Меню

Замена аккумуляторов налобного фонарика

Замена аккумуляторов налобного фонарика

Довольно много китайских фонарей оснащены свинцово-кислотными AGM аккумуляторами. Даже если надпись на упаковке гордо гласит, что там литий ионный аккумулятор. И лишь только вскрывая коробку, и, обнаруживая вместо маломощного БП обычный сетевой кабель, в голову начинают закрадываться сомнения. В данной заметке я собрал свой опыт ремонта данных фонарей и прочей техники на таких аккумуляторах.

Определение типа аккумулятора

У вас есть условный фонарь со сдохшим в ноль аккумулятором без маркировки, который уже даже не берет заряд. Напомню, что AGM — это обычные свинцово кислотные аккумуляторные батареи, только вместо раствора электролита там гель. А там где батареи, там и ячейки. Напряжение одной ячейки свинцово-кислотного аккумулятора составляет примено 2.1 В. Таким образом чтобы понять, что за чудо жило у вас в фонаре, можно просто посчитать количество ячеек, которое равно числу пробок под крышечкой(см. рис. ниже) и умножить на 2.1 . Или померять напряжение на клеммах от зарядного устройства идущих к батарее. Или пытататься запитывать устройство от 2 В, 4 В, 6 В, 9 В — пока не заработает как надо. Почему последняя цифра 9 В, а не 8? Потому что найти блок питания на 9 В или батарею типа Крона гораздо проще, а китайщине погрешность в 1 вольт в принципе по барабану.

Если у вас осталось живое зарядное устройство, то меряйте напряжение на клеммах аккумулятора в момент когда оно включено. Повторяю, аккумулятора, не зарядного устройства.

Чаще всего вам придется иметь дело с аккумулятором на 4 Вольта и 1.2 Ампер час. Они самые частые немаркированные гости в китайских фонарях. Назовем их условно типоразмером DT 401, если брать у нас. И «4v 1200 mAh» — если брать на алиэкспрессе. Уточняйте габариты в миллиметрах, на всякий случай. Они обычно отличаются не сильно, но если есть жесткое посадочное место под аккумулятор, то проверьте дважды.

Чего ожидать от аккумулятора

По моему опыту, китайские нонеймовые DT 401 дохнут примерно через год-полтора после покупки устройства. Это не зависит от количества циклов заряда-разряда, частоты пользования устройством. Не знаю правильно ли это назвать, но аккумуляторы «высыхают», но об этом позже. Или у них внутри просто отваливается пластина или что там есть.

Стоит ли покупать устройства с такими аккумуляторами? Да, вполне. Что касается фонарей, то там порой даже встречаются нормальные схемы запитки диодов через ШИМ. Сами устройства в принципе иногда даже неплохи и эргономичны. И если оно вам нравится и вы им планируете пользоваться долго, то переделка устройства под литиевые банки типоразмера 18650 и зарядную плату к ним — отличный выбор. Платы гуглятся на алиэкспрессе по «lithium microusb charge», с сортировкой цены по возрастанию и стоят копейки. Тем более внутренности некоторых устройств как будто намекают — корпус лился из расчета как под литий так и под AGM.

Однако переделка изделий со сдохшим свинцовым АКБ под литий не всегда экономически оправдана. В общем случае — это переделка места под разъем mini/micro usb, который обычно уже есть на платах-контроллерах заряда Li-Ion аккумуляторов. К тому же сама литиевая банка. Если вы из разряда тыжпрограммист, которому все знакомые носят на ремонт такой китайский шлак, то целесообразней затариться несколькими DT 401 и просто их менять. Или восстанавливать.

Восстановление свинцового аккумулятора для фонаря

Я не призываю вас это делать. Возможно этот метод неправильный и даже опасный, но я пользовался им десятки раз и он работает. Он продлевает жизнь нерабочего аккумулятора минимум на полгода при тех же условиях эксплуатации(емкость не замерял, но верить что там изначально были честные 1200 mAH тоже смешно). Работет как на аккумуляторах показывающих напряжение 0 вольт(не всегда) так и на вроде бы еще живых. Все делаете на свой страх и риск. Вздутые аккумуляторы восстанавливать не следует — из-за деформации могли появиться малозаметные трещины, через которые доливаемая вода можно отправиться гулять по корпусу, что недопустимо для переносного устройства со встроенным «блоком питания» без гальванической развязки.

