя это несколько выше, чем 14 В, уровня полного заряда для аккумулятора, сам аккумулятор поврежден не будет.
При этом рекомендуется отключать аккумулятор, как только амперметр покажет нулевое значение напряжения.

Автоматическое отключение: Если вы хотите, чтобы приведенная выше схема обеспечивала автоматическое отключение зарядного устройства по завершению зарядки, вы легко можете добиться этого, добавив на выход биполярный транзистор, как показано ниже:

В данной схеме мы использовали общий эмиттер биполярного транзистора, к базе которого подключено 15 В. Это означает, что напряжение эмиттера никогда не опустится ниже 14 В.
А когда на контактах аккумулятора напряжение превысит 14 В, транзистор переходит в состояние обратного смещения, и просто осуществляет автоматический режим отключения. Вы можете изменять значение напряжения 15 В стабилитрона, пока не получите для аккумулятора напряжение примерно в 14.3 В.

В результате первая схема преобразуется в полностью автоматическую систему зарядки АКБ, которую несложно сделать. Кроме того, поскольку здесь не используется конденсаторный фильтр, то 16 В применяется не в качестве непрерывного напряжения постоянного тока, а скорее, как 100 Гц выключатель. Это снижает нагрузку на аккумулятор, а также предотвращает сульфатирование пластин аккумулятора.

Почему важен контроль тока?

Зарядка аккумулятора любого вида может носить критический характер, и поэтому требует уделять ей определенное внимание. Когда сила тока, заряжающего аккумулятор, значимо высокая, контроль тока становится важным фактором.
Все мы знаем, насколько «умными» являются линейные стабилизаторы LM317, и не удивительно, что эти устройства применяются в большом количестве схем и приложений, требующих точное управление мощностью.

Представленная ниже схема зарядного устройства для аккумуляторов 12В с контролем тока на базе LM317 показывает, как можно сконфигурировать LM317, используя всего лишь пару сопротивлений и источник питания в виде стандартного диодного моста для обеспечения зарядки аккумулятора 12 В со всей возможной точностью.

Как это работает?

Стабилизатор подключается в обычном режиме, когда сопротивления R1 и R2 используются для требуемой регулировки напряжения. Входная мощность подается на LM317 с обычного диодного моста. После фильтрации через конденсатор C1 напряжение составляет примерно 14 вольт. Отфильтрованный постоянный ток с напряжением в 14 В, поступает на входной контакт стабилизатора.
Контакт регулировки LM317 подключён через фиксированное сопротивление R1 и переменное сопротивление R2. Изменяя величину сопротивления R2 может плавно менять выходное напряжение, подаваемое на аккумулятор. Без подключения сопротивления Rc вся схема вела бы себя, как простой источник питания.

Однако сопротивление Rc и транзистор BC547 на указанных позициях в схеме, обеспечивают возможность воспринимать ток, поступающий в аккумулятор.
Пока этот ток остается в требуемых безопасных границах, напряжение остается на заданном уровне. Однако при повышении силы тока стабилизатор снижает напряжение, ограничивая дальнейший рост тока и гарантируя безопасность аккумулятора.

Формула для расчета Rc:

R = 0.6/I, где I — максимальная величина требуемого выходного тока.

Для оптимальной работы LM317 будет требоваться наличие теплоотвода (радиатора).

Для наблюдения за состоянием зарядки аккумулятора используется подключенный к схеме потенциометр. Как только он покажет нулевое напряжение, аккумулятор можно отсоединить от зарядного устройства и использовать по назначению.

Принципиальная схема № 1

Для изготовления описанной выше схемы требуются следующие элементы;
R1 = 240 Ом
R2 = 10 кОм с предварительной установкой
C1 = 1000 мкФ/25 В
Диоды = 1N4007
TR1 = 0-14 В, 1 А

Как подсоединить потенциометр к схеме с LM317 или LM338?

Следующая схема (2) показывает, как правильно подключить 3-контактный потенциометр к схеме, использующей стабилизатор напряжения LM317 или LM338. Для подключения потенциометра к схеме его центральный контакт и любой боковой контакт соединяется с выходными контактами схемы. Третий контакт потенциометра не используется.

— Компактное зарядное устройство аккумуляторов 12В на базе LM338

Интегральная схема LM 338 представляет собой выдающееся устройство, которое может быть применено в неограниченном числе возможных приложений электронных схем. Ниже мы покажем, как использовать ее для получения автоматического зарядного устройства аккумуляторов 12 В.

Почему именно ИС LM338 ?

Основной функцией этой ИС является управление напряжением, и при незначительных, простых модификациях она может быть применена для управления током.
Схема зарядного устройства аккумуляторов идеально подходит для этой ИС и мы намерены изучить одну такую схему для создания автоматического зарядного устройства аккумуляторов 12 В с использованием ИС LM338.
Обращаясь к принципиальной схеме, мы видим, что вся схема построена вокруг ИС LM301, формирующей схему управления для выполнения отключения.
LM338 настроена в качестве контроллера силы тока, и как модуль прерывающего выключателя.

Использование LM338 в качестве регулятора, а операционного усилителя в качестве компаратора

Вся работа зарядного устройства может быть проанализирована с учетом следующих соображений: LM 301 используется в качестве компаратора и её не инвертированный вход подключается к опорной точке, создаваемой делителем напряжения, состоящего из R2 и R3. Напряжение, снятое с точки соединения R3 и R4, используется для установки выходного напряжения LM338 на уровень, который несколько выше требуемого напряжения зарядки – это примерно 14 вольт.
Данное напряжение подается на заряжаемый аккумулятор через сопротивление R6, включенное в схему в качестве датчика силы тока.
Сопротивление в 500 Ом, соединяющее входные и выходные контакты LM338, гарантирует, что даже после того, как схема будет автоматически отключена, аккумулятор будет постепенно заряжаться пока он остается подключенным к выходу схемы.
Кнопка пуска (start) используется для запуска процесса зарядки после подсоединения к выходу схемы частично разряженного аккумулятора.
Выбор величины R6 позволяет получать различные скорости зарядки в зависимости от емкости аккумулятора.

Функционирования схемы (согласно объяснениям +ElectronLover)

«После того, как заряжаемый аккумулятор будет иметь полный заряд, напряжение на инвертированном входе операционного усилителя станет выше установленного напряжения на неинвертированном входе LM338. Это моментально переключит логику усилителя на низкий уровень».

Согласно моим предположениям:
V+ = VCC — 74 мВ
V- = VCC — Ток зарядки x R6
VCC= напряжение на контакте 7 усилителя

Когда аккумулятор зарядится полностью, ток зарядки уменьшается. V- становится выше, чем V+, выход усилителя снижается, включая PNP и LED.
Кроме того, поскольку R4 через диод будет соединено с заземлением, то R4 становится параллельным R1, снижая фактическое сопротивление на управляющем контакте LM338 до уровня заземления.

Напряжение (LM338) = 1.2+1.2 x Reff / (R2+R3), где Reff — это сопротивление регулирующего контакта по отношению к заземлению.

Когда Reff понижается, выходное напряжение LM338 снижается, прекращая процесс зарядки.

Источник

Что такое зарядное устройство

Что такое зарядное устройство LM317-2

Что такое зарядное устройство LM317 для зарядки аккумуляторов

Что такое зарядное устройство LM317 предназначено для заряда щелочных и обыкновенных аккумуляторных батарей емкостью до 10-15 А⋅ч. Ток заряжающего процесса имеет зафиксированное значение, а по завершению зарядки он снижается в ноль. Имеется встроенная светодиодная индикация для визуального определения степени заряженности аккумулятора и момента его окончания.

Заданное техническое условие

Один хороший товарищ попросил меня, что-то придумать такое, чтобы он мог на даче подзаряжать аккумулятор от шуроруповерта. По его описанию батарея содержит десять аккумуляторов с общей емкостью 1400 мА⋅ч. Итак, батарею необходимо заряжать от источника 12v. Аккумуляторные батареи являются никель-кадмиевыми, поэтому для их зарядки существует как минимум три варианта:

  • а) замедленный режим, с номинальным током 0,1 от емкости, полный процесс зарядки составит примерно 15 часов;
  • б) ультра быстрый с током зарядки от 1,1 до 3,9 от емкости, здесь полный цикл составит около часа;
  • в) форсированный режим с зарядным током около 0,24 от емкости продлится в пределах шести часов.

    Исходя из таких данных можно определится, что способ а) уж очень долгий, тем более на даче, где каждый час хочется провести с пользой. А здесь такое время ждать пока он зарядится, то уже надо будет и домой собираться ехать. Воспользоваться вариантом б), то он тоже не совсем оптимален и с долей риска, при таком раскладе существует большая вероятность разрыва банок либо прихода в негодность всей аккумуляторной батареи.

    Читайте также:  Ipad как отключить аккумулятор

    Чтобы исключить такую возможность, необходимо постоянно контролировать температуру каждой емкости, к тому же сама схема получится непростой, как минимум реализована на микроконтроллере. Потом для контроллера нужно будет подготовить программу и настроить ее. И еще необходимо учитывать то, что каждый аккумулятор способен справиться с таким режимом зарядки, в частности это касается герметичных. Оставшийся режим в) вполне устраивает, если с вечера поставить батарею заряжаться, то к утру она будет абсолютно заряжена, то есть полный заряд и отсутствие каких либо проблем.

