Меню

Запуск шим контроллера блока питания

Запуск шим контроллера блока питания

Все верно, я об этом еще во втором посте написал. Запуска без обратной связи не будет в подавляющем большинстве моделей контроллеров. А если контроллер имеет функцию soft start, то в 100% случаев. Ибо это давно уже не просто генератор меандра с управляемым коэффициентом заполнения, а целый набор хоть и примитивной, но мать ее аппаратной логики, заточенной под автономную работу в пределах одного чипа.

ДОБАВЛЕНО 16/09/2017 05:56

cyberbob, если не веришь, качай даташиты и смотри внимательно описания условий запуска и блок-схему начинки контроллера.

А причина такого незапуска с точки зрения инженера-проектировщика контроллера очень простая: отсутствие обратной связи по напряжению говорить может только об обрыве этой самой обратной связи, а значит запуск может привести к превышению заданного напряжения в бесконтрольном режиме и повреждению потребителей => флаг запрета запуска, перезапуск/блокировка.

Из практики миллион примеров, типовуха: оптопара обратной связи по напряжению выходит из строя и контроллер перестает работать.

cyberbob

cyberbob, ШИМ контроллер TL494 вышел в 1983 году. Еще вопросы?

ДОБАВЛЕНО 16/09/2017 06:31

cyberbob писал:
Если не понимаешь о ,чём речь,не пиши чушь.

Вот тебе пример чуши, которую написал ты:

cyberbob писал:
Обратных связей у ШИМ контроллера может быть множество

Нет, как правило, всего одна — по напряжению, и очень редко — по току.

cyberbob писал:
в основном они все пороговые

Пороговые уровни защиты не являются в прямом смысле обратной связью. Во всяком случае, инженеры-проектировщики не называют их обратной связью (feedback). Даже в твоем примере с TL494 ног обратной связи всего одна штука.

cyberbob писал:
Ты не включал ни разу сварочный аппарат

А ты, похоже, ничего в жизни, кроме сварочных аппаратов, не включал. Перечитай мой пост о причинах такого поведения контроллеров. В нагрузке сварочника просто сжигать нечего, а вот в нагрузке БП бытовой техники — еще как есть что жечь, потому не включится, так запроектировано.

cyberbob писал:
Речь идёт о возможности проверки работы ШИМа без выходного ключа(ключей),прочитай первый пост в теме и успокойся вместе с аппаратной логикой.

На что спорим, что у автора темы не со сварочником проблема?

cyberbob писал:
И научись отличать следящую обратную связь работающую в определённом диапазоне напряжений и пороговую ОС работающую на отключение ШИМ в случае аварийного режима.

Научись не умничать, когда в вопросе поверхностно два по пять — не будешь выглядеть идиотом в глазах окружающих, который спорит до усрачки.

cyberbob

Alex N., И,что дальше?Она работает без обратных связей и смонтирован на кристалле из 3ёх транзисторов?Тем не менее он до сих пор почему-то используется в современных автомобильных сабвуферах.ещё раз повторяю,вся логика ШИМ учитывает алгоритм работы всех обратных связей.Следящая ОС по напряжению может иметь порог от превышения напряжения на выходе,а если напряжение на выходе снизилось ниже диапазона регулирования?Что это,аварийный режим?А если информация с токового датчика не показывает перегрузку по току ШИМ отключится в таком случае?Вот в этом случае и нужна как ты выразился аппаратная логика,она контролирует сигналы всех обратных связей и только в случае совпадения ряда факторов отключит ШИМ.Кстати,сварочники всегда именно так и проверяются без дорогостоящих ИГБТ транзисторов,дабы не спалить их и ничего ШИМ работает,не смотря на отсутствие напряжения на выходе.

ДОБАВЛЕНО 16/09/2017 00:46

jonster, Пивка ещё хряпни если TL494 у тебя стабилизатор.

cyberbob, ты русский язык понимаешь, нет? Я тебе черным по белому пишу, что типовая неисправность бытовых БП — выход из строя оптопары обратной связи по напряжению, из-за чего ШИМ контроллер не работает. И это абсолютно нормальное типовое поведение для большинства контроллеров в бытовых БП из расчета на защиту потребителя от перенапряжения. На каком мне языке написать, чтобы ты это понял?

Если что, потребитель — это не тот потребитель, который купил блок питания, а в электротехническом смысле потребитель питания.

Сварочный аппарат — это частный случай импульсного источника питания, где напряжение на выходе не критично, важен ток. А общий случай — это все те миллионы самых разных блоков питания бытовой и не очень электроники, в которых выход за допустимые пределы напряжения ведет к выгоранию потребителя.

cyberbob

ДОБАВЛЕНО 16/09/2017 01:05

и вообще,прочти первый пост темы. можно ли проверить ШИМ без силового ключа-можно,если все условия соблюдены,ШИМ стартанёт,это будет видно на экране осциллографа.

cyberbob, перенапряжения на максимальном коэффициенте заполнения не может не быть. Типовые импульсные БП изначально рассчитываются с условием компенсации максимальной нагрузки (просадки) по выходу с запасом 10-20% сверху. По факту это означает, что, к примеру, при обрыве обратной связи по напряжению в БП на ном. 12 В, он выдаст 20-25 В при средне-номинальной нагрузке на выходе. Это гарантированно спалит потребителя. А потому все нормальные контроллеры при обрыве обратной связи просто выключаются. И это касается не только AC-DC контроллеров, но и DC-DC тоже.

ДОБАВЛЕНО 16/09/2017 07:21

И к слову, многие современные ШИМ контроллеры еще и имеют функцию soft start для защиты потребителя от стартовых переходных процессов. Суть этой функции в том, что после подачи питания (и сигнала включения, если предусмотрено), контроллер начинает нежно подергивать транзисторами, поглядывая за плавным ростом напряжения на выходе, и если вдруг роста не происходит, то процесс запуска отменяется и начинается либо по новой, либо вообще останавливается до перезапуска по питанию (или по триггеру включения).

cyberbob

Alex N., А при каком коэффициенте заполнения произойдёт перенапряжение?А ,чем отличается АС-DC преобразователь от DC-DC?А как же режим снижения частоты (пачкование)при КЗ в нагрузке?А если в этот момент замкнуть токовый датчик и снять аварийный сигнал ОС по току?А как же начальный старт ШИМа,когда происходить подъём выходного напряжения и сигнала с ОС ещё нет,или ты думаешь он приходит мгновенно?Пинцет есть?Замкни светодиод,желательно на холостом ходу.

cyberbob, по порядку:
Я написал, «на максимальном» гарантированно будет завышено выходное напряжение.
Наличием гальванической развязки в виде трансформатора и оптопары в AC-DC.
А причем тут пропуск тактов? Это из другой оперы, еще одна линия защиты. Да и она чаще не от перегрузки по току, а от наоборот слишком низкой нагрузки и для экономии энергии (повышения КПД). От перегрузки по току чаще встроена защита на полное выключение.
Зависит от схемы включения и модели контроллера.
Электроны перемещаются со скоростью света, буквально. Сигнал ОС есть всегда, сразу после первого же такта ШИМ контроллера.
Я таким вандализмом не занимаюсь.

cyberbob

Alex N., То есть DC\DC не могут иметь трансформатора и соответственно гальванической развязки,а AC\DC после моста это не DC\DC?В случае ХХ ШИМ снижает частоту,ноутбучный БП тихо «пищит» в звуковом диапазоне,а вот при перегрузке по току ,КЗ этого не достаточно и переходит в старт-стопный режим(цикает)как говорят клиенты).Электроны «летят»со скоростью света только в вакууме,да и то не факт..)))После того как я замкнул светодиод и разлетелся нахрен БП я тоже этим вандализмом больше не занимаюсь.Однако выше я писАл,что не все контроллеры можно проверить таким способом и не утверждал это безаппеляционно.Но от части наиболее распространённые варианты почему-то работают.