Последовательность действий для аккумулятора 4v 1200 mAh:

Отключить зарядное устройство. По возможности отпаять аккумулятор от цепи устройства.

Отодрать крышечку аккумулятора чем-то острым. Снять резиновые пробки.

Взять дистилированную воду, если устройство вам не очень дорого, то можно и обычную, какое-то время тоже поработает. В каждое из отверстий влить по одному 3 кубовому шприцу воды. Делать это нужно с иголкой. Если вы просто начнете лить в верх отверстия, вода сразу пойдет наружу. Вам нужно несильно надавливая найти место, куда игла относительно легко проскочит примерно на треть-половину высоты аккумулятор. Теперь медленно вливайте воду.

Желательно закрыть аккумулятор пробками и дать постоять сутки. Если этого не сделать, то он будет сильнее кипеть при первой зарядке и разбрызгивать воду.

Первая зарядка с открытыми пробками. В вертикальном положении. Из дырочек может выходить вода и пузырьки. Отсасывайте ее иглой шприца и из ванночки вокруг отверстий. Примерно через 3 часа отключите аккумулятор от зарядки. Переверните, чтобы слить лишнюю воду емкость и постучите сверху пару раз, убедившись что из батареи больше не капает. Насухо вытрите ванночку и аккумулятор. Закройте отверстия пробками, поверх них поставьте крышечку.

Внимательно проверяете концы проводов что были припаяны к клеммам. Они сильно корродируют, от серной кислоты, сделайте зачистку перед пайкой. Впаиваете аккумулятор обратно в фонарь. Устройство готово к эксплуатации.

Почему в 21 веке у нас AGM в фонариках?

Штош, хороший вопрос. Пока теслы уже отказываются от 18650 как наборных элементов батареи в пользу более новых, мы все еще имеем кучу дешевой электроники на базе свинца. AGM сравнимой емкости все еще раза в полтора дешевле лития. В отличие от лития зарядное устройство для AGM гораздо примитивнее и собирается на обычной рассыпухе, в простейшем случае на одних конденасаторах, резисторах и диодах . Типоразмер AGM в 2 раза больше 18650, но для многих устройств это не критично. Так и живем.

Источник



Ремонт налобного фонаря

Фонарь не включается

Поработав около года, мой налобный фонарь LED Headlight XM-L T6 стал включаться через раз, а то и вообще отключаться без команды. Вскоре перестал включаться совсем.

Первым делом я подумал, что отходит аккумулятор в батарейном отсеке.

Сам бокс рассчитан на литий-ионные аккумуляторы типоразмера 18650 с платой защиты. А я использовал аккумуляторы без защиты и заряжал их универсальной зарядкой Turnigy Accucell 6 (аналог IMAX B6).

Поэтому пришлось нарастить контакты каплей припоя. Как известно, припой сплав мягкий и со временем напайка на контакте могла поистереться, а соединение с аккумулятором нарушиться.

Напайка из припоя на контакте в аккумуляторном отсеке фонаря

Но, после проверки выяснилось, что причина неисправности кроется вовсе не в плохом контакте, а электронной начинке фонаря.

Налобный (наголовный) фонарь LED Headlight T6

Любой ремонт начинается с диагностики и разборки. Разбирается фонарь легко. Вынимаем литиевый аккумулятор из батарейного отсека. Далее выкручиваем четыре шурупа.

Батарейный отсек фонаря

Под поддоном для аккумуляторов смонтирована небольшая печатная плата.

Печатная плата налобного фонаря

На печатке всего десять элементов. Функцию управления выполняет миниатюрная микросхема в корпусе SOT-23-6 с маркировкой 819L 24 (U1). Как оказалось, это микросхема FM2819 — специализированный контроллер (не драйвер!) для светодиодов. Называть эту микросхему драйвером как-то язык не поворачивается.

Читайте также:  Какой аккумулятор надежнее литиевый или свинцовый

Данная микросхема поддерживает четыре режима управления светодиодом, в том числе строб, от которого все хотят избавиться. Режимы переключаются циклически по команде с тактовой кнопки без фиксации.

Если бы мой фонарь не сломался, то о четвёртом режиме SOS, который активируется долгим нажатием кнопки (около 3 секунд), я бы и не узнал. Когда покупал, на странице продажи упоминалось только три режима.