    Исходя из этого, с токовым режимом определились, дальнейший и на мой взгляд довольно непростой этап — это подбор отметки уровня, при котором будет происходить размыкание цепи зарядки. Как правило, применяется вариант отключения с помощью таймера, когда напряжение достигает своего порогового значения по совсем незначительному спаду с полной зарядкой, по температурной составляющей. Но и здесь создается некая проблема, дело в том, что в некоторых моментах реализация данного варианта схематически представляет определенную сложность, в других является рискованным и малонадежным.

    Одним из наиболее подходящих способов — пороговое напряжение, но и в таком случае напряжение может вовсе не дотянуть до порогового значения, если какой-либо из элементов является бракованным. В связи с этим настоятельно советую в случае первичной зарядки внимательно контролировать напряжение определенной аккумуляторной батареи. В справочных изданиях дается пояснение — необходимое напряжение для полного заряда каждого элемента находится в пределах 1,46-1,49v.

    Как в любом современном электронном устройстве такого типа имеется блок индикации для визуального наблюдения за состоянием работы прибора. Я решил использовать самые необходимые функции контроля схемы. Поэтому в этой конструкции я реализовал контроль подключения к сети, работоспособность прибора, контроль зарядного тракта, существующее состояния аккумулятора. Подача сигнала звуком я посчитал не нужной, так как есть вероятность ее включения среди ночи. К тому же если знаешь что такое зарядное устройство, то оно должно работать таким образом, чтобы аккумуляторная батарея смогла находиться в состоянии заряда без ущерба для нее.

    Учитывая такое обстоятельство — решил, что таймер в схеме не нужен или по крайней мере можно обойтись без него. При тестировании аналогичных приборов промышленного изготовления немного удивил такой фактор. В их конструкции не предусмотрен стабилизатор тока, а в качестве ограничителя выступает внутреннее сопротивление вторичной обмотки трансформатора. Напрашивается такой вывод, что при изменении напряжения в сети, либо не будет происходить полного заряда батареи либо конкретно увеличится ток.

    Принципиальная схема и ее компоненты

    Для тех кто занимается конструированием различных электронных устройств, как я считаю, важным фактором является:

  • — простая по исполнению схема,
  • — доступная в денежном выражении,
  • — из имеющихся в свободной продаже элементов,
  • — печатная плата должна быть разведена с достаточной простотой.

    Конечно в радиолюбительской практике лучше всего пользоваться теми деталями, которые найдутся в ваших закромах и из них пробовать собрать ту или иную конструкцию. Для изготовления зарядных устройств имеется в продаже специально для этих целей интегральная микросхема L200c — это не что иное, как стабилизатор тока и напряжения с возможностью его регулирования. Но для меня было принципиально установить в схему регулируемый стабилизатор положительного напряжения КР142ЕН12 он аналогичен LM317. У себя в загашнике отыскал трансформатор с напряжением вторичной обмотки 18v, чтобы полностью удостоверится в его работоспособности, я замерил действующее напряжение на нагрузке около 320 мА, и выяснилось что оно имеет значение ровно 16v.

    Учитывая падение в районе 10%, то это вполне нормально. Постоянные резисторы использованные в схеме выполнены в SMD-корпусе, вместо транзистора КТ503 можно ставить любой с n-p-n переходом. Сверхъяркие светодиоды у меня также были в наличии, правда их марку я установить не смог, но зато они прекрасно работают на токе 1 мА. Светодиоды можно устанавливать практически любые, но с обязательным подбором номинала постоянных резисторов R6-R9, это даст возможность установить необходимую яркость свечения светодиодов.

    Что такое зарядное устройство LM317 — настройка

    Что такое зарядное устройство LM317-4

    Не подключая пока нагрузки, подстроечным резистором R5 немного вращая его удостоверится, что выходное напряжение плавно изменяется в пределах 14v. Подбором номинала R7 R8 установить момент включения светодиода D6 при этом напряжение должно составлять примерно 14,1v. Печатная плата выполнена с учетом возможности параллельно резисторам R7 R8 установки SMD-резисторов для точной подгонки их номинала. Если знать что такое зарядное устройство и использовать приведенные на принципиальной схеме номинальные значения, то подстраивать ничего не придется.

    Далее, опять же подстроечным резистором выставить выходное напряжение около 14,6v. Теперь можно подключить нагрузку 20 Ом и удостоверится в том, что значение тока в цепи нагрузки составляет около 290 мА. Затем коротнуть на секунду выход и посмотреть гасятся ли пара светодиодов, а плавкий предохранитель остается целым. Если нагрузка отсутствует, то светится должны оба светодиода, а кода подключается в цепь аккумулятор светодиод красного свечения погасает. В случае обрыва цепи заряда либо батарея оказалась не полностью заряжена, красный светодиод продолжает светиться.

    На следующем этапе нужно подключить аккумулятор и удостовериться, что светодиод красного свечения перестает светится, а зарядка выполняется как положено. Когда состояние заряда подходит к своему полному значению красный диод начинает светиться. Далее необходимо проверить значение напряжения на заряженном аккумуляторе, а в случае необходимости, подрегулировать переменным резистором R5 напряжение на выходе устройства. Опять же при обнаружении напряжения существенно отличающегося от заданного, значит в аккумуляторной батареи неисправен какой-то элемент. Нужно отыскать какой именно и поменять его на заведомо исправный.

    Заключительная информация

    Что такое зарядное устройство LM317, которое имеет возможность изменять значение тока зарядки до полутора ампер, но при этом нужно постоянно отслеживать температуру на КР142ЕН12, чтобы не было больше оптимальной. Напряжение аккумулятора может составлять 6v, 12v, 18v, 24v. Но учитывая разные напряжения, то и придется провести дополнительные настроечные работы, в частности нужно будет заменить в схеме несколько постоянных резисторов. Чтобы изменить значение тока заряда согласно одному напряжению, то эффективнее всего будет параллельно резистору R2 включить шунтирующие сопротивления.

    Габариты радиаторов охлаждения будут определяться разницей входного и выходного напряжения, а также номинального тока стабилизации. А посему не стоит фанатично увеличивать переменное напряжение на вторичной обмотке трансформатора, которое неизбежно спровоцирует перегрев. На данную конструкцию зарядки корпус я не делал, так как заказчик изъявил желание изготовить его самостоятельно. Но нужно помнить, что для такого устройства необходима высокоэффективная вентиляция. На фотографии это теплоотвод установлен временно, пока идет настройка, потом я его заменю.

    Во время тестирования и настроечных моментов зарядке подверглась аккумуляторная батарея с набором в 10 никель-кадмиевых элементов с емкостью 7 А⋅ч. Время затраченное на зарядку такой батареи соразмерно повышалось, тем не менее, аккумулятор зарядился полностью.

    Источник

    Зарядное устройство на 12 В на основе Arduino и LM317

    В настоящее время большая часть электронных устройств запитывается с помощью свинцово-кислотных батарей. В этой статье мы рассмотрим как перезаряжать подобные батареи с помощью простой схемы на Arduino, которую можно собрать в домашних условиях – отличный шанс сэкономить на покупке зарядного устройства.

    Внешний вид зарядного устройства на 12 В на основе Arduino и LM317

    Для начала постараемся понять основные принципы работы свинцово-кислотных батарей чтобы мы смогли спроектировать наше зарядное устройство максимально эффективным образом. Большинство продающихся в настоящее время свинцово-кислотных батарей имеют напряжение 12 В. Ампер-часы (А*ч) каждой батареи могут отличаться в зависимости от требуемой емкости батареи, к примеру батарея на 7 А*ч будет способна обеспечивать ток 1 Ампер в течение 7 часов (1 Ампер * 7 часов = 7 А*ч).

    Рекомендуемый ток заряда для свинцово-кислотных батарей составляет 1/10 от их емкости (в Ампер-часах). То есть для батареи емкостью 7 А*ч рекомендуемый ток заряда будет составлять 0,7 Ампер. Больший ток заряда может нанести вред батарее и уменьшить срок ее службы. Учитывая данный фактор мы и будем проектировать наше домашнее зарядное устройство, способное обеспечивать переменное напряжение и переменный ток. Ток заряда будет регулироваться на основе значения емкости батареи.

    Создаваемое нами устройство для заряда свинцово-кислотных батарей можно будет использовать и для заряда ваших мобильных телефонов при помощи соответствующей регулировки подаваемого тока и напряжения с помощью потенциометра. То есть наше устройство представляет собой источник регулируемого постоянного тока, которое работает от сети переменного тока. Также для лучшего понимания материала этой статьи можно прочитать недавно рассмотренный на нашем сайте проект источника напряжения питания 0-24В 3А на Arduino и LM338.

    Читайте также:  Аккумулятор для телефона alcatel one touch 233

    Необходимые компоненты

    1. Трансформатор на 12В 1А.
    2. Микросхема LM317 (2 шт.) (купить на AliExpress).
    3. Диодный мост W005.
    4. Контактная колодка (2 шт.).
    5. Конденсаторы 1000 мкФ (купить на AliExpress) и 1 мкФ (купить на AliExpress).
    6. Конденсаторы 0,1 мкФ (5 шт.) (купить на AliExpress).
    7. Резистор 1 кОм (5 шт.) (купить на AliExpress).
    8. Диоды Nn007 (3 шт.).
    9. Операционный усилитель LM358 (купить на AliExpress).
    10. Шунтирующее сопротивление (проводник) 0.05 Ом (купить на AliExpress).
    11. Плата Arduino Nano (опционально) (купить на AliExpress).
    12. ЖК дисплей 16х2 (опционально) (купить на AliExpress).