ДОБАВЛЕНО 16/09/2017 02:02

«»»»перенапряжения на максимальном коэффициенте заполнения не может не быть»»»». То может,то не может.

ДОБАВЛЕНО 16/09/2017 02:08

Про коэффициент заполнения извиняюсь,вторую частицу «не»..не заметил.

ДОБАВЛЕНО 16/09/2017 02:12

При КЗ на выходе полное отключение невозможно,как ШИМ будет «видеть» КЗ если он полностью остановлен?Именно старт-стопный режим.

cyberbob, короче, импульсные БП по сути своей все одинаковые, но есть две разных группы топологий: изолированная с гальванической развязкой (Push-Pull, Half-Bridge, Full-Bridge, Flyback и другие) и не изолированная (Buck, Boost, Buck-Boost, SEPIC, Inverting и другие). Первая — это, соответственно, AC-DC, вторая — DC-DC, но это условность. А конкретно по топологиям пусть Гугл рассказывает.
Снижают частоту до звуковой только плохие БП на основе так себе контроллеров. В любом случае, снижение частоты и пропуск тактов никакого отношения к защите в этом случае не имеют. «Цикание» — это цикличное выключение и попытки включения контроллера, а не снижение частоты или пропуск тактов. Два совершенно разных режима работы, ничего общего.
Ой-ой-ой, какие мы умные, про вакуум вспомнили. Только есть один нюанс: в данном случае, из-за того, что работает электрическое поле, самому электрону не нужно бежать из точки А в точку Б, чтобы появился результат, ему достаточно немного сдвинуться на одном конце, чтобы на другом конце произошло аналогичное смещение. И это взаимодействие электрического поля происходит с околосветовой скоростью, то есть в случае с нашими цепями, можно считать, что почти мгновенно.
Вандализмом вообще заниматься смысла нет никогда, когда есть мозги, измерительно-диагностическое оборудование и документация. Слишком дорого обходиться тыкать наугад, да и ремонт затягивается от всех этих сплошных переборов без методики ремонта.
Режим выключения и попыток включения вовсе не является обязательным. Есть еще как минимум два варианта: 1 — контроллер может быть спроектирован так, чтобы не пытаться включаться после флага по КЗ до перезапуска по питанию, 2 — контроллер может быть сделан так, чтобы не пытаться включаться вообще без конкретного флага на перезапуск либо на специальную ногу, либо на ногу включения путем переключения логических уровней вниз-вверх.

Наплели, две страницы и всё ни о чем. Не нужна шиму нагрузка. При таких напряжениях и токах на каких работает ШИМ контроллер глупо говорит о пробое. Единственная верная мысль на всех двух станицах что не будет он работать от пускового напряжения, нужно от внешнего стабилизатора запитывать. Обратная связь легко имитируется обычным переменным резистором включенным вместо выхода оптопары. Когда будешь крутить резистор, будет меняться скважность на выходе. Скважность до упора у современных ШИМ не доходит. То есть в постоянку не превратится.

Ну я тогда тоже сумничаю и скажу, что потенциометр нужно включать не просто вместо выхода оптопары, а по схеме резисторного делителя, потому что вход ОС, как правило, не подтянут ни к чему, и один из концов потенциометра должен быть запитан некоторым напряжением, а другой — сидеть на земле (бегунок, естественно, и есть фидбэк). А еще у ноги ОС есть всегда некоторый уровень опорного напряжения (там компаратор внутри), к которому контроллер стремится, и его нужно знать перед выполнением всех этих операций, равно как и пределы напряжения по ноге. Выкрутив потенциометр до упора в плюс, можно сжечь контроллер, а до упора в минус — просто выключить его.

И такой трюк сработает не со всеми контроллерами. Для некоторых критично видеть пульсации тока по ноге current sense для инициализации soft start.

Alex N., Я имел ввиду в действующую схему резистор включить вместо оптопары, а не в макет на столе. В действующей схеме обычно оптопара тянет вниз, а резистор вверх.

Lenchik, так да, вопросов нет.
Остается только изначальный вопрос в целесообразности всего этого. Макет на столе городить довольно трудоемко, особенно если контроллер навороченный от TI с кучей настроек и компенсаций внешними элементами, а в действующей схеме проще метром/осциллом по ногам пройтись и сверить с даташитом по условиям запуска, поставить заведомо исправный транзистор, чем пытаться запускать без транзистора, нагромождая навесным внешние питание для VCC (а то и не одно, еще для UVLO), потенциометр для FB, генератор пилы для CS. И чем сложнее контроллер, тем больше такого нагромождения получится.

cyberbob

Lenchik, А ты то чё наплёл?Ты тему то читал?Что такое нагрузка ШИМа?Отключили «нагрузку»ШИМа,убрали полевик,какой ток в таком случае буде потребляться самой микросхемой со всей её логикой выполненной как правило по КМОП технологии?

ДОБАВЛЕНО 16/09/2017 15:01

Alex N., Начитался гугла?И то хорошо,если учесть,что сейчас на форумах доминируют ламеры и клиенты,то подобные споры возникают крайне редко,почти не возникают можно сказать.А жаль. в спорах рождается истина.

cyberbob, А какой ток потребляет по твоему затвор полевого транзистора на такой относительно низкой частоте как 60 кГц? Да по сути никакой. Емкость затвора то же ничтожна. Шимка что так, что так работает почти без нагрузки. Рядом с ней стабилитрон стоит, так что пусковыми резисторами напряжение выше допустимого однозначно не поднять.

cyberbob

Lenchik, А вот тут не соглашусь,в современных БП,например в PFC уже ставят минимум 12 амперные ключи и 25 ампер уже не редкость,а скорее норма,в таком случае,ток на перезаряд затворной ёмкости уже довольно значителен.Потому выходной драйвер основной источник энергопотребления ШИМа,в таком случае узел начального питания просто не «потянет» ШИМ.Я не притягиваю за уши методику проверки ШИМа при помощи осциллографа,это уже было на мониторе,но иногда смотрю работу контроллера без силового ключа(ключей) дабы их не спалить.Особенно актуально это в сварочных аппаратах в связи с дороговизной ИГБТ транзисторов.

ДОБАВЛЕНО 16/09/2017 15:30

Lenchik писал:
cyberbob,, так что пусковыми резисторами напряжение выше допустимого однозначно не поднять.

А кто с этим спорит?

cyberbob, начитался даташитов и намучился с ремонтом импульсных источников питания.

ДОБАВЛЕНО 16/09/2017 21:39

Lenchik писал:
А какой ток потребляет по твоему затвор полевого транзистора на такой относительно низкой частоте как 60 кГц? Да по сути никакой. Емкость затвора то же ничтожна. Шимка что так, что так работает почти без нагрузки.

Точняк. Чисто теоретически в идеале, нулевой ток — он же изолированный. Фактический — почти никакой, в даташитах это даже не как ток проходит, а как заряд затвора в нанокулонах (особо дотошные могут воспользоваться формулой и умножить на частоту, чтобы получить необходимый рабочий ток затвора, 1 Кл = 1 А*с).
Ток потребления самого контроллера заведомо выше — до десятков микроампер.

Читайте также:  Блок питания монитора самсунг 920

cyberbob, Так первоначальный вопрос и был, можно ли включать без нагрузки, то есть без силового ключа.