Когда же стал изучать даташит на FM2819, то оказалось, что эта микросхема поддерживает четыре режима.

Микросхема 819L (24) на печатной плате

О микросхеме FM2819 я расскажу чуть позднее, а пока разберёмся, за что отвечают остальные элементы схемы.

Жёлтый керамический конденсатор запаян вместо родного, который отвалился, когда я разбирал корпус батарейного отсека. Судя по фото аналогичных фонарей ёмкость конденсатора, который установлен между выводом KEY и минусом «-» питания, может быть в довольно больших пределах. В моём был установлен чип-конденсатор на 10pF (100), а в других фонарях могут быть запаяны и на 10nF (103), и на 100nF (104), а то и вовсе отсутствовать.

Функцию силового ключа, который подаёт напряжение питания от литиевого аккумулятора на мощный светодиод, выполняет P-канальный MOSFET транзистор FDS9435A в корпусе SO-8. На фото видно, что на его корпусе указана сокращённая маркировка 9435A.

Плюс питания со стока транзистора FDS9435A подаётся на мощный светодиод не напрямую, а через три токоограничивающих резистора (R200 — 0,2 Ом; R500 — 0,5 Ом; 2R0 — 2 Ом). Они соединены параллельно. Их общее сопротивление меньше наименьшего сопротивления в цепи (т.е. меньше 0,2 Ом). Если посчитать, то оно равно 0,13 Ом.

О том, как соединять резисторы и рассчитывать их общее сопротивление я рассказывал тут.

Для подсветки тылового индикатора LED HEADLIGHT используется обычный SMD-светодиод красного цвета свечения. На плате обозначен, как LED. Он подсвечивает пластину из белого пластика.

Индикаторный светодиод налобного фонаря

Так как батарейный отсек находится с тыльной части головы, то в ночное время суток такой индикатор хорошо заметен.

Видимость дополнительного индикатора фонаря в темноте

Явно не помешает при велопрогулках и ходьбе вдоль дорожных трасс.

Тыльный индикатор налобного фонаря

Через резистор в 100 Ом плюсовой вывод красного SMD-светодиода подключается к стоку MOSFET-транзистора FDS9435A. Таким образом, при включении фонаря напряжение поступает и на основной светодиод Cree XM-L T6 XLamp, и на маломощный SMD-светодиод красного цвета свечения.

С основными детальками разобрались. Теперь расскажу, что же сломалось.

При нажатии на кнопку включения фонаря было видно, что красный SMD светодиод начинает светить, но очень тускло. Работа светодиода соответствовала штатным режимам работы фонаря (максимальная яркость, низкая яркость и стробоскоп). Стало ясно, что управляющая микросхема U1 (FM2819) скорее всего исправна.

Раз она штатно реагирует на нажатие кнопки, то, возможно, проблема кроется в самой нагрузке – мощном белом светодиоде. Отпаяв провода, идущие на светодиод Cree XM-L T6, и подключив его к самодельному блоку питания, я убедился в его исправности.

Далее решил замерить напряжение на самой плате, чтобы узнать, где потерялись драгоценные вольты от аккумулятора.

При замерах оказалось, что в режиме максимальной яркости, на стоке транзистора FDS9435A всего 1,2V. Естественно, этого напряжения не хватало для питания мощного светодиода Cree XM-L T6, а вот красному SMD-светодиоду его было достаточно, чтобы его кристалл начал тускло светиться.

Стало ясно, что неисправен транзистор FDS9435A, который задействован в схеме как электронный ключ.

В замену транзистору ничего подбирать не стал, а купил оригинальный P-канальный PowerTrench MOSFET FDS9435A фирмы Fairchild. Вот его внешний вид.

P-канальный MOSFET-транзистор FDS9435A

Как видим, на этом транзисторе присутствует полная маркировка и отличительный знак фирмы Fairchild (F), выпустившей данный транзистор.

Сравнив оригинальный транзистор с тем, что установлен на плате, мне в голову закралась мысль о том, что в фонаре установлена подделка или менее мощный транзистор. Возможно, даже брак. Всё-таки фонарь не успел отслужить и года, а силовой элемент уже «отбросил копыта».