    Работа схемы

    Схема зарядного устройства без платы Arduino и ЖК дисплея представлена на следующем рисунке.

    Основная цель нашего источника питания на 12 В – управлять напряжением и током, подаваемым на свинцово-кислотную батарею чтобы заряжать ее в максимально комфортном для нее режиме. Для этой цели в схеме использованы две микросхемы LM317 – одна для управления значением напряжения (U3), а вторая (U1) для ограничения тока. Также мы настоятельно рекомендовали бы вам изучить даташит на микросхему LM317, поскольку это может пригодиться вам не только для этого проекта, но и для других похожих проектов, в которых данная микросхема используется в качестве регулятора напряжения.

    Простая схема регулятора напряжения, взятая из даташита на LM317, представлена на следующем рисунке.

    Схема регулятора напряжения на микросхеме LM317

    В этой схеме значение выходного напряжения регулируется с помощью значений сопротивлений R1 и R2, в нашем проекте мы это делаем с помощью изменения сопротивления резистора R2. Формула для вычисления значения выходного напряжения выглядит следующим образом:

    Vout = 1.25 (1+R2/R1).

    Используя данную формулу мы в нашем проекте выбрали значение сопротивления 1K (R8) и использовали потенциометр 10К (RV2).

    Схема ограничения значения тока, взятая из даташита на LM317, представлена на следующем рисунке.

    Схема ограничения значения тока на микросхеме LM317

    Это простая схема, которая может быть использована для ограничения значения тока в нашей схеме, основанная на значении сопротивления R1. Формула для вычисления значения выходного тока выглядит следующим образом:

    Основываясь на этой формуле мы в нашей схеме выбрали значение сопротивления RV1=100 Ом.

    То есть для управления значениями выходных напряжения и тока мы в нашей схеме использовали два потенциометра — RV1 и RV2. На микросхему LM317 напряжение подается с выхода диодного моста, а на диодный мост – с выхода трансформатора через коннектор P1. Трансформатор должен быть на 12 В и 1 А. Представленная схема достаточна для того чтобы выполнять поставленную функцию – обеспечивать на выходе схемы заданные ток и напряжение. Но ее можно улучшить с помощью ЖК дисплея, на экране которого можно наглядно контролировать указанные параметры.

    Отображение значений напряжения и тока на ЖК дисплее с помощью Arduino

    Отображать текущие значения напряжения и тока на выходе нашей схемы мы можем с помощью платы Arduino Nano и ЖК дисплея 16х2.

    Поскольку плата Arduino Nano работает с напряжениями не более 5 В, то для того чтобы не сжечь ее напряжением 12 В мы применим делитель напряжения, схема которого представлена на следующем рисунке. Также вопросы контроля значения напряжения на выходе схемы с помощью платы Arduino можно изучить в статье про источник напряжения питания 0-24В 3А на Arduino и LM338.

    Схема делителя напряжения

    Для измерения значения тока мы использовали шунтирующее сопротивление R4 чтобы создать падение напряжения на резисторе как показано на следующей схеме. После этого мы можем легко определить значение тока, используя известный закон Ома – I=V/R.

    Значение шунтирующего сопротивления мы выбрали равным 0.05 Ом, поэтому максимальный ток, который можно пропускать через нашу схему, будет равен 1,2 А, что соответствует выбранным нами параметрам трансформатора. Мощность, рассеиваемую на резисторе, можно будет определить с помощью известного выражения P=I^2/R. В нашем случае получаем P=(1.2*1.2*0.05) => 0.07, что менее чем четверть ватта. При изменении значения шунтирующего сопротивления рассеиваемую мощность необходимо будет пересчитать.

    Теперь, когда мы можем рассчитать падение напряжения на резисторе R4, мы можем рассчитать ток через нашу схему с использованием Arduino. Но это падение напряжения слишком мало для того, чтобы его можно было измерить с помощью Arduino. Поэтому в нашей схеме мы применили операционный усилитель LM358 как показано на выше приведенном рисунке. Сигнал с выхода данного операционного усилителя подается на нашу плату Arduino через R-C-схему чтобы измерять значение тока и отображать его на ЖК дисплее.

    Далее можно использовать какой-нибудь симулятор (рекомендуется) для проверки работоспособности схемы прежде чем собирать ее в «железе». Мы данном случае использовали симулятор Proteus 8 для тестирования схемы как показано на следующем рисунке. Скачать готовый файл нашей схемы для данного симулятора вы можете по следующей ссылке.

    Вид нашей схемы в симуляторе Proteus 8

    Создание печатной платы для нашего устройства

    Данная статья является переводом с этой статьи на англоязычном сайте и раздел про создание печатной платы я не переводил потому что подходы, использованные авторами статьи-оригинала для создания печатной платы, могут кардинальным образом отличаться от тех подходов, которые используете вы. Поэтому если вы хотите реализовать рассмотренное в данной статье зарядное устройство на 12 В на печатной плате, то можете сделать это любым удобным для вас способом (к которому вы привыкли). У авторов статьи-оригинала в результате получилось устройство следующего вида:

    Вид нашего устройства на печатной плате

    Тестирование зарядного устройства

    Плата Arduino и ЖК дисплей не являются обязательными элементами для нашей схемы – они используются только для целей контроля, поэтому вы можете временно смонтировать их на схеме с помощью специальных колодок, чтобы потом можно было легко их убрать и использовать в других проектах.

    Для тестирования устройства удалите с нее плату Arduino и подсоедините схему к трансформатору. После этого отрегулируйте выходное напряжение к требуемому уровню с помощью потенциометра RV2. Проверьте выходное напряжение схемы с помощью мультиметра и подсоедините ее к батарее как показано на следующем рисунке. Теперь наше устройство готово к работе.

    Тестирование нашего зарядного устройства

    Прежде чем подсоединять плату Arduino к нашей схеме удостоверьтесь что на контакте, к которому мы будем ее подсоединять, напряжение не превышает 5 В, иначе мы можем испортить плату Arduino. Используйте ниже приведенный текст программы для загрузки его в плату Arduino. Эта программа предназначена для отображения значений тока и напряжения на экране ЖК дисплея. Более подробно весь этот процесс показан в видео в конце статьи.

    Данное устройство можно использовать и для заряда сотовых телефонов, но для этого необходимо будет уточнить какие значения напряжения и тока требуются для заряда вашего сотового телефона. Также к схеме необходимо будет подсоединить USB кабель.

    Исходный код программы

    Код программы достаточно простой, поэтому комментариев к нему нет. Но если у кого возникнут какие либо вопросы по тексту данной программы, то вы можете задать их в комментариях к данной статье.

    Источник

    Зарядное устройство для разных аккумуляторов

    LM317

    Андрей Барышев, г. Выборг

    В данной статье описывается изготовление несложного устройства, предназначенного для безопасной зарядки любых малогабаритных аккумуляторов. Под «безопасностью» здесь подразумевается возможность ручной установки зарядного тока, рекомендованного для каждого конкретного типа аккумулятора, а также автоматическое снижение выходного тока до нулевого значения после того, как аккумулятор зарядится полностью, до своего номинального напряжения. Такое зарядное устройство (ЗУ), конечно, не может служить полноценной заменой «фирменному» ЗУ, которое разрабатывается под конкретный тип аккумулятора и обеспечивает оптимальный режим его заряда. Но его удобно иметь под рукой, если вам часто приходится пользоваться различными типами аккумуляторов, а специальных «зарядок» к этим аккумуляторам нет. ЗУ позволяет заряжать аккумуляторы разных типов, с номинальным напряжением, начиная от 1.2 В («таблетки», «пальчиковые»), батареи сотовых телефонов различных моделей (напряжением 3.7…4.5 В), а также 9 и 12-вольтовые аккумуляторы. Зарядный ток может быть до 500 мА и выше, это зависит только от мощности примененных в схеме элементов.

    Принцип работы

    Как правило, рекомендуемый изготовителем зарядный ток аккумулятора составляет 1/10 от номинальной паспортной емкости СА, которая измеряется в А/ч (ампер/час) и указывается на его корпусе. То есть, например, для аккумулятора емкостью 700 мА/ч оптимальным будет ток заряда 70 мА. Поскольку ток в процессе зарядки будет уменьшаться, его первоначальное значение можно задать немного выше рекомендованного для того, чтобы ускорить процесс зарядки (если это необходимо). Но делать это следует в умеренных пределах, чтобы не допустить сильного нагрева аккумулятора. Максимальное значение начального зарядного тока рекомендуется устанавливать не более (0.2 – 0.3)СА.

    Читайте также:  Устройство для зарядки автомобильного аккумулятора орион

    В предлагаемой схеме предусмотрена ручная установка значения этого тока и возможность его визуального отображения и контроля в процессе зарядки при помощи светодиода и небольшого встроенного стрелочного прибора.

    Рисунок 1. Принципиальная схема универсального ЗУ.

    Принципиальная схема ЗУ приведена на рис. 1.