Я и ответил, можно, ничего не сгорит, а рабочий режим ШИМ контролера при желании можно обеспечить.

cyberbob

А всю тему почитать не судьба?
При подаче только питания, может, будут, может, не будут. Будут или не будут — расписано на предыдущих страницах. А еще в даташитах на эти контроллеры приведены исчерпывающие условия запуска и блокировки запуска.
А если они будут неправильно формы — то это точно под замену.

Alex N., При отсутствии обратной связи скважность будет максимальная для данной микросхемы. Импульсы в любом случае будут, хотя бы на период старта, даже если защита сработает.

cyberbob

Период старта может быть однократным, а дальше срабатывает латч и все, до передергивания по питанию или ноге включения. На стенде при подключенном цифровом осцилле с памятью будет видно. Какова вероятность, что у автора темы, если он задает такие вопросы, есть DSO? Правильно, почти никакая. Ничего он там советским осциллом не успеет увидеть без полной обвязки или ее эмуляции внешними источниками по даташиту. Более того, сам факт попытки запуска контроллера вовсе не говорит за его работоспособность, а лишь о том, что он не сгорел насквозь. Я думаю, не нужно объяснять, что есть и другие проблемы с такими контроллерами. => Проверка вне схемы бессмысленна.

Источник



Что такое шим контроллер, как он устроен и работает, виды и схемы

Раньше для питания устройств использовали схему с понижающим (или повышающим, или многообмоточным) трансформатором, диодным мостом, фильтром для сглаживания пульсаций. Для стабилизации использовались линейные схемы на параметрических или интегральных стабилизаторах. Главным недостатком был низкий КПД и большой вес и габариты мощных блоков питания.

Во всех современных бытовых электроприборах используются импульсные блоки питания (ИБП, ИИП – одно и то же). В большинстве таких блоков питания в качестве основного управляющего элемента используют ШИМ-контроллер. В этой статье мы рассмотрим его устройство и назначение.

Содержание статьи

ШИМ-контроллер что это такое и для чего нужен

Определение и основные преимущества

ШИМ-контроллер – это устройство, которое содержит в себе ряд схемотехнических решений для управления силовыми ключами. При этом управление происходит на основании информации полученной по цепям обратной связи по току или напряжению – это нужно для стабилизации выходных параметров.

Иногда, ШИМ-контроллерами называются генераторы ШИМ-импульсов, но в них нет возможности подключить цепи обратной связи, и они подходят скорее для регуляторов напряжения, чем для обеспечения стабильного питания приборов. Однако в литературе и интернет-порталах часто можно встретить названия типа «ШИМ-контроллер, на NE555» или «… на ардуино» — это не совсем верно по вышеуказанным причинам, они могут использоваться только для регулирования выходных параметров, но не для их стабилизации.

Широтно-импульсная модуляция

Аббревиатура «ШИМ» расшифровывается, как широтно-импульсная модуляция – это один из методов модуляции сигнала не за счёт величины выходного напряжения, а именно за счёт изменения ширины импульсов. В результате формируется моделируемый сигнал за счёт интегрирования импульсов с помощью C- или LC-цепей, другими словами – за счёт сглаживания.

Вывод: ШИМ-контроллер – устройство, которое управляет ШИМ-сигналом.

Основные характеристики

Для ШИМ-сигнала можно выделить две основных характеристики:

1. Частота импульсов – от этого зависит рабочая частота преобразователя. Типовыми являются частоты выше 20 кГц, фактически 40-100 кГц.

2. Коэффициент заполнения и скважность. Это две смежных величины характеризующие одно и то же. Коэффициент заполнения может обозначаться буквой S, а скважность D.

где T – это период сигнала,

Коэффициент заполнения – часть времени от периода, когда на выходе контроллера формируется управляющий сигнал, всегда меньше 1. Скважность всегда больше 1. При частоте 100 кГц период сигнала равен 10 мкс, а ключ открыт в течении 2.5 мкс, то коэффициент заполнения – 0.25, в процентах – 25%, а скважность равна 4.

Коэффициент заполнения

Также важно учитывать внутреннюю конструкцию и предназначение по количеству управляемых ключей.

Отличия от линейных схем потери

Как уже было сказано, преимуществом перед линейными схемами у импульсных источников питания является высокий КПД (больше 80, а в настоящее время и 90%). Это обусловлено следующим:

Допустим сглаженное напряжение после диодного моста равно 15В, ток нагрузки 1А. Вам нужно получить стабилизированное питание напряжением 12В. Фактически линейный стабилизатор представляет собой сопротивление, которое изменяет свою величину в зависимости от величины входного напряжения для получения номинального выходного – с небольшими отклонениями (доли вольт) при изменениях входного (единицы и десятки вольт).

На резисторах, как известно, при протекании через них электрического тока выделяется тепловая энергия. На линейных стабилизаторах происходит такой же процесс. Выделенная мощность будет равна:

Так как в рассмотренном примере ток нагрузки 1А, входное напряжение 15В, а выходное – 12В, то рассчитаем потери и КПД линейного стабилизатора (КРЕНка или типа L7812):

Pпотерь=(15В-12В)*1А = 3В*1А = 3Вт

Тогда КПД равен:

Если же входное напряжение вырастит до 20В, например, то КПД снизится:

Основной особенностью ШИМ является то, что силовой элемент, пусть это будет MOSFET, либо открыт полностью, либо полностью закрыт и ток через него не протекает. Поэтому потери КПД обусловлены только потерями проводимости

И потерями переключения. Это тема для отдельной статьи, поэтому не будем останавливаться на этом вопросе. Также потери блока питания возникают в выпрямительных диодах (входных и выходных, если блок питания сетевой), а также на проводниках, пассивных элементах фильтра и прочем.

Общая структура

Рассмотрим общую структуру абстрактного ШИМ-контроллер. Я употребил слово «абстрактного» потому что, в общем, все они похожи, но их функционал все же может отличаться в определенных пределах, соответственно будет отличаться структура и выводы.

Внутри ШИМ-контроллера, как и в любой другой ИМС находится полупроводниковый кристалл, на котором расположена сложная схема. В состав контроллера входят следующие функциональные узлы:

1. Генератор импульсов.

2. Источник опорного напряжения. (ИОН)

3. Цепи для обработки сигнала обратной связи (ОС): усилитель ошибки, компаратор.

4. Генератор импульсов управляет встроенными транзисторами, которые предназначены для управления силовым ключом или ключами.

Количество силовых ключей, которыми может управлять ШИМ-контроллер, зависит от его предназначения. Простейшие обратноходовые преобразователи в своей схеме содержат 1 силовой ключ, полумостовые схемы (push-pull) — 2 ключа, мостовые — 4.

ШИМ-контроллер

От типа ключа также зависит выбор ШИМ-контроллера. Для управления биполярным транзистором основным требованием является, чтобы выходной ток управления ШИМ-контроллера не был ниже, чем ток транзистора деленный на H21э, чтобы его включать и отключать достаточно просто подавать импульсы на базу. В этом случае подойдет большинство контроллеров.

В случае управления ключами с изолированным затвором (MOSFET, IGBT) есть определенные нюансы. Для быстрого отключения нужно разрядить емкость затвора. Для этого выходную цепь затвора выполняют из двух ключей — один из них соединен с источником питания с выводом ИМС и управляет затвором (включает транзистор), а второй установлен между выходом и землей, когда нужно отключить силовой транзистор — первый ключ закрывается, второй открывается, замыкая затвор на землю и разряжает его.