Цоколёвка транзистора FDS9435A выглядит следующим образом.

Цоколёвка транзистора FDS9435A

Как видим, внутри корпуса SO-8 находится всего лишь один транзистор. Выводы 5, 6, 7, 8 объединены и являются выводом стока (Drain). Выводы 1, 2, 3 также соединены вместе и являются истоком (Source). 4-ый вывод – это затвор (Gate). Именно на него приходит сигнал с управляющей микросхемы FM2819 (U1).

В качестве замены транзистору FDS9435A можно использовать APM9435, AO9435, SI9435. Всё это аналоги.

Выпаиваем неисправный MOSFET

Выпаять транзистор можно как привычными методами, так и более экзотическими, например, сплавом Розе. Также можно применить метод грубой силы – подрезать ножом выводы, демонтировать корпус, а затем отпаять оставшиеся на плате выводы.

После замены транзистора FDS9435A налобный фонарь стал работать исправно.

Фонарь после ремонта

На этом рассказ о ремонте закончен. Но, не будь я любопытным радиомехаником, то так и оставил бы всё, как есть. Работает и ладно. Но мне не давали покоя некоторые моменты.

Так как изначально я не знал, что микросхема с маркировкой 819L (24) это FM2819, то вооружившись осциллографом, я решил посмотреть, какой сигнал подаёт микросхема на затвор транзистора при разных режимах работы. Интересно же.

При включении первого режима на затвор транзистора FDS9435A с микросхемы FM2819 подаётся -3,4. 3,8V, которое практически соответствует напряжению на аккумуляторе (3,75. 3,8V). Естественно, на затвор транзистора подаётся отрицательное напряжение, так как он P-канальный.

При этом транзистор полностью открывается и напряжение на светодиоде Cree XM-L T6 достигает 3,4. 3,5V.

В режиме минимального свечения (1/4 яркости) на транзистор FDS9435A с микросхемы U1 приходит около 0,97V. Это если проводить замеры рядовым мультиметром без наворотов.

На самом же деле в этом режиме на транзистор приходит сигнал ШИМ (широтно-импульсная модуляция). Подключив щупы осциллографа между «+» питания и выводом затвора транзистора FDS9435A, я увидел вот такую картину.

Картинка ШИМ-сигнала на экране осциллографа (время/деление — 0,5; V/деление — 0,5). Время развёртки — mS (миллисекунды).

Пауза между импульсами на экране осциллографа

Так как на затвор поступает отрицательное напряжение, то «картинка» на экране осциллографа переворачивается. То есть сейчас на фото в центре экрана показан не импульс, а пауза между ними!

Сама пауза длится около 2,25 миллисекунд (mS) (4,5 деления по 0,5mS). В этот момент транзистор закрыт.

Затем транзистор открывается на 0,75 mS. При этом на светодиод XM-L T6 поступает напряжение. Амплитуда каждого импульса составляет 3V. А, как мы помним, мультиметром я намерил всего лишь 0,97V. В этом нет ничего удивительного, так как мультиметром я мерил постоянное напряжение.

Вот этот момент на экране осциллографа. Переключатель время/деление установил на 0,1, чтобы лучше определить длительность импульса. Транзистор открыт. Не забываем про то, что на затвор приходит минус «-«. Импульс перевёрнут.

Импульс на экране осциллографа

Теперь можно посчитать скважность импульсов (S).

S = (2,25mS + 0,75mS) / 0,75mS = 3mS / 0,75mS = 4. Где,

S — скважность (безразмерная величина);

Τ — период следования (миллисекунды, mS). В нашем случае период равен сумме включения (0,75 mS) и паузы (2,25 mS);

Читайте также:  Как заряжать аккумулятор автомобиля с нагрузкой

τ- длительность импульса (миллисекунды, mS). У нас это 0,75mS.

Также можно определить коэффициент заполнения (D), который в англоязычной среде называют Duty Cycle (часто встречается во всяких даташитах на электронные компоненты). Обычно он указывается в процентах %.

D = τ/Τ = 0,75/3 = 0,25 (25%). Таким образом, в режиме пониженной яркости светодиод включен лишь на четверть периода.