    Постоянное выпрямленное напряжение поступает с выпрямителя Br1 на схему ограничителя тока с узлом индикации, собранном на транзисторах VT1, VT2 и светодиоде VD1. Затем, через стабилизатор напряжения на микросхеме DA1, ток заряда поступает на аккумулятор, подключенный к контактам J1 и J2. При этом регулируемый стабилизатор напряжения на микросхеме (МС) DA1 позволяет изменять напряжение стабилизации схемы при помощи переключателя S1 в соответствии с рабочим напряжением подключаемого аккумулятора. Если аккумулятор разряжен и его напряжение меньше значения напряжения стабилизации схемы, через резистор Р1 начинает течь ток, значение которого будет тем больше, чем сильнее степень разряда аккумулятора. В начале зарядки напряжение на этом резисторе превысит значение 0.6 В, откроется транзистор VT2, а VT1, наоборот, станет закрываться, ограничивая выходной ток схемы. Резистор R2 в цепи базы транзистора VT2 защищает его от перегрузки, а светодиод в его коллекторной цепи служит индикатором и светится в процессе заряда. Когда аккумулятор полностью зарядится и его напряжение сравняется с напряжением стабилизации МС DA1, ток через резистор Р1 упадет и транзистор VT2 закроется, что приведет к погасанию светодиода и полному открытию транзистора VT1. При этом напряжение на заряжаемом аккумуляторе не превысит значения напряжения стабилизации МС DA1 (установленное переключателем S1) и это защитит аккумулятор от перезаряда. Таким образом, переменный резистор Р1 является своеобразным «датчиком тока», изменяя сопротивление которого можно задавать первоначальный максимальный зарядный ток.

    Конструкция и детали

    Схема может питаться от любого малогабаритного трансформатора с напряжением на вторичной обмотке 12 … 20 В. Здесь подойдет, например, трансформатор от «зарядки» для сотовых телефонов старых типов (в «зарядках» новых типов, как правило, применяют импульсные схемы, не имеющие такого понижающего трансформатора). Переменное напряжение с этого трансформатора выпрямляется диодным мостом Br1 и, затем, сглаживается конденсатором C1 (эти элементы также можно взять из той же «зарядки», что и трансформатор). Емкость С1 может быть 470 мкФ и более, напряжение всех конденсаторов в схеме – не ниже 36 В. Диоды выпрямительного моста – любые выпрямительные на ток от 0.5 А (КД226, 1N4007 и др.), можно применить диодный мост типа КЦ403. Транзисторы VT1, VT2 – средней или большой мощности, n-p-n типа (например КТ815, КТ817, КТ805 c любой буквой или импортные аналоги типа PN2222). Допустимый ток коллектора таких транзисторов позволяет устанавливать ток заряда до 1.5 А, но при токах более 200 мА эти транзисторы нужно установить на небольшие радиаторы-теплоотводы. Светодиод может быть любой маломощный, например АЛ307. Микросхема DA1 – регулируемый стабилизатор напряжения LM317 или отечественный аналог КР142ЕН12А (с учетом цоколевки выводов). Такие стабилизаторы позволяют регулировать выходное напряжение в широких пределах – от 1.25 до 35 В. Вместо плавной регулировки выходного напряжения в данном случае удобнее использовать дискретный переключатель на несколько положений, соответствующих номинальным значениям тех аккумуляторов, которые предполагается заряжать этим ЗУ. Например: 1.2 В – 2.4 В – 3.6 В – 3.9 В – 9 В – 12 В. В приведенном здесь варианте ЗУ для этой цели используется малогабаритный галетный переключатель на 6 фиксированных положений. Нужные значения напряжений устанавливаются при настройке подбором резисторов R9 … R14, номиналы которых лежат в пределах от десятков Ом до нескольких кОм.

    Ток заряда, помимо светодиода, можно контролировать при помощи дополнительного стрелочного микроамперметра, включенного на выходе схемы последовательно с нагрузкой (аккумулятором). Для этого подойдет, например, стрелочный индикатор уровня записи старых магнитофонов или какой-нибудь аналогичный. Можно, конечно, обойтись и без него, сделав схему с заданными фиксированными значениями зарядного тока. Тогда вместо переменного резистора Р1 нужно будет применить набор постоянных сопротивлений, переключаемых в зависимости от нужного значения зарядного тока. В этом случае понадобиться и дополнительный переключатель. Но использование отдельного стрелочного прибора для этих целей сделает работу с ЗУ гораздо более удобной, а сам процесс зарядки будет наглядно отображаться на всем ее протяжении. К тому же, полное погасание светодиода VD1 произойдет при снижении тока через него ниже 10-15 мА (в зависимости от типа), а это не будет соответствовать полной зарядке подключенного аккумулятора, через который еще будет протекать небольшой ток. Поэтому лучше ориентироваться по стрелке прибора.

    Зарядное устройство для варианта с МС LM317 собрано на небольшой печатной плате размерами 25 × 30 мм (рис. 2). При использовании других типов МС следует учесть расположение их выводов, оно может отличаться.

    Рисунок 2. Печатная плата ЗУ.

    ЗУ можно собрать в небольшом корпусе подходящих размеров, например – от сетевого адаптера. Расположение деталей в корпусе такого варианта показано на рис. 3.

    Настройка

    Настройку предлагаемой схемы ЗУ начинают с установки необходимых зарядных напряжений на выходе. Для этого к клеммам J1 и J2 вместо аккумулятора подключают сопротивление около 100 Ом (мощностью не менее 5 Вт, лучше проволочное, иначе оно будет сильно греться!). Переключатель S1 установить в крайнее положение, соответствующее подключаемому аккумулятору, например, «1.2 В». Подбирая резистор R9, добиваются напряжения на выходных клеммах на 15 – 20 % больше номинального напряжения заряжаемого аккумулятора. То есть, в данном случае, выставляем на выходе около 1.4 В. Затем переключаем S1 в следующее положение (например «2.4 В») и подбором резистора R10 выставляем на выходе около 2.8 В… И так далее, для всех нужных значений. Максимальное напряжение, которое можно выставить таким образом, определяется максимальным значением выходного напряжения МС DA1, а входное напряжение схемы (на коллекторе VT1) должно превышать выходное не менее чем на 3 В для обеспечения нормального режима стабилизации микросхемы.

    Зарядное устройство для разных аккумуляторов
    Рисунок 3. Расположение деталей в корпусе ЗУ.

    После установки всех необходимых значений выходного напряжения следует откалибровать стрелочный прибор – микроамперметр. Для этого подключаем в схему последовательно с ним тестер или амперметр, а к выходным клеммам – переменное сопротивление (проволочное, большой мощности) порядка 100 Ом и, меняя его значение, добиваемся на выходе максимального значения тока, на который будет рассчитано наше зарядное устройство (например, 300 мА). Вместо переменного здесь можно использовать и наборы постоянных сопротивлений. После чего подбираем шунт – сопротивление, которое припаиваем между контактами нашего стрелочного индикатора. Его надо подобрать так, чтобы при выбранном максимальном токе стрелка установилась в конец шкалы. Это сопротивление (его видно на рис. 3) для примененного стрелочного индикатора типа «М476» составило 1 Ом. В этом случае полное отклонение стрелки к концу шкалы будет соответствовать току заряда 300 мА. Шкалу можно проградуировать – нанести метки, соответствующие токам от 0 до 0.5 А, однако делать это необязательно. На практике вполне достаточно будет определять примерное значение тока.

    Работа с ЗУ

    Устанавливаем переключатель S1 в положение, соответствующее номинальному напряжению аккумулятора, который нужно зарядить.

    При подключении к клеммам J1, J2 разряженного аккумулятора загорается светодиод, и стрелка прибора отклоняется к концу шкалы. С помощью переменного резистора Р1 выставляем максимальный ток зарядки для данного аккумулятора. По мере заряда аккумулятора яркость светодиода будет постепенно понижаться, а стрелка прибора приближаться к началу шкалы. На последней стадии заряда светодиод погаснет, но о полном заряде аккумулятора лучше делать вывод по стрелке прибора – когда она будет на «нуле» (то есть в самом начале шкалы). После этого аккумулятор может находиться в зарядном устройстве сколь угодно долго – перезаряда его не произойдет.

    Если у вас «батарея» аккумуляторов (несколько штук, включенных параллельно или последовательно), то каждый из аккумуляторов лучше заряжать отдельно, а не в группе. Потому, что внутренние сопротивления каждого из них хоть незначительно, но отличаются от остальных, а это может привести к перезаряду или недозаряду отдельных элементов батареи, что отрицательно скажется на ее общей емкости. Например, для зарядки 4-х пальчиковых аккумуляторов лучше сделать четыре модуля (платы), подключенных на каждый аккумулятор отдельно. Трансформатор, выпрямитель (диодный мост) и сглаживающий электролитический конденсатор при этом могут быть общими, но рассчитанными на суммарную мощность нагрузки.

    Зарядное устройство для разных аккумуляторов
    Рисунок 4. Внешний вид собранного ЗУ.

    Внешний вид зарядного устройства с органами управления показан на рис. 4.

    Примечание

    Резисторы R3…R8 можно, конечно, заменить одним (номиналом 150 Ом), а остальные контакты переключателя S1 соединить между собой параллельно. Но подключение отдельного резистора на каждый контакт (как показано в схеме рис. 1) позволяет при необходимости произвести более точную настройку на нужное выходное напряжение.

    Источник

  • Зарядное устройства для 12в аккумулятора lm317

    Зарядное устройства для 12в аккумулятора lm317

    ↑ Режим зарядки по току

    Мне позвонил друг и сказал, что ему нужно зарядное устройство к шуруповерту на дачу. C его слов, аккумуляторов в батарее 10 штук емкостью 1400 мА-час. Значит, требуется заряжать батарею 12 Вольт. Аккумуляторы никель-кадмиевые, для них возможны три режима зарядки: «А» — медленный, током 0,1 от ёмкости, время зарядки 14-16 часов; «Б» — сверхбыстрый, током от 1 до 4 ёмкости, время порядка 1 часа; «В» — ускоренный, током примерно 0,25 от ёмкости, время зарядки 4-6 часов.
    На мой взгляд, вариант «А» слишком медленный, пока батарея зарядится, или желание работать пропадет, или будет пора уезжать.