US3842B

В некоторых ШИМ-контроллрах для маломощных блоков питания (до 50 Вт) силовые ключи встроенные и внешние не используются. Пример — 5l0830R

Если говорить обобщенно, то ШИМ-контроллер можно представить в виде компаратора, на один вход которого подан сигнал с цепи обратной связи (ОС), а на второй вход пилообразный изменяющийся сигнал. Когда пилообразный сигнал достигает и превышает по величине сигнал ОС, то на выходе компаратора возникает импульс.

При изменениях сигналов на входах ширина импульсов меняется. Допустим, что вы подключили мощный потребитель к блоку питания, и на его выходе напряжение просело, тогда напряжение ОС также упадет. Тогда в большей части периода будет наблюдаться превышение пилообразного сигнала над сигналом ОС, и ширина импульсов увеличится. Всё вышесказанное в определенной мере отражено на графиках.

Пилообразный сигнал

Рабочая частота генератора устанавливается с помощью частотозадающей RC-цепи.

Рабочая частота генератора устанавливается с помощью частотозадающей RC-цепи

Функциональная схема ШИМ-контроллера на примере TL494, мы рассмотрим его позже подробнее. Назначение выводов и отдельных узлов описано в следующем подзаголовке.

ШИМ-контроллер TL494

Назначение выводов

ШИМ-контроллеры выпускаются в различных корпусах. Выводов у них может быть от трех до 16 и более. Соответственно от количества выводов, а вернее их назначения зависит гибкость использования контроллера. Например, в популярной микросхеме UC3843 — чаще всего 8 выводов, а в еще более культовой — TL494 — 16 или 24.

Поэтому рассмотрим типовые названия выводов и их назначение:

GND – общий вывод соединяется с минусом схемы или с землей.

Uc (Vc) – питание микросхемы.

Ucc (Vss, Vcc) – Вывод для контроля питания. Если питание проседает, то возникает вероятность того, что силовые ключи не будут полностью открываться, а из-за этого начнут греться и сгорят. Вывод нужен чтобы отключить контроллер в подобной ситуации.

OUT – как видно из название — это выход контроллера. Здесь выводятся управляющий ШИМ-сигнал для силовых ключей. Выше мы упомянули, что в преобразователях разных топологий имеют разное количество ключей. Название вывода может отличаться в зависимости от этого. Например, в контроллерах для полумостовых схем он может называться HO и LO для верхнего и нижнего ключа соответственно. При этом и выход может быть однотактный и двухтактный (с одним ключем и двумя) — для управления полевыми транзисторами (пояснение см. выше). Но и сам контроллер может быть для однотактной и двухтактной схемы — с одним и двумя выходными выводами соответственно. Это важно.

Vref – опорное напряжения, обычно соединяется с землей через небольшой конденсатор (единицы микрофарад).

ILIM – сигнал с датчика тока. Нужен для ограничения выходного тока. Соединяется с цепями обратной связи.

ILIMREF – на ней устанавливается напряжение срабатывания ножки ILIM

SS – формируется сигнал для мягкого старта контроллера. Предназначен для плавного выхода на номинальный режим. Между ней и общим проводом для обеспечения плавного пуска устанавливают конденсатор.

RtCt – выводы для подключения времязадающей RC-цепи, которая определяет частоту ШИМ-сигнала.

CLOCK – тактовые импульсы для синхронизации нескольких ШИМ-контроллеров между собой тогда RC-цепь подключается только к ведущему контроллеру, а RT ведомых с Vref, CT ведомых соединяюся с общим.

RAMP – это ввод сравнения. На него подают пилообразное напряжение, например с вывода Ct, Когда оно превышает значение напряжение на выходе усиления ошибки, то на OUT появляется отключающий импульс — основа для ШИМ-регулирования.

INV и NONINV – это инвертирующий и неинвертирующий входы компаратора, на котором построен усилитель ошибки. Простыми словами: чем больше напряжении на INV — тем длинее выходные импульсы и наоборот. К нему подключается сигнал с делителя напряжения в цепи обратной связи с выхода. Тогда неинвертирующий вход NONINV подключают к общему проводу — GND.

EAOUT или Error Amplifier Output рус. Выход усилителя ошибки. Не смотря на то, что есть входы усилителя ошибки и с их помощью, в принципе можно регулировать выходные параметры, но контроллер довольно медленно на это реагирует. В результате медленной реакции может возникнуть возбуждение схемы, и она выйдет из строя. Поэтому с этого вывода через частотозависимые цепи подают сигналы на INV. Это еще называется частотной коррекцией усилителя ошибки.

Пример испрользования ШИМ-контроллера

Примеры реальных устройств

Для закрепления информации давайте рассмотрим несколько примеров типовых ШИМ-контроллеров и их схем включения. Мы будем делать это на примере двух микросхем:

TL494 (её аналоги: KA7500B, КР1114ЕУ4, Sharp IR3M02, UA494, Fujitsu MB3759);

Они активно используются в блоках питания для компьютеров. Кстати, эти блоки питания обладают немалой мощностью (100 Вт и больше по 12В шине). Часто используются в качестве донора для переделки под лабораторный блок питания или универсальное мощное зарядное устройство, например для автомобильных аккумуляторов.

TL494 – обзор

Начнем с 494-й микросхемы. Её технические характеристики:

Характеристики TL494

Характеристики TL494

В этом конкретном примере можно видеть большинство описанных выше выводов:

1. Неинвертирующий вход первого компаратора ошибки

2. Инвертирующий вход первого компаратора ошибки

3. Вход обратной связи

4. Вход регулировки мертвого времени

5. Вывод для подключения внешнего времязадающего конденсатора

6. Вывод для подключения времязадающего резистора

7. Общий вывод микросхемы, минус питания

8. Вывод коллектора первого выходного транзистора

9. Вывод эмиттера первого выходного транзистора

10. Вывод эмиттера второго выходного транзистора

11. Вывод коллектора второго выходного транзистора

12. Вход подачи питающего напряжения

13. Вход выбора однотактного или же двухтактного режима работы микросхемы

14. Вывод встроенного источника опорного напряжения 5 вольт

15. Инвертирующий вход второго компаратора ошибки

16. Неинвертирующий вход второго компаратора ошибки

На рисунке ниже изображен пример компьютерного блока питания на этой микросхеме.

Пример компьютерного блока питания на TL494

UC3843 — обзор

Другой популярной ШИМ является микросхема 3843 – на ней также строятся компьютерные и не только блоки питания. Её цоколевка расположена ниже, как вы можете наблюдать, у неё всего 8 выводов, но функции она выполняет те же, что и предыдущая ИМС.

Бывает UC3843 и в 14-ногом корпусе, но встречаются гораздо реже. Обратите внимание на маркировку – дополнительные выводы либо дублируются, либо незадействованы (NC).

UC3843

Расшифруем назначением выводов:

1. Вход компаратора (усилителя ошибки).

2. Вход напряжения обратной связи. Это напряжение сравнивается с опорным внутри ИМС.

3. Датчик тока. Подключается к резистору стоящему в между силовым транзистором и общим проводом. Нужен для защиты от перегрузок.

4. Времязадающая RC-цепь. С её помощью задаётся рабочая частота ИМС.

6. Выход. Управляющее напряжение. Подключается к затвору транзистора, здесь двухтактный выходной каскад для управления однотактным преобразователем (одним транзистором), что можно наблюдать на рисунке ниже.

7. Напряжение питания микросхемы.

8. Выход источника опорного напряжения (5В, 50 мА).

Её внутренняя структура.

Внутренняя структура UC3843

Можно убедится, что во многом похожа и на другие ШИМ-контроллеры.

Простая схема сетевого источника питания на UC3842

ШИМ со встроенным силовым ключем

ШИМ-контроллеры со встроенным силовым ключем используются как в трансформаторных импульсных блоках питания, так и в бестрансформаторных DC-DC преобразователях понижающего (Buck), повышающего (Boost) и понижающее-повышающего (Buck-Boost) типов.