Когда делал подсчёты первый раз, то коэффициент заполнения у меня вышел 75%. Но потом, увидев в даташите на FM2819 строчку про режим 1/4 яркости, понял, что где-то облажался. Я просто перепутал паузу и длительность импульса местами, поскольку по привычке принял минус «-» на затворе за плюс «+». Поэтому и вышло всё наоборот.

В режиме «STROBE» мне не удалось посмотреть ШИМ сигнал, так как осциллограф аналоговый и довольно старый. Синхронизировать сигнал на экране и получить чёткое изображение импульсов мне не удалось, хотя было видно его наличие.

Типовая схема включения и цоколёвка микросхемы FM2819. Может, кому пригодится.

Типовая схема включения и цоколёвка микросхемы FM2819

Не давали мне покоя и некоторые моменты, связанные с работой светодиода. Со светодиодными фонарями я раньше, как-то не имел дела, а тут захотелось разобраться.

Когда я полистал даташит на светодиод Cree XM-L T6, который установлен в фонаре, то понял, что номинал токоограничительного резистора маловат (0,13 Ом). Да, и на плате одно посадочное место под резистор было свободно.

Когда шерстил по интернетам в поисках информации о микросхеме FM2819, то видел фото нескольких печатных плат аналогичных фонарей. На одних были запаяны четыре резистора по 1 Ому, а на некоторых вообще SMD-резистор с маркировкой «0» (перемычка), что, на мой взгляд, вообще является преступлением.

Светодиод – это нелинейный элемент, и, поэтому, последовательно с ним необходимо включать токоограничивающий резистор.

Если заглянуть в даташит на светодиоды серии Cree XLamp XM-L, то можно обнаружить, что их максимальное напряжение питания составляет 3,5V, а номинальное 2,9V. При этом ток через светодиод может достигать величины в 3А. Вот график из даташита.

ВАХ светодиода Cree XM-L T6

Номинальным током для таких светодиодов считается ток в 700 mA при напряжении в 2,9V.

Конкретно в моём фонаре ток через светодиод составил 1,2 A при напряжении на нём в 3,4. 3,5V, что явно многовато.

Чтобы уменьшить прямой ток через светодиод я запаял вместо прежних резисторов четыре новых номиналом в 2,4 Ом (типоразмер 1206). Получил общее сопротивление в 0,6 Ом (мощность рассеивания 0,125W * 4 = 0,5W).

SMD резисторы 2,4 Ом типоразмера 1206

После замены резисторов прямой ток через светодиод составил 800 mA при напряжении в 3,15V. Так светодиод будет работать при более мягком тепловом режиме, и, надеюсь, прослужит долго.

Ограничиваем прямой ток светодиода в фонаре

Поскольку резисторы типоразмера 1206 рассчитаны на мощность рассеивания в 1/8W (0,125 Вт), а в режиме максимальной яркости на четырёх токоограничивающих резисторах рассеивается мощность около 0,5Вт, то от них желательно отвести излишнее тепло.

Для этого зачистил от зелёного лака медный полигон рядом с резисторами и напаял на него каплю припоя. Такой приём частенько применяется на печатных платах бытовой электронной аппаратуры.

Вид печатной платы фонаря после доработки

После доработки электронной начинки фонаря покрыл печатную плату лаком PLASTIK-71 (электроизоляционный акриловый лак) для защиты от конденсата и влаги.

Покрываем плату лаком PLASTIK-71

При расчётах токоограничительного резистора я столкнулся с некоторыми тонкостями. За напряжение питания светодиода стоит принимать напряжение на стоке MOSFET транзистора. Дело в том, что на открытом канале MOSFET-транзистора теряется часть напряжения из-за сопротивления канала (R(ds)on).

Чем выше ток, тем большее напряжение «оседает» по пути Исток-Сток транзистора. У меня при токе в 1,2А оно составило 0,33V, а при 0,8А – 0,08V. Также часть напряжения падает на соединительных проводах, которые идут с клемм аккумулятора на плату (0,04V). Казалось бы, такая мелочь, а в сумме набегает 0,12V. Так как под нагрузкой напряжение на Li-ion аккумуляторе проседает до 3,67. 3,75V, то на стоке MOSFET’а уже 3,55. 3,63V.

Ещё 0,5. 0,52V гасит цепь из четырёх параллельных резисторов. В итоге на светодиод приходит напряжение в районе 3-ёх с небольшим вольт.