    Вариант «Б» рискован, велика вероятность взрыва или выхода из строя батареи, для предотвращения этого нужен контроль за температурой каждого элемента, схема должна быть сложной, лучше на микроконтроллере, для него придется писать и отлаживать программу, далеко не все аккумуляторы могут выдержать такой режим, особенно герметичные.

    Остается режим «В» — вечером батарея ставится на зарядку, утром аккумуляторы полностью заряжены, заряд полный, вероятность проблем минимальна.

    Анализ промышленных схем удивил. В них обычно нет стабилизации тока, ограничение происходит за счет сопротивления вторичной обмотки питающего трансформатора. Значит при отклонении сетевого напряжения или не будет полной зарядки, или ток значительно возрастет. У нас ток зарядки будет стабилизирован

    на заданном уровне, что полностью избавляет от указанных недостатков.

    ↑ Критерий отключения

    Итак, токовый режим выбран, следующий и самый сложный этап — выбор критерия отключения зарядки. Обычно используются: • отключение по таймеру, • по достижению порогового напряжения, • по мизерному падению напряжения при полной зарядке, • по температуре батареи.
    Проблема в том, что в одних случаях реализация сложна, в других ненадежна. Приемлемый вариант — пороговое напряжение

    , но если хотя бы один элемент плохой, напряжение никогда не достигнет порогового уровня. Поэтому я рекомендую при первой зарядке проконтролировать напряжение конкретной батареи. В литературе написано, что напряжение полной зарядки на элемент составляет 1,45-1,48 В.

    Зарядное устройство на LM317 схема |

    Зарядное устройство для свинцово-кислотных (автомобильных аккумуляторов) можно довольно быстро собрать на микросхеме LM317T. А самое большое преимущество в том, что не обязательно быть радиолюбителем для её реализации, достаточно примитивных познаний физики и электротехники. Схема зарядного устройства проста в настройке, и требует минимум навесных элементов, а при этом довольно надёжная и дешёвая.

    Зарядное устройства на LM317T, которое можно применять для свинцово-кислотных (автомобильных в том числе) аккумуляторов:

    Схема зарядки на LM317 кажется довольно простой. Я хоть и не собирал её и не настраивал (делал только блок питания на LM317T), но постараюсь максимально подробно рассказать всё, что знаю про микросхему:

    Зарядное устройство на LM317 схема

    Достоинство ЗУ на LM317, в том, что можно подобрать ток заряда для многих различных батарей (правда, его нельзя регулировать). А благодаря её конструкции, микросхему LM317 несложно посадить на радиатор и тем самым производить её охлаждение при большом номинальном токе. Микросхема довольно надёжная, стабильная и относительно недорогая, но всё, же я рекомендую вам LM317 купить сразу пару штучек, потому как они довольно часто выходят из строя в процессе наладки схемы.

    Настройка схемы зарядки на LM317:

    Предложенный вариант схемы ЗУ, представляет собою обыкновенный стабилизатор тока. Собрать подобного рода схему на LM317 можно поверхностным монтажом, печатная плата не потребуется. В качестве источника питания рекомендую использовать понижающий трансформатор, подходящий по параметрам, или можно попробовать вариант с гасящим конденсатором. Вы должны понимать, что микросхеме нужно обеспечить все рабочие условия, я рекомендую перед настройкой посмотреть datasheet на lm317.

    Прежде чем настраивать схему зарядного устройства, необходимо знать ток заряда батареи. Как правило, его рассчитывают по формулам, но на практике я просто знаю, что он должен составлять одну десятую от рабочего тока батарейки (к примеру, если ёмкость батареи 6 А/ч, то ток заряда батареи должен быть не больше 600 mА).

    Для зарядного устройства важно обеспечить чёткий, стабилизированный ток заряда, на протяжении всей процедуры зарядки. Для того что бы настроить схему чётко под номинальный ток. Необходимо всё заранее просчитать по закону Ома, и подобрать подходящее сопротивление в качестве нагрузки, заменив им на время настройки саму батарею (не забывайте про мощность резистора, она должна быть соответствующая проходящему через зарядку току).

    Схема настройки зарядного устройства

    Резистор R1 подбирается в соответствии с VD2. А вот резистором R2, подбирают под потребляемый ток батареи. R2 обладает очень низким сопротивлением, потому в качестве него лучше всего подходит кусочек нихромовой проволоки (если нет подходящего по номиналу резистора, просто купите нихромовую спираль для электропечи и укоротите её до нужного номинала сопротивления, как вариант,). Естественно, что вам нужен амперметр, для подбора уровня тока, необходимого для заряда батареи. Меряете, и подбираете резистор R2. А добившись нужного уровня тока можете смело ставить аккумулятор на зарядку.

    По идее, схема зарядного устройства должна работать следующим образом. Когда батарея разряжена, она потребляет максимальный ток заряда, и светодиод VD2 горит ярко. Как только батарея начнёт заряжаться, светодиод будет тускнеть пока не станет гореть очень слабо (а если грамотно подобрать резистор R2, то и вовсе потухнет).

    ↑ Схема и детали

    Для радиолюбительской самоделки, на мой взгляд, нужно, чтобы конструкция была: — простая, — недорогая, — из доступных деталей, — плата должна быть с простой разводкой.
    Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.

    Желательно использовать то, что есть под рукой , что не надо искать по рынкам и магазинам. Для зарядок есть специальная микросхема L200C

    , но мне было интереснее применить
    КР142ЕН12 (LM317)
    .

    Трансформатор нашелся с вторичной обмоткой на 18 Вольт. Чтобы убедиться в его пригодности, было измерено напряжение под нагрузкой 300 мА, оно оказалось 16 Вольт. Это нормально, т.к. допустимо падение на 10% .

    Резисторы применены в основном SMD, транзистор КТ503 можно заменить практически любым той же проводимости.

    Для индикации я использовал сверхъяркие светодиоды неизвестной марки, поскольку они отлично светятся уже при токе 1 мА. Можно ставить любые светодиоды, но придется подобрать резисторы R6, R9 для желаемой их яркости.

    ↑ Настройка зарядного устройства

    Без нагрузки подстройкой R5 убедиться, что напряжение на выходе плавно регулируется около значения в 14 Вольт. Подгонкой R7, R8 добиться зажигания D6 при напряжении 14…14,2 Вольт. На печатной плате предусмотрено место для подключения SMD резисторов параллельно R7, R8 для их подгонки. При указанных на схеме номиналах, подстройка не потребовалась.
    Затем подстройкой R5 установить на выходе напряжение 14,4…14,5 Вольт. Подключить нагрузку, например, 20 Ом и убедиться, что ток в нагрузке примерно 300 мА. Закоротить ненадолго выход и убедиться, что оба диода гаснут, а предохранитель не перегорает. Без нагрузки должны светиться оба светодиода, при подключении аккумулятора красный светодиод гаснет. Если цепь заряда оборвана или аккумулятор заряжен полностью, красный светодиод не гаснет.

    Подключить аккумулятор, убедиться, что красный светодиод гаснет и зарядка проходит нормально. При приближении к полной зарядке красный диод должен загореться. Проконтролировать напряжение на полностью заряженной батарее и, при необходимости, подкорректировать резистором R5 выходное напряжение. Если напряжение заметно отличается от нормы, батарея неисправна. Надо проконтролировать состояние всех элементов батареи и заменить неисправный.

    БЛОК ПИТАНИЯ НА LM317

    Блок питания – это непременный атрибут в мастерской радиолюбителя. Я тоже решил собрать себе регулируемый БП, так как надоело каждый раз покупать батарейки или пользоваться случайными адаптерами. Вот его краткая характеристика: БП регулирует выходное напряжение от 1,2 Вольта до 28 Вольт. И обеспечивает нагрузку до 3 А (зависит от трансформатора), что чаще всего достаточно для проверки работоспособности радиолюбительских конструкций. Схема проста, как раз для начинающего радиолюбителя. Собранная на основе дешёвых компонентов — LM317 и КТ819Г.

    Схема регулируемого блока питания LM317

    Список элементов схемы:

    • Стабилизатор LM317
    • Т1 — транзистор КТ819Г
    • Tr1 — трансформатор силовой
    • F1 — предохранитель 0.5А 250В
    • Br1 — диодный мост
    • D1 — диод 1N5400
    • LED1 — светодиод любого цвета
    • C1 — конденсатор электролитический 3300 мкф*43В
    • C2 — конденсатор керамический 0.1 мкф
    • C3 — конденсатор электролитический 1 мкф*43В
    • R1 — сопротивление 18K
    • R2 — сопротивление 220 Ом
    • R3 — сопротивление 0.1 Ом*2Вт
    • Р1 — сопротивление построечное 4.7K

    Цоколёвка микросхемы и транзистора

    Корпус взял от БП компьютера. Передняя панель изготовленная из текстолита, желательно установить вольтметр на этой панели. Я не установил, потому что пока не нашёл подходящего. Также на передний панели установил зажимы для выходных проводов.