Читайте также:  Блок питания для sip телефонов kx a423ce

Пожалуй, одним из наиболее удачных примеров будет распространенная микросхема LM2596, на базе которого на рынке можно найти массу таких преобразователей, как изображен ниже.

ШИМ со встроенным силовым ключем

Такая микросхема содержит в себе все вышеописанные технические решения, а также вместо выходного каскада на маломощных ключах в ней встроен силовой ключ, способный выдержать ток до 3А. Ниже изображена внутренняя структура такого преобразователя.

Можно убедиться, что в сущности особых отличий от рассмотренных в ней нет.

А вот пример трансформаторного блока питания для светодиодной ленты на подобном контроллере, как видите силового ключа нет, а только микросхема 5L0380R с четырьмя выводами. Отсюда следует, что в определенных задачах сложная схемотехника и гибкость TL494 просто не нужна. Это справедливо для маломощных блоков питания, где нет особых требований к шумам и помехам, а выходные пульсации можно погасить LC-фильтром. Это блок питания для светодиодных лент, ноутбуков, DVD-плееров и прочее.

Схема трансформаторного блока питания для светодиодной ленты

Заключение

В начале статьи было сказано о том, что ШИМ-контроллер это устройство которое моделирует среднее значение напряжения за счет изменения ширина импульсов на основании сигнала с цепи обратной связи. Отмечу, что названия и классификация у каждого автора часто отличается, иногда ШИМ-контроллером называют простой ШИМ-регулятор напряжения, а описанное в этой статьей семейство электронных микросхем называют «Интегральная подсистема для импульсных стабилизированных преобразователей». От названия суть не меняется, но возникают споры и недопонимания.

Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!

Записывайтесь в онлайн-университет от GeekBrains:

Обучение Интернет вещей и современные встраиваемые системы

Изучить C, механизмы отладки и программирования микроконтроллеров;

Получить опыт работы с реальными проектами, в команде и самостоятельно;

Получить удостоверение и сертификат, подтверждающие полученные знания.

Starter box для первых экспериментов в подарок!

После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.

Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.

Источник

ШИМ, DC-DC аналоги и замена с переделкой и без.

Проверка на материнской плате

Итак, при включении питания платы, срабатывает защита. В первую очередь, необходимо проверить мультиметром сопротивление плеч стабилизатора.

Для этих целей также может быть использован тестер радиодеталей. Если одно из них показывает короткое замыкание, то есть, измеренное сопротивление составляет меньше 1 Ома, значит, пробит один из ключевых полевых транзисторов.

Выявление пробитого транзистора в случае, если стабилизатор однофазный, не составляет труда – неисправный прибор при проверке мультиметром показывает короткое замыкание. Если схема стабилизатора многофазная, а именно так питается процессор, имеет место параллельное включение транзисторов. В этом случае, определить поврежденный прибор можно двумя путями:

  1. произвести демонтаж транзистора и проверить мультиметром сопротивление между его выводами на предмет пробоя;
  2. не выпаивая транзисторы, замерить и сравнить сопротивление между затвором и истоком в каждой из фаз преобразователя. Поврежденный участок определяется по более низкому значению сопротивления.

Второй способ работает не во всех случаях. Если пробитый элемент определить не удалось, придется все же выпаять транзистор.

Далее производится замена поврежденного транзистора, а также, установка на место всех выпаянных в процессе диагностики радиоэлементов. После этого можно попытаться запустить плату.

Первое включение после ремонта лучше выполнить, сняв процессор и выставив соответствующие перемычки. Если первый запуск был успешным, можно проводить тест с нагрузкой, контролируя температуру мосфетов.

Неисправности ШИМ контроллера могут проявляться так же, как и пробой мосфетов, то есть уходом блока питания в защиту. При этом проверка самих транзисторов на пробой результата не дает.

Кроме этого, следствием нарушения функций ШИМ контроллера может быть отсутствие выходного напряжения или его несоответствие номинальной величине. Для проверки ШИМ контроллера следует вначале изучить его даташит. Наличие высокочастотного напряжения в импульсном режиме, при отсутствии осциллографа, можно определить, используя тестер кварцев на микроконтроллере.

Составляющие схемы блоков питания с ШИМ-контроллерами

Типовая схема состоит из генератора импульсов, в основе которого лежит ШИМ-контроллер. Широтно-импульсная модуляция дает возможность собственноручно контролировать амплитуду сигнала на выходе ФНЧ, изменяя при необходимости длительность импульса или его скважность. Сильная сторона ШИМ – высокий КПД усилителей мощности, в особенности звука, что в целом обеспечивает устройствам довольно обширную сферу применения.

микросхемы ШИМ-контроллеров

ШИМ-контроллеры для блоков питания могут использоваться в схемах с различными мощностями. Для реализации относительно маломощных схем необязательно включать в их состав большое число элементов – в качестве ключа может выступать обычный полевой транзистор.

ШИМ-контроллеры для источников питания большой мощности могут иметь также элементы управления выходным ключом (драйверы). В качестве выходных ключей рекомендуется использовать IGBT-транзисторы.

Признаки неисправности, их устранение

Перейдем к рассмотрению конкретных признаков неисправностей ШИМ контроллера.

Остановка сразу после запуска

Импульсный модулятор запускается, но сразу останавливается. Возможные причины: разрыв цепи обратной связи; блок питания перегружен по току; неисправны фильтровые конденсаторы на выходе.

Поиск проблемы: осмотр платы, поиск видимых внешних повреждений; измерение мультиметром напряжения питания микросхемы, напряжения на ключах (на затворах и на выходе), на выходных емкостях. В режиме омметра мультиметром надо измерить нагрузку стабилизатора, сравнить с типовым значением для аналогичных схем.

Импульсный модулятор не стартует

Возможные причины: наличие запрещающего сигнала на соответствующем входе. Информацию следует искать в даташите соответствующей микросхемы. Неисправность может быть в цепи питания ШИМ контроллера, возможно внутренне повреждение в самой микросхеме.

Шаги по определению неисправности: наружный осмотр платы, визуальный поиск механических и электрических повреждений. Для проверки мультиметром делают замер напряжений на ножках микросхемы и проверку их соответствия с данными в даташит, в случае необходимости, надо заменить ШИМ контроллер.

Проблемы с напряжением

Выходное напряжение существенно отличается от номинальной величины. Это может происходить по следующим причинам: разрыв или изменение сопротивления в цепи обратной связи; неисправность внутри контроллера.

Поиск неисправности: визуальное обследование схемы; проверка уровней управляющих и выходных напряжений и сверка их значений с даташит. Если входные параметры в норме, а выход не соответствует номинальному значению – замена ШИМ контроллера.

Отключение блока питания защитой

При запуске широтно-импульсного модулятора, блок питания отключается защитой. При проверке ключевых транзисторов короткое замыкание не обнаруживается. Такие симптомы могут свидетельствовать о неисправности ШИМ контроллера или драйвера ключей.

Формирование ШИМ-сигналов

Создавать ШИМ-сигналы нужной формы достаточно трудно. Тем не менее индустрия сегодня может порадовать замечательными специальными микросхемами, известными как ШИМ-контроллеры. Они недорогие и целиком решают задачу формирования широтно-импульсного сигнала. Сориентироваться в устройстве подобных контроллеров и их использовании поможет ознакомление с их типичной конструкцией.