На момент написания этой статьи в продаже появилась обновлённая версия рассмотренного налобного фонаря. В нём уже встроена плата контроля заряда/разряда Li-ion аккумулятора, а также добавлен оптический датчик, который позволяет включать фонарь жестом ладони.

Источник

Восстановление аккумулятора для фонаря

Этот познавательный материал поможет читателям и людям с руками восстановить своего друга. Светодиодного друга. Не стоит сразу бежать и покупать новый аккумулятор. Поверьте – ещё можно восстановить старый. Материал не рекомендуется людям с расшатанной нервной системой.

Знакомьтесь — это пациент

И он смертельно болен

Для фонаря он импотент

Хозяин не доволен

Проблема в общем то пустяк

Внутри ему б омыться

Мир внутренний совсем иссяк

Ему воды б напиться

И дистиллированной водой

Наполнить свои жилы

Чтоб электронов дружный строй

Смог стать в тот час дружиной

И самый главный пункт с водой —

Без всяких там инфекций

И нам поможет как родной

Флакон для внутренних инъекций

По капле капля потекла

Как кровь у человека

Нам батарея так нужна

Ей помогла аптека

Наполнен, сыт и не жужжит

Внутри пошла реакция

А рядом дружно так лежит

Пустой отряд той акции

Фонарик собран, подключён

Зарядка в деле важном

Сейчас у пациента сон —

Но будет он отважным

И замигал светодиод

Краснея от напруги —

Ребята, батарея — Во.

Нам не страшны испуги.

В гараж, в подвале, хоть чердак —

Свет льётся беспрестанно

Стал виден каждый здесь бардак

Писал стихами? Странно.

Для тех, кто ничего не понял. Достался мне вот такой фонарь. Ни на что не реагировал. Вскрытие показало, что аккумулятор приказал долго жить. Был объявлен сбор на покупку нового аккумулятора. Цены кусаются. Но тут вовремя вспомнил, что можно приложить руки и реанимировать старый аккумулятор. Для этого нужна лишь дистиллированная вода. На момент творческого зуда её в доме не оказалось.

Жена-медик видя как супруг стонет от бессилия помочь аккумулятору, подсказала что раствор для внутренних инъекций эта та же самая дистиллированная вода. Ну а дальше дело пошло. У хорошего медика всегда есть запасы разных таблеток и ампул. Поэтому если вы оказались на аптечном и старом аккумуляторном складе, помните – всё можно решить и будет свет.

Источник

Модернизация светодиодного фонаря
Как заменить свинцовый аккумулятор литий-ионным

В статье «Ремонт и модернизация светодиодных фонарей» подробно рассмотрен вопрос ремонта и доработки электрических схем китайских светодиодных фонарей, замены вышедшего из строя кислотного аккумулятора аналогом.

Внешний вид светодиодного фонаря

Но есть еще один вариант замены аккумулятора при ремонте фонаря – замена его литий-ионным аккумулятором от неисправных электронных устройств. Например, сотового телефона, фотоаппарата, ноутбука или шуруповерта. Подойдут также аккумуляторы, которые уже не обеспечивают необходимую продолжительность работы устройства, но еще работоспособны.

Первый литий-ионный аккумулятор был выпущен в 1991 году японской корпорацией Sony. Номинальное напряжение одного элемента аккумулятора составляет 3,7 В. Минимально-допустимое – 2,75 В. Напряжение заряда не должно превышать 4,2 В при токе заряда от 0,1 до 1 емкости аккумулятора (С). Литий-ионные аккумуляторы практически не обладают эффектом памяти и имеют малый ток саморазряда, при комнатной температуре не более 20% за год. На текущий момент по техническим характеристикам являются самыми лучшими.

Читайте также:  Аккумулятор lifepo4 3 2в 20а ч мод 2770134

Светодиодный фонарь со вздутым аккумулятором

Ранее мне пришлось ремонтировать и модернизировать LED фонарь, в котором перегорели все светодиоды. После ремонта через несколько лет работы он перестал светить по причине выхода из строя свинцового аккумулятора. Как видно на фотографии корпус его вздулся.

Так фонарь и пылился на полке, пока не вышел из строя литий-ионный аккумулятор от фотоаппарата. Анализ показал, что в аккумуляторе отказал контроллер балансировки и заряда. Два элемента аккумулятора были в хорошем техническом состоянии, которые я и решил установить в фонарь вместо кислотного аккумулятора.