    Читайте также:  Тест аккумуляторов за рулем 2017

    Источник

    

    Зарядное устройство для разных аккумуляторов

    LM317

    Андрей Барышев, г. Выборг

    В данной статье описывается изготовление несложного устройства, предназначенного для безопасной зарядки любых малогабаритных аккумуляторов. Под «безопасностью» здесь подразумевается возможность ручной установки зарядного тока, рекомендованного для каждого конкретного типа аккумулятора, а также автоматическое снижение выходного тока до нулевого значения после того, как аккумулятор зарядится полностью, до своего номинального напряжения. Такое зарядное устройство (ЗУ), конечно, не может служить полноценной заменой «фирменному» ЗУ, которое разрабатывается под конкретный тип аккумулятора и обеспечивает оптимальный режим его заряда. Но его удобно иметь под рукой, если вам часто приходится пользоваться различными типами аккумуляторов, а специальных «зарядок» к этим аккумуляторам нет. ЗУ позволяет заряжать аккумуляторы разных типов, с номинальным напряжением, начиная от 1.2 В («таблетки», «пальчиковые»), батареи сотовых телефонов различных моделей (напряжением 3.7…4.5 В), а также 9 и 12-вольтовые аккумуляторы. Зарядный ток может быть до 500 мА и выше, это зависит только от мощности примененных в схеме элементов.

    Принцип работы

    Как правило, рекомендуемый изготовителем зарядный ток аккумулятора составляет 1/10 от номинальной паспортной емкости СА, которая измеряется в А/ч (ампер/час) и указывается на его корпусе. То есть, например, для аккумулятора емкостью 700 мА/ч оптимальным будет ток заряда 70 мА. Поскольку ток в процессе зарядки будет уменьшаться, его первоначальное значение можно задать немного выше рекомендованного для того, чтобы ускорить процесс зарядки (если это необходимо). Но делать это следует в умеренных пределах, чтобы не допустить сильного нагрева аккумулятора. Максимальное значение начального зарядного тока рекомендуется устанавливать не более (0.2 – 0.3)СА.

    В предлагаемой схеме предусмотрена ручная установка значения этого тока и возможность его визуального отображения и контроля в процессе зарядки при помощи светодиода и небольшого встроенного стрелочного прибора.

    Рисунок 1. Принципиальная схема универсального ЗУ.

    Принципиальная схема ЗУ приведена на рис. 1.

    Постоянное выпрямленное напряжение поступает с выпрямителя Br1 на схему ограничителя тока с узлом индикации, собранном на транзисторах VT1, VT2 и светодиоде VD1. Затем, через стабилизатор напряжения на микросхеме DA1, ток заряда поступает на аккумулятор, подключенный к контактам J1 и J2. При этом регулируемый стабилизатор напряжения на микросхеме (МС) DA1 позволяет изменять напряжение стабилизации схемы при помощи переключателя S1 в соответствии с рабочим напряжением подключаемого аккумулятора. Если аккумулятор разряжен и его напряжение меньше значения напряжения стабилизации схемы, через резистор Р1 начинает течь ток, значение которого будет тем больше, чем сильнее степень разряда аккумулятора. В начале зарядки напряжение на этом резисторе превысит значение 0.6 В, откроется транзистор VT2, а VT1, наоборот, станет закрываться, ограничивая выходной ток схемы. Резистор R2 в цепи базы транзистора VT2 защищает его от перегрузки, а светодиод в его коллекторной цепи служит индикатором и светится в процессе заряда. Когда аккумулятор полностью зарядится и его напряжение сравняется с напряжением стабилизации МС DA1, ток через резистор Р1 упадет и транзистор VT2 закроется, что приведет к погасанию светодиода и полному открытию транзистора VT1. При этом напряжение на заряжаемом аккумуляторе не превысит значения напряжения стабилизации МС DA1 (установленное переключателем S1) и это защитит аккумулятор от перезаряда. Таким образом, переменный резистор Р1 является своеобразным «датчиком тока», изменяя сопротивление которого можно задавать первоначальный максимальный зарядный ток.

    Конструкция и детали

    Схема может питаться от любого малогабаритного трансформатора с напряжением на вторичной обмотке 12 … 20 В. Здесь подойдет, например, трансформатор от «зарядки» для сотовых телефонов старых типов (в «зарядках» новых типов, как правило, применяют импульсные схемы, не имеющие такого понижающего трансформатора). Переменное напряжение с этого трансформатора выпрямляется диодным мостом Br1 и, затем, сглаживается конденсатором C1 (эти элементы также можно взять из той же «зарядки», что и трансформатор). Емкость С1 может быть 470 мкФ и более, напряжение всех конденсаторов в схеме – не ниже 36 В. Диоды выпрямительного моста – любые выпрямительные на ток от 0.5 А (КД226, 1N4007 и др.), можно применить диодный мост типа КЦ403. Транзисторы VT1, VT2 – средней или большой мощности, n-p-n типа (например КТ815, КТ817, КТ805 c любой буквой или импортные аналоги типа PN2222). Допустимый ток коллектора таких транзисторов позволяет устанавливать ток заряда до 1.5 А, но при токах более 200 мА эти транзисторы нужно установить на небольшие радиаторы-теплоотводы. Светодиод может быть любой маломощный, например АЛ307. Микросхема DA1 – регулируемый стабилизатор напряжения LM317 или отечественный аналог КР142ЕН12А (с учетом цоколевки выводов). Такие стабилизаторы позволяют регулировать выходное напряжение в широких пределах – от 1.25 до 35 В. Вместо плавной регулировки выходного напряжения в данном случае удобнее использовать дискретный переключатель на несколько положений, соответствующих номинальным значениям тех аккумуляторов, которые предполагается заряжать этим ЗУ. Например: 1.2 В – 2.4 В – 3.6 В – 3.9 В – 9 В – 12 В. В приведенном здесь варианте ЗУ для этой цели используется малогабаритный галетный переключатель на 6 фиксированных положений. Нужные значения напряжений устанавливаются при настройке подбором резисторов R9 … R14, номиналы которых лежат в пределах от десятков Ом до нескольких кОм.

    Ток заряда, помимо светодиода, можно контролировать при помощи дополнительного стрелочного микроамперметра, включенного на выходе схемы последовательно с нагрузкой (аккумулятором). Для этого подойдет, например, стрелочный индикатор уровня записи старых магнитофонов или какой-нибудь аналогичный. Можно, конечно, обойтись и без него, сделав схему с заданными фиксированными значениями зарядного тока. Тогда вместо переменного резистора Р1 нужно будет применить набор постоянных сопротивлений, переключаемых в зависимости от нужного значения зарядного тока. В этом случае понадобиться и дополнительный переключатель. Но использование отдельного стрелочного прибора для этих целей сделает работу с ЗУ гораздо более удобной, а сам процесс зарядки будет наглядно отображаться на всем ее протяжении. К тому же, полное погасание светодиода VD1 произойдет при снижении тока через него ниже 10-15 мА (в зависимости от типа), а это не будет соответствовать полной зарядке подключенного аккумулятора, через который еще будет протекать небольшой ток. Поэтому лучше ориентироваться по стрелке прибора.

    Зарядное устройство для варианта с МС LM317 собрано на небольшой печатной плате размерами 25 × 30 мм (рис. 2). При использовании других типов МС следует учесть расположение их выводов, оно может отличаться.

    Рисунок 2. Печатная плата ЗУ.

    ЗУ можно собрать в небольшом корпусе подходящих размеров, например – от сетевого адаптера. Расположение деталей в корпусе такого варианта показано на рис. 3.

    Настройка

    Настройку предлагаемой схемы ЗУ начинают с установки необходимых зарядных напряжений на выходе. Для этого к клеммам J1 и J2 вместо аккумулятора подключают сопротивление около 100 Ом (мощностью не менее 5 Вт, лучше проволочное, иначе оно будет сильно греться!). Переключатель S1 установить в крайнее положение, соответствующее подключаемому аккумулятору, например, «1.2 В». Подбирая резистор R9, добиваются напряжения на выходных клеммах на 15 – 20 % больше номинального напряжения заряжаемого аккумулятора. То есть, в данном случае, выставляем на выходе около 1.4 В. Затем переключаем S1 в следующее положение (например «2.4 В») и подбором резистора R10 выставляем на выходе около 2.8 В… И так далее, для всех нужных значений. Максимальное напряжение, которое можно выставить таким образом, определяется максимальным значением выходного напряжения МС DA1, а входное напряжение схемы (на коллекторе VT1) должно превышать выходное не менее чем на 3 В для обеспечения нормального режима стабилизации микросхемы.

    Зарядное устройство для разных аккумуляторов
    Рисунок 3. Расположение деталей в корпусе ЗУ.

    После установки всех необходимых значений выходного напряжения следует откалибровать стрелочный прибор – микроамперметр. Для этого подключаем в схему последовательно с ним тестер или амперметр, а к выходным клеммам – переменное сопротивление (проволочное, большой мощности) порядка 100 Ом и, меняя его значение, добиваемся на выходе максимального значения тока, на который будет рассчитано наше зарядное устройство (например, 300 мА). Вместо переменного здесь можно использовать и наборы постоянных сопротивлений. После чего подбираем шунт – сопротивление, которое припаиваем между контактами нашего стрелочного индикатора. Его надо подобрать так, чтобы при выбранном максимальном токе стрелка установилась в конец шкалы. Это сопротивление (его видно на рис. 3) для примененного стрелочного индикатора типа «М476» составило 1 Ом. В этом случае полное отклонение стрелки к концу шкалы будет соответствовать току заряда 300 мА. Шкалу можно проградуировать – нанести метки, соответствующие токам от 0 до 0.5 А, однако делать это необязательно. На практике вполне достаточно будет определять примерное значение тока.