Стандартная схема контроллера ШИМ предполагает наличие следующих выходов:

  • Общий вывод (GND). Он реализуется в виде ножки, которая подключается к общему проводу схемы питания устройства.
  • Вывод питания (VC). Отвечает за электропитание схемы. Важно не спутать его с соседом с похожим названием — выводом VCC.
  • Вывод контроля питания (VCC). Как правило, чип контроллера ШИМ принимает на себя руководство силовыми транзисторами (биполярными либо полевыми). В случае если напряжение на выходе снизится, транзисторы станут открываться лишь частично, а не целиком. Стремительно нагреваясь, они в скором времени выйдут из строя, не справившись с нагрузкой. Для того чтобы исключить такую возможность, необходимо следить за показателями напряжения питания на входе микросхемы и не допускать превышения расчетной отметки. Если напряжение на данном выводе опускается ниже установленного специально для этого контроллера, управляющее устройство отключается. Как правило, данную ножку соединяют напрямую с выводом VC.

Способы проверки

Проверка микросхем — это трудный, иногда невыполнимый процесс. Все дело в сложности микросхемы, которая состоит из огромного количества различных элементов.

Есть три основных способа, как проверить микросхему, не выпаивая, мультиметром или без него:

  1. Внешний осмотр микросхемы. Если внимательно на нее посмотреть и изучить каждый элемент, то не исключено, что удастся найти какой-либо видимый дефект. Это может быть, например, перегоревший контакт (возможно, даже не один). Также при проведении внешнего осмотра микросхемы можно обнаружить трещину на корпусе. При таком способе проверки микросхемы нет необходимости пользоваться специальным устройством мультиметром. Если дефекты видны невооруженным глазом, можно обойтись и без приспособлений.
  2. Проверка микросхемы с использованием мультиметра. Если причиной выхода из строя детали стало короткое замыкание, то можно решить проблему, заменив элемент питания.
  3. Выявление нарушений в работе выходов. Если у микросхемы есть не один, а сразу несколько выходов, и если хотя бы один из них работает некорректно или вовсе не работает, то это отразится на работоспособности всей микросхемы.

Разумеется, самым простым способом проверки микросхемы является первый из вышеописанных: то есть осмотр детали. Для этого достаточно внимательно посмотреть сначала на одну ее сторону, а затем на другую, и попытаться заметить какие-то дефекты. Самый же сложный способ — проверка с помощью мультиметра.

Влияние разновидности микросхем

Сложность проверки во многом зависит не только от способа, но и от самих схем. Ведь эти детали электронно-вычислительных устройств хоть и имеют один и тот же принцип построения, но нередко сильно отличаются друг от друга.

Например:

  1. Наиболее простыми для проверки являются схемы, относящиеся к серии «КР142″. Они имеют только 3 вывода, следовательно, как только на один из входов подается какое-либо напряжение, можно использовать проверяющий прибор на выходе. Сразу же после этого можно делать выводы о работоспособности.
  2. Более сложными типами являются «К155″, «К176″. Чтобы их проверить, приходится применять колодку, а также источник тока с определенным показателем напряжения, который специально подбирается под микросхему. Суть проверки такая же, как и в первом варианте. Необходимо лишь на вход подать напряжение, а затем посредством мультиметра проверить показатели на выходе.
  3. Если же необходимо провести более сложную проверку — такую, для которой простой мультиметр уже не годится, на помощь радиоэлектронщикам приходят специальные тестеры для схем. Способ называется прозвонить микросхему мультиметром-тестером. Такие устройства можно либо изготовить самостоятельно, либо купить в готовом виде. Тестеры помогают определить, работает ли тот или иной узел схемы. Данные, получаемые при проведении проверки, как правило, выводятся на экран устройства.

Важно помнить, что подаваемое на микросхему (микроконтроллер) напряжение не должно превышать норму или, наоборот, быть меньше необходимого уровня. Предварительную проверку можно провести на специально подготовленной проверочной плате.

Нередко после тестирования микросхемы приходится удалять некоторые ее радиоэлементы. При этом каждый из узлов должен быть проверен отдельно.

Работоспособность транзисторов

Перед проверкой радиодетали мультиметром, не выпаивая, нужно обязательно определить, к каким из двух типов относится транзистор — полевым или биполярным. Если к первым, то можно применять следующий способ проверки:

  1. Установить прибор в режим «прозвонки», а затем использовать красный щуп, подключая его к проверяемому элементу. Другой — черный — щуп должен быть приставлен к выводу коллектора.
  2. Сразу после выполнения этих несложных действий на экране устройства появится число, которое будет обозначать пробивное напряжение. Аналогичный уровень можно будет увидеть и при проведении «прозвона» электрической цепи, заключенной между эмиттером и базой. Важно при этом не перепутать щупы: красный должен соприкасаться с базой, а черный — с эмиттером.
  3. Далее можно проверять все эти же выходы транзистора, но уже в обратном подключении: нужно будет поменять местами красный и черный щупы. Если транзистор работает хорошо, то на экране мультиметра должна быть показана цифра «1″, которая говорит о том, что сопротивление в сети является бесконечно большим.

Если транзистор является биполярным, то щупы должны меняться местами. Разумеется, цифры на экране прибора в этом случае будут обратные.

Конденсаторы, резисторы и диоды

Работоспособность конденсатора микросхемы также проверяется путем прикладывания щупов к его выходам. За очень короткий промежуток времени значение показываемого прибором сопротивления должно увеличиться от нескольких единиц до бесконечности. При изменении мест щупов должен наблюдаться тот же самый процесс.

Источник

Ремонт блока питания компьютера.

Неисправный блок питания при ремонте компьютера зачастую просто заменяют новым. Это быстрое решение проблемы, но цена такого ремонта высока, да и хорошо заработать мастеру при этом не получится – просто замена блока больших денег не стоит. В любом сервисном центре, как правило, гора неисправных блоков питания, которые могут быть отремонтированы или послужить «неиссякаемым» источником запасных элементов. Сам ремонт блока задача, вполне решаемая и по плечу даже среднему ремонтнику.

Основные узлы блока питания

Состоит блок питания компьютера из двух основных половин. Первая часть гальванически связана с питающей сетью и содержит фильтр, выпрямитель, схему источника питания дежурного режима, транзисторные ключи преобразователя. При ремонте этой половины нужно соблюдать необходимые меры безопасности!

Также, здесь подключается схема коррекции фактора мощности (PFC), если предусмотрено ее использование.

Вторая часть включает в себя выпрямители и фильтры выходных напряжений, схему управления и стабилизации на микросхеме ШИМ-контроллера, выпрямитель и стабилизатор напряжения дежурного режима. Эта часть схемы развязана от питающей сети, поэтому работа с ее элементами безопасна.

Отделяют части три импульсных трансформатора. Силовые элементы схемы размещены на двух радиаторах охлаждения.

Общее представление о компьютерном блоке питания получили, переходим к практике.

Поиск неисправности в блоке питания компьютера лучше производить в определенном порядке. Поэтому разделим действия на шаги, которые в результате приведут к определению и устранению поломки. Даже если на одном из этапов будет найдена неисправная деталь, нужно пройти все шаги до последнего, на котором и включим блок для проверки.
Практика

Разберите блок, снимите плату и разрядите конденсаторы сетевого выпрямителя лампой накаливания.
Шаг 1

Начинаем с внешнего осмотра. На этом этапе выявляются вздутые конденсаторы, сгоревшие элементы схемы – варисторы, резисторы. Также нужно внимательно осмотреть плату с обратной стороны для выявления плохой пайки или подгоревших участков. Обнаруженные детали заменяются, плата очищается и пропаивается. Соблюдайте полярность при установке элементов.