Штатное зарядное устройство фонаря для зарядки литий-ионного аккумулятора не подходило, так как оно обеспечивало постоянство тока заряда с неконтролируемым напряжением. А для литий-ионного аккумулятора при зарядке необходимо обеспечить ток зарядки величиной 0,1-1С при напряжении, не превышающем 4,2 В на один элемент.

Выбор контроллера
для зарядки литий-ионного аккумулятора

Можно изготовить контроллер самостоятельно, но в продаже, например, на Алиэкспресс, продаются готовые по цене 0,2-0,3 цента, собранные на микросхеме TP4056 или ее аналогах (ACE4054, BL4054, CX9058, CYT5026, EC49016, MCP73831, LTC4054, LC6000, LP4054, LN5060, TP4054, SGM4054, U4054, WPM4054, IT4504, PT6102, PT6181, Y1880, VS6102, HX6001, Q7051).

Внешний вид контроллера на микросхеме TP4056

На Алиэкспресс был куплен самый простой модуль контроллера, технические характеристики которого полностью удовлетворяют требованиям для зарядки литий-ионного аккумулятора, установленного в фонаре. Его внешний вид представлен на фотографии.

Электрическая схема контроллера на микросхеме TP4056

Контроллер собран по приведенной выше электрической схеме. Изменяя номинал резистора, идущего со второго вывода микросхемы на общий провод можно ограничить максимальный ток зарядки.

Зависимость максимального тока зарядки от величины R контроллера TP4056
Номинал резистора, кОм 30 20 10 5 4 3 2 1,66 1,5 1,33 1,2
Ток зарядки, мА 50 70 130 250 300 400 580 690 780 900 1000

Выбор величины тока зарядки Li-ion аккумулятора определяется исходя из двух ограничений. Величина тока должна находиться в пределах 0,1-1 от емкости аккумулятора (принято обозначать буквой С). Например, для аккумулятора емкостью 600 мА×час ток не должен превышать 0,6 А. Следовательно, нужно, чтобы номинал токозадающего резистора составил 2 кОм (на резисторе должна стоять маркировка 202). И не превышать величины тока, который способно обеспечить зарядное устройство. Для данного случая ток должен быть более 0,6 А. Ток всегда указывается на этикетке ЗУ.

Технические характеристики контроллера TP4056
Наименование Значение Примечание
Входное напряжение, В 4,5-8,0 Более 5,5 В не рекомендуется
Выходное напряжение, В 4,2
Максимальный ток заряда, А 1,0 Можно изменять величиной R с вывода 2
Минимальный ток заряда, А 0,03 При меньшем токе уйдет в сон
Автоотключение есть При токе зарядки

Знак вопроса

Задать вопрос автору статьи, оставить комментарий

ЧеловекАндрей 16.11.2020

Здравствуйте.
Прочитал статью «Модернизация светодиодного фонаря. Как заменить свинцовый аккумулятор литий-ионным». Заменил аккумулятор на литий-ионный. Использовал контроллер, имеющий защиту от переполюсовки при подключении аккумулятора и короткого замыкания выхода. В режиме сна контроллер разряжает аккумулятор (ток 0,02 А). Подскажите это нормально или нет. Если нет, какая причина?

Александр НиколаевичАлександр

Здравствуйте, Андрей!
Ток потребления платой защиты при отключённой нагрузке должен быть равен нулю. На практике же он составляет не более несколько микроампер. Специально измерял в своем фонаре и наушниках, в которые устанавливал литиевые аккумуляторы. Амперметр показал ноль.
Таким образом ток потреблять может схема фонаря или контроллер зарядки. Для проверки нужно полностью отключить все от платы, кроме аккумулятора. Если ток потребления останется прежним, значит неисправна плата контроллера и подлежит замене.

Источник

ЗАМЕНА СВИНЦОВЫХ АККУМУЛЯТОРОВ В ФОНАРЯХ

Отремонтированный (методом долива дистиллированной воды и первоначальной усиленной зарядки) свинцово-кислотный аккумулятор из светодиодного фонарика отработал после этого ещё почти полгода. Дальнейшие попытки его реанимации счёл нецелесообразными и стал присматривать какой-то другой аккумулятор с учётом вольтажа, ёмкости и возможно допустимых габаритов.