    Читайте также:  Аккумулятор для телефона alcatel one touch 233

    Работа с ЗУ

    Устанавливаем переключатель S1 в положение, соответствующее номинальному напряжению аккумулятора, который нужно зарядить.

    При подключении к клеммам J1, J2 разряженного аккумулятора загорается светодиод, и стрелка прибора отклоняется к концу шкалы. С помощью переменного резистора Р1 выставляем максимальный ток зарядки для данного аккумулятора. По мере заряда аккумулятора яркость светодиода будет постепенно понижаться, а стрелка прибора приближаться к началу шкалы. На последней стадии заряда светодиод погаснет, но о полном заряде аккумулятора лучше делать вывод по стрелке прибора – когда она будет на «нуле» (то есть в самом начале шкалы). После этого аккумулятор может находиться в зарядном устройстве сколь угодно долго – перезаряда его не произойдет.

    Если у вас «батарея» аккумуляторов (несколько штук, включенных параллельно или последовательно), то каждый из аккумуляторов лучше заряжать отдельно, а не в группе. Потому, что внутренние сопротивления каждого из них хоть незначительно, но отличаются от остальных, а это может привести к перезаряду или недозаряду отдельных элементов батареи, что отрицательно скажется на ее общей емкости. Например, для зарядки 4-х пальчиковых аккумуляторов лучше сделать четыре модуля (платы), подключенных на каждый аккумулятор отдельно. Трансформатор, выпрямитель (диодный мост) и сглаживающий электролитический конденсатор при этом могут быть общими, но рассчитанными на суммарную мощность нагрузки.

    Зарядное устройство для разных аккумуляторов
    Рисунок 4. Внешний вид собранного ЗУ.

    Внешний вид зарядного устройства с органами управления показан на рис. 4.

    Примечание

    Резисторы R3…R8 можно, конечно, заменить одним (номиналом 150 Ом), а остальные контакты переключателя S1 соединить между собой параллельно. Но подключение отдельного резистора на каждый контакт (как показано в схеме рис. 1) позволяет при необходимости произвести более точную настройку на нужное выходное напряжение.

    Источник

    Схемы зарядных устройств с использованием LM317, LM338

    В настоящей статье мы обсудим несколько простых схем зарядных устройств, предназначенных для зарядки аккумуляторов 12 В. Эти устройства очень простые и недорогие по своей конструкции, но при

    этом обладают высокой точностью в поддержании выходного напряжения и тока.
    Все предложенные здесь схемы контролируют выходной ток. Это означает, что поступающий в аккумулятор ток никогда не будет выходить за предварительно определенный, фиксированный уровень.

    Примечание: Если вам нужно зарядное устройство для аккумуляторов с мощным током, то ваши потребности могут быть удовлетворены данными конструкциями устройств зарядки свинцово-кислотных аккумуляторов.

    — Простейшее зарядное устройство для аккумуляторов 12 В

    Как я неоднократно повторял во многих статьях, основным критерием безопасной зарядки аккумулятора является поддержание максимально входного напряжения, величина которого чуть ниже напряжения зарядки, указанного в спецификации аккумулятора, а также поддержание тока на уровне, не вызывающем нагрев аккумулятора.

    При соблюдении этих двух условий вы можете заряжать любой аккумулятор, используя простую, приведённую схему.

    В приведенной, простейшей схеме, выход трансформатора составляет 12 В. Это означает, что пиковое напряжение после выпрямления будет составлять 12 х 1.41 = 16.92 В. Хотя это несколько выше, чем 14 В, уровня полного заряда для аккумулятора, сам аккумулятор поврежден не будет.
    При этом рекомендуется отключать аккумулятор, как только амперметр покажет нулевое значение напряжения.

    Автоматическое отключение: Если вы хотите, чтобы приведенная выше схема обеспечивала автоматическое отключение зарядного устройства по завершению зарядки, вы легко можете добиться этого, добавив на выход биполярный транзистор, как показано ниже:

    В данной схеме мы использовали общий эмиттер биполярного транзистора, к базе которого подключено 15 В. Это означает, что напряжение эмиттера никогда не опустится ниже 14 В.
    А когда на контактах аккумулятора напряжение превысит 14 В, транзистор переходит в состояние обратного смещения, и просто осуществляет автоматический режим отключения. Вы можете изменять значение напряжения 15 В стабилитрона, пока не получите для аккумулятора напряжение примерно в 14.3 В.

    В результате первая схема преобразуется в полностью автоматическую систему зарядки АКБ, которую несложно сделать. Кроме того, поскольку здесь не используется конденсаторный фильтр, то 16 В применяется не в качестве непрерывного напряжения постоянного тока, а скорее, как 100 Гц выключатель. Это снижает нагрузку на аккумулятор, а также предотвращает сульфатирование пластин аккумулятора.

    Почему важен контроль тока?

    Зарядка аккумулятора любого вида может носить критический характер, и поэтому требует уделять ей определенное внимание. Когда сила тока, заряжающего аккумулятор, значимо высокая, контроль тока становится важным фактором.
    Все мы знаем, насколько «умными» являются линейные стабилизаторы LM317, и не удивительно, что эти устройства применяются в большом количестве схем и приложений, требующих точное управление мощностью.

    Представленная ниже схема зарядного устройства для аккумуляторов 12В с контролем тока на базе LM317 показывает, как можно сконфигурировать LM317, используя всего лишь пару сопротивлений и источник питания в виде стандартного диодного моста для обеспечения зарядки аккумулятора 12 В со всей возможной точностью.

    Как это работает?

    Стабилизатор подключается в обычном режиме, когда сопротивления R1 и R2 используются для требуемой регулировки напряжения. Входная мощность подается на LM317 с обычного диодного моста. После фильтрации через конденсатор C1 напряжение составляет примерно 14 вольт. Отфильтрованный постоянный ток с напряжением в 14 В, поступает на входной контакт стабилизатора.
    Контакт регулировки LM317 подключён через фиксированное сопротивление R1 и переменное сопротивление R2. Изменяя величину сопротивления R2 может плавно менять выходное напряжение, подаваемое на аккумулятор. Без подключения сопротивления Rc вся схема вела бы себя, как простой источник питания.

    Однако сопротивление Rc и транзистор BC547 на указанных позициях в схеме, обеспечивают возможность воспринимать ток, поступающий в аккумулятор.
    Пока этот ток остается в требуемых безопасных границах, напряжение остается на заданном уровне. Однако при повышении силы тока стабилизатор снижает напряжение, ограничивая дальнейший рост тока и гарантируя безопасность аккумулятора.

    Формула для расчета Rc:

    R = 0.6/I, где I — максимальная величина требуемого выходного тока.

    Для оптимальной работы LM317 будет требоваться наличие теплоотвода (радиатора).

    Для наблюдения за состоянием зарядки аккумулятора используется подключенный к схеме потенциометр. Как только он покажет нулевое напряжение, аккумулятор можно отсоединить от зарядного устройства и использовать по назначению.

    Принципиальная схема № 1

    Для изготовления описанной выше схемы требуются следующие элементы;
    R1 = 240 Ом
    R2 = 10 кОм с предварительной установкой
    C1 = 1000 мкФ/25 В
    Диоды = 1N4007
    TR1 = 0-14 В, 1 А

    Как подсоединить потенциометр к схеме с LM317 или LM338?

    Следующая схема (2) показывает, как правильно подключить 3-контактный потенциометр к схеме, использующей стабилизатор напряжения LM317 или LM338. Для подключения потенциометра к схеме его центральный контакт и любой боковой контакт соединяется с выходными контактами схемы. Третий контакт потенциометра не используется.

    — Компактное зарядное устройство аккумуляторов 12В на базе LM338

    Интегральная схема LM 338 представляет собой выдающееся устройство, которое может быть применено в неограниченном числе возможных приложений электронных схем. Ниже мы покажем, как использовать ее для получения автоматического зарядного устройства аккумуляторов 12 В.

    Почему именно ИС LM338 ?

    Основной функцией этой ИС является управление напряжением, и при незначительных, простых модификациях она может быть применена для управления током.
    Схема зарядного устройства аккумуляторов идеально подходит для этой ИС и мы намерены изучить одну такую схему для создания автоматического зарядного устройства аккумуляторов 12 В с использованием ИС LM338.
    Обращаясь к принципиальной схеме, мы видим, что вся схема построена вокруг ИС LM301, формирующей схему управления для выполнения отключения.
    LM338 настроена в качестве контроллера силы тока, и как модуль прерывающего выключателя.

    Использование LM338 в качестве регулятора, а операционного усилителя в качестве компаратора

    Вся работа зарядного устройства может быть проанализирована с учетом следующих соображений: LM 301 используется в качестве компаратора и её не инвертированный вход подключается к опорной точке, создаваемой делителем напряжения, состоящего из R2 и R3. Напряжение, снятое с точки соединения R3 и R4, используется для установки выходного напряжения LM338 на уровень, который несколько выше требуемого напряжения зарядки – это примерно 14 вольт.
    Данное напряжение подается на заряжаемый аккумулятор через сопротивление R6, включенное в схему в качестве датчика силы тока.
    Сопротивление в 500 Ом, соединяющее входные и выходные контакты LM338, гарантирует, что даже после того, как схема будет автоматически отключена, аккумулятор будет постепенно заряжаться пока он остается подключенным к выходу схемы.
    Кнопка пуска (start) используется для запуска процесса зарядки после подсоединения к выходу схемы частично разряженного аккумулятора.
    Выбор величины R6 позволяет получать различные скорости зарядки в зависимости от емкости аккумулятора.