Проверьте, насколько легко вращается вентилятор охлаждения, зачастую именно он является причиной перегрева блока.
Шаг 2

Читайте также:  Компоненты управления и блок питания

Проверяем сетевой предохранитель, диоды моста выпрямителя. Если предохранитель сгоревший, в цепи есть короткое замыкание, которое нужно найти и устранить. Для этого проверяем отдельно каждый диод моста выпрямителя. Помните, диод может быть не только пробит, но и иметь незначительную утечку в обратном направлении – при проверке отпаивайте один контакт элемта.

Исправный мост должен иметь бесконечное сопротивление на входе. На выходе моста, при подключении тестера, сопротивление должно измениться от низкого до высокого. Это происходит из-за заряда подключенных параллельно конденсаторов.
Шаг 3, если есть схема активного PFC

Транзисторы ключей схемы PFC (см. схему в первой части) подключены через дроссель параллельно выпрямителю напряжения сети. При пробое транзисторов вход оказывается закороченным и сгорает предохранитель. Как правило, вместе с ключами выходят из строя резисторы, подключенные к затворам и микросхема PWM-контроллера. Как проверить работу схемы PFC, рассмотрим ниже.
Шаг 4

Проверяем транзисторы ключей преобразователя. Транзисторы подключены таким образом, что пробой одного из них может не вызвать замыкания питания и сгорания предохранителя, при этом блок питания просто не запускается.

Причиной неисправности в этом узле часто служат электролитические конденсаторы, подключенные к базе. При их утечке или потере емкости, транзистор переходит из ключевого режима работы в усилительный, что вызывает перегрев элемента.

Эти элементы и конденсатор, обозначенный синим кругом на схеме выше, также являются причиной потери выходной мощности блока питания компьютера. При этом подключенный к системной плате блок не запускается, а без нагрузки работает. Из-за неисправности этих конденсаторов повышаются пульсации на выходе блока питания, что приводит к перезагрузкам и сбоям в работе системы. Эти элементы нужно обязательно выпаивать и проверять.

Если пробиваются транзисторы ключей, резисторы и диоды, подключенные к базе, часто также сгорают.
Шаг 5

Неисправность, рассмотренная в предыдущем шаге, зачастую вызвана завышенным напряжением питающей сети. Источник питания +5в дежурного режима работает постоянно и из-за скачков напряжения страдает первым. Наступила очередь его проверки.

При пробое силового транзистора нужно проверить, а лучше вообще заменить на заведомо исправные все полупроводниковые элементы схемы – транзисторы, диоды, оптопару. Затем проверяем все резисторы и конденсаторы, выпаивая их по очереди. Почему все?

Это очень капризная и важная часть блока питания, от нее запитана микросхема ШИМ-контроллера и схема включения материнской платы. При выходе источника из режима стабилизации, на эти узлы подается завышенное напряжение, что в лучшем случае приводит к сгоранию ШИМ-контроллера блока, а в худшем – потере материнской платы.

Второй случай, когда источник не запускается, +5 дежурного на выходе просто нет. Начальное напряжение для запуска схема получает через резисторы, подключенные к +310в. Зачастую они подгорают, изменяя значение своего сопротивления на гораздо большее, хотя внешне выглядят исправными. Учитывая высокие значения сопротивления резисторов при проверке детали нужно обязательно выпаивать.

Схема также может не запускаться из-за замыкания или перегрузки выходных цепей. Виновником этого может быть пробитый диод выпрямителя, сгоревший ШИМ-контроллер или устанавливаемый в качественных блоках питания защитный стабилитрон.

Всегда проверяйте конденсатор, обозначенный на схеме выше восклицательными знаками. От его исправности зависит значение выходного напряжения блока питания, а расположен он в зоне с повышенной рабочей температурой. Если в схеме блока не установлен защитный стабилитрон, именно из-за этого конденсатора выходит из строя материнская плата.
Шаг 6

Переходим к выпрямителям выходных напряжений. Выпрямители собраны на спаренных диодах, проверяем от центрального вывода оба крайних на наличие пробоя. Нужно обязательно проверить все элементы схемы стабилизатора 3.3в, потому что блоки с микросхемой ШИМ-контроллера TL494 не имеют обратной связи для контроля этого выхода. Блок питания будет запускаться вхолостую, но не работать под нагрузкой.

Также проверьте диоды выпрямителей для напряжений -5в, -12в. Учитывайте, что каждый выход блока нагружен низкоомным резистором, если появились сомнения в исправности одного из диодов, элемент лучше выпаять.
Шаг 7

Добрались до микросхемы ШИМ-контроллера. Возможности проверки исправности микросхемы без включения блока питания ограничены. Но, если в шаге 5, были обнаружены какие либо неисправности, а тем более, если при внешнем осмотре найден сгоревший резистор в цепи питания ШИМ-контроллера, микросхему нужно заменить заведомо исправной.

Выходы микросхемы подключены к двум транзисторам (C945 или 2N2222), если меняете микросхему, проверьте их также.
Шаг 8

После устранения всех неисправностей обнаруженных в предыдущих шагах, блок можно подключить к питающей сети, конечно при соблюдении всех мер предосторожности.

Если при подключении сгорел сетевой предохранитель – возвращаемся к шагу 1 и следующим, чтобы найти пропущенную неисправность.

Измеряем значение напряжения дежурного режима +5в на 9 (фиолетовый) контакте разъема. Подключаем нагрузку, подойдет резистор сопротивлением 3-4Ом мощностью около 7Ватт. Снова измеряем напряжение.

Если блок питания выдает заниженное значение (4.3в — 4.8в) нужно заменить оптопару, TL431 и электролитические конденсаторы схемы стабилизатора. Напряжения нет вообще, повторяем шаг 5.

При нормальной работе источника дежурного питания, напряжение на входе PS ON (14,зеленый) в пределах 2.3-5в, на остальных– 0в. Замыкаем 14 и 15 контакты перемычкой, блок должен запуститься.

Если старта не произошло, возвращаемся к шагу 4. Возможна ситуация, когда блок питания запустился на короткий промежуток времени, при этом дернулся вентилятор. Это происходит при неисправности выходных выпрямителей или микросхемы ШИМ-контроллера, снова проходим шаги 6 и 7.

Для блоков с системой активной PFC на этом этапе нужно проверить работоспособность схемы. Измеряем напряжение на конденсаторе сетевого выпрямителя, схема PFC поддерживает его значение в пределах 380-400в, если прибор показывает 310в – схема не работает и нужно повторить шаг 3.

У запущенного блока измеряем напряжение на выходе PG (8, серый), правильное значение +5в. Затем проверяем все выходные напряжения — +12в, -12в, +5в, -5в, +3.3в. Нагружать при тестировании все выходы блока было бы правильно, но часто проблематично. Поэтому можно ограничиться нагрузкой каждого выхода по-отдельности. Для нагрузки можно использовать автомобильные лампы накаливания подходящей мощности.

Компьютер после ремонта блока питания обязательно нужно тестировать в течение 3-6 часов.

В заключение дадю несколько советов по доработке БП, что позволит сделать его работу более стабильной:

во многих недорогих блоках производители устанавливают выпрямительные диоды на два ампера, их следует заменить более мощными (4-8 ампер);
диоды шоттки на каналах +5 и +3,3 вольт также можно поставить помощнее, но при этом у них должно быть допустимое напряжение, такое же или большее;
выходные электролитические конденсаторы желательно поменять на новые с емкостью 2200-3300 мкФ и номинальным напряжением не менее 25 вольт;
бывает, что на канал +12 вольт вместо диодной сборки устанавливаются спаянные между собой диоды, их желательно заменить на диод шоттки MBR20100 или аналогичный;
если в обвязке ключевых транзисторов установлены емкости 1 мкФ, замените их на 4,7-10 мкФ, рассчитанные под напряжение 50 вольт.