Вид СВИНЦОВЫХ АККУМУЛЯТОРОВ В ФОНАРЯХ

При нынешнем-то изобилии казалось затруднений в подборе нового аккумулятора быть не должно. Но всё, что-то не устраивало. Самый желаемый вариант – аккумулятор от мобильного телефона, не подходил по размерам. А подходящие по габаритам имели весьма неподходящую цену.

ЗАМЕНА СВИНЦОВЫХ АККУМУЛЯТОРОВ НА ПАЛЬЧИКОВЫЕ ААА

Совершенно случайно обратил внимание на батарейный отсек для четырёх аккумуляторов (или батареек) формата ААА. Попробовал поместить его во внутрь фонарика – получилось. Да и вообще, по всем возможным и даже предполагаемым параметром оказалось, что это как раз то, что и нужно. Хочешь, ставь аккумуляторы формата ААА по 1,2 вольта, а можно и подсевшие батарейки, которые в дальнейшем можно разок, другой и подзарядить.

Схема подключения фонаря

ЗАМЕНА СВИНЦОВЫХ АККУМУЛЯТОРОВ - схема

Фонарь имел от изготовителя вот такую электрическую схему. Первоначально её не трогал, но сейчас придется её менять в соответствии с задуманным способом эксплуатации. Причём изначально доработка предполагается быть выполненной бюджетного формата и без соблюдения предлагаемых в таких случаях наворотов схемотехники. Для этого надо, определится с имеющимися в фонаре светодиодами (их вольтаж, токопотребление?). Тут два пути:

  • практический (с производством замеров)
  • теоретический (поиск по таблице с сопоставлением размеров, конфигурации, других отличительных особенностей). Выбрал второе.

Светодиоды В ФОНАРЯХ

Вообще, для этого есть полезная статья, с которой советую ознакомиться. Светодиоды фары, рабочее напряжение 2,9 – 3,3 вольта, максимально допустимое токопотребление 20 миллиампер.

Светодиоды фары, напряжение 2,9 – 3,3 вольта

Светодиоды боковой панели, рабочее напряжение, 3,0 – 3,5 вольт, максимально допустимое токопотребление 20 миллиампер.

Светодиоды рабочее напряжение проверка

Подключил фару через постоянный резистор сопротивлением 2 Ома и подстроечный резистор 0,5-20 Ом, которым и выставил допустимый ток на три параллельно соединённых светодиода в 60 мА.

Подключил светодиоды через постоянный резистор

То же самое проделал и с боковой панелью, только постоянное сопротивление здесь 33 Ом, а подстроечником выставил общий ток светодиодов в 40 мА.

Схема доработки

Подключил LED фару через постоянный резистор - схема

Электрическая схема приняла данный вид исходя из желаемого режима работы, который заключается в том, что при любом выставленном на подстроечном резисторе сопротивлении, светоотдача фары будет иметь соотношение со светоотдачей боковой панели как 3:2. То есть свет фары всегда будет сильнее на треть.

ЗАМЕНА СВИНЦОВЫХ АККУМУЛЯТОРОВ В ФОНАРЯХ LED

Всё уместилось. Аккумулятор помещается в корпус без усилий, но и свободы перемещения в нём у него нет. Нашлась подходящая «ниша» и для общего, фары и боковой панели, подстроечного резистора.

Доступ к нему есть и при собранном фонаре, так, что при необходимости всегда можно выполнить соответствующую регулировку.

Видео

На момент производства видеосъёмки более просторного тёмного помещения, чем ванная комната к сожалению не оказалось, но прошу принять к сведению мои заверения, что фара фонаря прекрасно работает на расстояние в 10 метров и даже более. Автор проекта — Babay iz Barnaula.

Форум по обсуждению материала ЗАМЕНА СВИНЦОВЫХ АККУМУЛЯТОРОВ В ФОНАРЯХ

Модуль драйвера BLDC двигателя жесткого диска — принципиальные электрические схемы включения и обзор готовых блоков.

Классический фонарик со встроенным зарядным устройством можно неплохо улучшить, добавив пару микросхем и 18650 АКБ.

Кодовая кнопка для ограничения доступа к объектам, простая схема с реле на МК Attiny13.

Источник