    Читайте также:  Hyundai accent размер аккумулятора

    Функционирования схемы (согласно объяснениям +ElectronLover)

    «После того, как заряжаемый аккумулятор будет иметь полный заряд, напряжение на инвертированном входе операционного усилителя станет выше установленного напряжения на неинвертированном входе LM338. Это моментально переключит логику усилителя на низкий уровень».

    Согласно моим предположениям:
    V+ = VCC — 74 мВ
    V- = VCC — Ток зарядки x R6
    VCC= напряжение на контакте 7 усилителя

    Когда аккумулятор зарядится полностью, ток зарядки уменьшается. V- становится выше, чем V+, выход усилителя снижается, включая PNP и LED.
    Кроме того, поскольку R4 через диод будет соединено с заземлением, то R4 становится параллельным R1, снижая фактическое сопротивление на управляющем контакте LM338 до уровня заземления.

    Напряжение (LM338) = 1.2+1.2 x Reff / (R2+R3), где Reff — это сопротивление регулирующего контакта по отношению к заземлению.

    Когда Reff понижается, выходное напряжение LM338 снижается, прекращая процесс зарядки.

    Источник

    Простое зарядное устройство-автомат на LM317 с фиксированным током зарядки и ограничением напряжения

    Режим зарядки по току

    Мне позвонил друг и сказал, что ему нужно зарядное устройство к шуруповерту на дачу. C его слов, аккумуляторов в батарее 10 штук емкостью 1400 мА-час. Значит, требуется заряжать батарею 12 Вольт. Аккумуляторы никель-кадмиевые, для них возможны три режима зарядки:
    «А» — медленный, током 0,1 от ёмкости, время зарядки 14-16 часов;
    «Б» — сверхбыстрый, током от 1 до 4 ёмкости, время порядка 1 часа;
    «В» — ускоренный, током примерно 0,25 от ёмкости, время зарядки 4-6 часов.

    На мой взгляд, вариант «А» слишком медленный, пока батарея зарядится, или желание работать пропадет, или будет пора уезжать.

    Вариант «Б» рискован, велика вероятность взрыва или выхода из строя батареи, для предотвращения этого нужен контроль за температурой каждого элемента, схема должна быть сложной, лучше на микроконтроллере, для него придется писать и отлаживать программу, далеко не все аккумуляторы могут выдержать такой режим, особенно герметичные.

    Остается режим «В» — вечером батарея ставится на зарядку, утром аккумуляторы полностью заряжены, заряд полный, вероятность проблем минимальна.

    Анализ промышленных схем удивил. В них обычно нет стабилизации тока, ограничение происходит за счет сопротивления вторичной обмотки питающего трансформатора. Значит при отклонении сетевого напряжения или не будет полной зарядки, или ток значительно возрастет.
    У нас ток зарядки будет стабилизирован на заданном уровне, что полностью избавляет от указанных недостатков.

    Критерий отключения

    Итак, токовый режим выбран, следующий и самый сложный этап — выбор критерия отключения зарядки.
    Обычно используются:
    • отключение по таймеру,
    • по достижению порогового напряжения,
    • по мизерному падению напряжения при полной зарядке,
    • по температуре батареи.

    Проблема в том, что в одних случаях реализация сложна, в других ненадежна. Приемлемый вариант — пороговое напряжение, но если хотя бы один элемент плохой, напряжение никогда не достигнет порогового уровня. Поэтому я рекомендую при первой зарядке проконтролировать напряжение конкретной батареи.
    В литературе написано, что напряжение полной зарядки на элемент составляет 1,45-1,48 В.

    Индикация режимов

    Для удобства эксплуатации необходима индикация. Я исходил из того, что нужен контроль включения в сеть, исправности устройства, контроль цепи зарядки, состояния аккумуляторной батареи.

    Считаю, что звуковая сигнализация не нужна — она может запиликать ночью, да и зарядное устройство должно работать так, чтобы батарея могла оставаться в зарядном устройстве без вреда. По этой же причине таймер не обязателен.

    Схема и детали

    Для радиолюбительской самоделки, на мой взгляд, нужно, чтобы конструкция была:
    — простая,
    — недорогая,
    — из доступных деталей,
    — плата должна быть с простой разводкой.

    Желательно использовать то, что есть под рукой , что не надо искать по рынкам и магазинам. Для зарядок есть специальная микросхема L200C, но мне было интереснее применить КР142ЕН12 (LM317).

    Трансформатор нашелся с вторичной обмоткой на 18 Вольт. Чтобы убедиться в его пригодности, было измерено напряжение под нагрузкой 300 мА, оно оказалось 16 Вольт. Это нормально, т.к. допустимо падение на 10% .

    Резисторы применены в основном SMD, транзистор КТ503 можно заменить практически любым той же проводимости.

    Для индикации я использовал сверхъяркие светодиоды неизвестной марки, поскольку они отлично светятся уже при токе 1 мА.
    Можно ставить любые светодиоды, но придется подобрать резисторы R6, R9 для желаемой их яркости.

    Настройка зарядного устройства

    Без нагрузки подстройкой R5 убедиться, что напряжение на выходе плавно регулируется около значения в 14 Вольт. Подгонкой R7, R8 добиться зажигания D6 при напряжении 14…14,2 Вольт. На печатной плате предусмотрено место для подключения SMD резисторов параллельно R7, R8 для их подгонки. При указанных на схеме номиналах, подстройка не потребовалась.

    Затем подстройкой R5 установить на выходе напряжение 14,4…14,5 Вольт. Подключить нагрузку, например, 20 Ом и убедиться, что ток в нагрузке примерно 300 мА. Закоротить ненадолго выход и убедиться, что оба диода гаснут, а предохранитель не перегорает.
    Без нагрузки должны светиться оба светодиода, при подключении аккумулятора красный светодиод гаснет.
    Если цепь заряда оборвана или аккумулятор заряжен полностью, красный светодиод не гаснет.

    Подключить аккумулятор, убедиться, что красный светодиод гаснет и зарядка проходит нормально. При приближении к полной зарядке красный диод должен загореться. Проконтролировать напряжение на полностью заряженной батарее и, при необходимости, подкорректировать резистором R5 выходное напряжение. Если напряжение заметно отличается от нормы, батарея неисправна. Надо проконтролировать состояние всех элементов батареи и заменить неисправный.

    Выбор радиатора

    Размеры теплоотвода зависят от разницы между входным и выходным напряжением и тока стабилизации, поэтому желательно не завышать напряжение вторичной обмотки трансформатора, излишнее напряжение приводит к перегреву. На фото показан настроечный радиатор, он будет заменен на пластину «по месту».
    Корпус не делался т. к. это проблема заказчика. При его изготовлении надо обеспечить хорошую вентиляцию.

    Заключение

    Устройство позволяет изменять зарядный ток до 1,5 А. Надо следить, чтобы тепловая мощность КР142ЕН12 (LM317) не была превышена. Напряжение аккумуляторной батареи может быть 6, 12, 18, 24 Вольта. При этом может понадобиться замена некоторых резисторов и дополнительная настройка.

    Для изменения зарядного тока при одном напряжении удобно подключать шунты параллельно R2 через переключатель.

    При настройке и испытаниях заряжалась батарея из десяти никель-кадмиевых элементов емкостью 7 А-час. Время зарядки пропорционально увеличилось, но батарея зарядилась полностью.

    Источник

    Зарядное на LM 317T

    Доброго времени суток.
    В нашем быту множество всяческих устройств, которые могут работать автономно, без 220.
    И в каждом из них есть источники питания — батарейки или акумуляторы. И всех их надо подзаряжать.
    Благое дело, все комплектуются зарядными от сети 220 В или от сети авто.
    Но бывает случаи — зарядное накрылось, сломался разьем, просто забыли/ потеряли. И хорошо, если это просто микроюсб от мобильника, можно попросить у имеющих. Но может случится, что имеющих не окажется, либо они жадные, либо им самим надо.
    А если акамулятор/ устройство, которое надо питать имеет нестандартное значение на 6,9,12,14 вольт?
    Предлагаю на рассмотрение простейшее универсальное зарядное устройство.
    Основой его будет извеснейшая микросхема Lm 317, в даном случае с индексом «Т».
    Являет собой регулируемый стабилизатор напряжения или тока, от схемы включения зависит.
    Параметры
    Регулировка напряжени от 1.2 до 37 В.
    Ток до 1.5А
    Защита от перегрева
    Защита от КЗ.
    Ограничение по току
    Входное напряжение для нее должно быть минимум на 2 В больше выходного и не превышать 40 В. По простому, микросхема преобразует лишнее напряжение (или ток) = мощьность в тепло.
    Если используется достаточно массивный радиатор, способный снижать температуру “язычка” ИС до +60º С, то ИС может рассеивать мощность до 20 Вт.

    Пример: входное напряжение ИС составляет 24 В, а выходное – 9 В, разница составляет 15 В. Если ток, потребляемый от стабилизатора составляет 0,1 А, то рассеиваемая мощность составит: 15 В х 0,1 А = 1,5 Вт. В этом случае, небольшой радиатор ИС не помешает.
    Какие компоненты надо.
    Микросхема — Конденсаторы от бросков и помех
    Два сопротивления, постоянное и переменный (крутилка) для задания напряжения или тока.
    Желательно припаять диод для защиты от помех и вбросов сети.
    Вот схема в картинках регулируемого блока питания.

    Если откинуть Трансформатор с диодным мостом, сглаживающий конденсатор и всякие вилки-предохранители, останется то, о чем пишу.

    Источник