Такая незначительная доработка позволит существенно продлить срок службы компьютерного блока питания.

ЗАПОМНИТЕ. Измерять непосредственно на контактах БП с нагрузкой и не доверять программам мониторинга! (у прибора должны быть надлежащего качества и напряжения элементы питания (не аккумы!))

ЗЫ: Взял где взял, обобщил и добавил немного.
ЗЫ2: Кому не нужно — проходим мимо.
ЗЫ3: LF! ,kzl rjgbgfcnf!

Простите за качество некоторых картинок (чем богаты).

Источник

РЕМОНТ БП АТХ: ШИМ КОНТРОЛЛЕР

В данный момент я в качестве подработки иногда выкупаю нерабочую технику на Авито и Юле, восстанавливаю и реализую. Вчера выкупил блок питания PowerMan IP-S450-T7 на мощность 450 ватт, честных ватт, блок питания имеет две линии по цепям 12 вольт — 17 и 16 ампер, в сумме 33 ампера. Есть разъем дополнительного питания видеокарты 6 пин.

Несмотря на то что блок питания имеет кулер 80 мм, а не 120 мм, как большинство современных блоков питания, эти характеристики очень даже неплохие и позволят запитать без проблем игровой компьютер начального уровня. При покупке нерабочих блоков питания всегда беру крестовую отвертку с собой и если продавец не против, осматриваю плату блока питания на предмет подгара, подгоревших деталей, взорвавшихся предохранителей, транзисторов, а также любимых всеми мастерами за легкость выполнения ремонта вздувшихся электролитических конденсаторов.

Вскрыв корпус ничего особенного не обнаружил — внешне все было нормально. Блок был куплен и начав сегодня проводить диагностику включил блок в сеть с целью проверить наличие “дежурки” (дежурного напряжения). Обычно если дежурное напряжение есть (5 вольт на фиолетовом проводе разъема 24 Pin относительно земли, черного провода) — это само по себе говорит уже о многом.

Как минимум, не вскрывая блок питания мы уже знаем, что наш предохранитель цел, а далее для мастера имеющего уже пусть и не большой опыт следует, что мосфет дежурного напряжения цел, маломощный транзистор раскачки дежурки, если он присутствует, тоже цел. Здесь есть еще один нюанс: блок питания АТХ можно условно поделить на две части, на “горячую”, высоковольтную, и низковольтную “холодную” часть БП.

В горячей части мы можем судить о поломке по одному простому признаку: если у нас сгорел предохранитель, скорее всего у нас короткое замыкание в высоковольтной части. Это или высоковольтный мосфет дежурки, или высоковольтные силовые транзисторы, или диодный мостик, или игрек конденсаторы, или высоковольтный неполярный конденсатор. Все они находятся в горячей части и по этим признакам мы можем облегчить диагностику при ремонте блока питания.

В моем случае предохранитель был цел, и вот к чему было такое отступление от темы статьи: в данном случае дежурка была организована нестандартным образом — не через ключ дежурки, применяющимся наиболее часто в слабых по мощности блоках питания, а с помощью ШИМ контроллера дежурного напряжения. Так вот, диагностику начал с ШИМ контроллера дежурного напряжения, мне был облегчен ремонт тем, что под микросхемой на корпусе блока питания было небольшое почернение — подгар.

Замерив сразу сопротивление между ножками микросхемы (она идет в корпусе DIP 7) между двумя парами ножек, было обнаружено низкое сопротивление — менее 50 Ом. Приняв решение демонтировать микросхему как наиболее вероятного виновника поломки, был удивлен сопротивлением между ножками микросхемы — оно было в пределах нормы, померяв сопротивление между контактами на плате ошибочно решил что виновата была обвязка микросхемы и как оказалось позднее погорела не только она.

Изначально померяв что у нас по питанию (ножки 3 и 5) обнаружил что там сопротивление равно 47 Ом. Посмотрев по схеме обнаружил что параллельно питанию микросхемы установлен стабилитрон на напряжение стабилизации 18 Вольт. Выпаяв одну ножку убедился, что на результат измерений влиял в том числе и он. Мне повезло, что ранее был приобретен с Али экспресс набор стабилитронов напряжением стабилизации 3.3 — 30 вольт, так что проблемой это не стало.

После замены стабилитрона одно из низких сопротивлений по цепям микросхемы пропало. Затем посмотрев по схеме что у нас находится ближе всего, по цепям выводов микросхемы 1 и 3 увидел что там должен стоять резистор номиналом 330 Ом. Приподняв одну из его ножек и отпаяв, убедился что виновник второго низкого сопротивления которое определил при измерениях был этот резистор.

Затем прозвонив низкоомный резистор по цепям питания микросхемы (вывод 5) от вспомогательной обмотки импульсного трансформатора обнаружил, что этот резистор также сгорел и находится в обрыве. Заменил его, поставив 2 резистора сопротивлением 10 Ом параллельно и получил практически требующийся нам номинал 5.8 Ом. Решил включить блок питания в сеть, но меня поджидала неудача — дежурного напряжения на разъеме 24 пин так и не появилось.

Еще раз повторюсь: демонтировав микросхему не нашел низкого сопротивления между ее выводами. Керамические конденсаторы в цепях обвязки микросхемы в коротком замыкании не были, но решив исключить перед заменой микросхемы все возможные варианты демонтировал оба керамических конденсатора и проверил их транзистор-тестером. Оба оказались рабочими. Что же, делать нечего, надо собираться в радиомагазин.

Микросхема была в наличии в радиомагазине и стоимость ее была не очень высокой — 80 рублей, я съездил и приобрел ее. Демонтировав нерабочую микросхему и запаяв новую, блок питания включился — дежурное напряжение появилось, все напряжения были в норме. Данный ремонт не потребовал каких-то особенных знаний в диагностике, внешний осмотр помог выявить предполагаемого виновника, а затем путем проверки всех деталей которые могли погореть при выходе микросхемы из строя и замены их на новые, путем исключения, была восстановлена работоспособность этого БП АТХ. Но не всегда диагностика бывает такой явной и иногда приходится потратить 6-7 и более часов на ремонт техники, а в особо тяжелых случаях и несколько дней. Причем 80-90 % времени, как это обычно бывает, уходит на диагностику, и только 10-20 % на демонтаж старых и последующий монтаж новых деталей. Стоимость данного блока питания при закупе составила 100 рублей, плюс 80 рублей стоимость микросхемы (цену ранее приобретенных деталей не учитываю, их стоимость была не значительна).

Реализовать же данный блок питания после тестов со средней по мощности видеокартой, можно будет рублей за 600-700. Либо собрать с применением этого БП игровой системник начального уровня. Всего ремонт блока питания вместе с поездкой в радиомагазин занял 5-6 часов.

Подведём итог ремонта

По нынешним меркам кризиса и роста цен, кто-нибудь, житель крупных городов, имеющий высокую по российским меркам зарплату, может скажет что сэкономлена не бог весть какая сумма, больше времени своего потрачено было. Но если вернуться к тому, что сейчас на дворе очередной кризис, экономия данной суммы для большинства людей умеющих держать в руках паяльник, проводить диагностику приборов и умеющих считать деньги, вряд ли была бы лишней, пусть даже для сборки своего личного системного блока. А раз так — то люди, имеющие опыт и практические знания в области электроники, уже имеют плюс по сравнению с людьми, которые этих знаний не имеют, а соответственно не имеют и данной возможности. Всем удачных ремонтов, автор статьи AKV.

Источник