Ядерные аккумуляторы для смартфонов
В прошлом футуристы видели транспорт будущего движимым за счет энергии от атомных источников питания. Маленькая батарейка (обычно светящаяся — так передавали образ художники) заменила бы тысячи литров бензина или дизельного топлива. Почти бесконечную энергию могли бы использовать не только машины, но и корабли, отправленные бороздить бескрайние просторы Вселенной.
Новость «Ученые разработали атомную батарейку для космических кораблей» вызвала бы определенный интерес. «Ну наконец-то», «Теперь заживем!» и «Сириус, держись!» — последовала бы примерно такая реакция. Но на деле «атомные батарейки» используются давно — аж с шестидесятых годов прошлого века. Каждая из них заслуживает отдельной истории.
Речь идет о так называемых радиоизотопных термоэлектрических генераторах — РИТЭГ (RTG). В качестве «движущей» силы они используют нагрев, то есть тепловую энергию. Это одно из основных отличий от атомных реакторов, в которых происходит цепная ядерная реакция. Реакторы используются давно, однако они имеют большие габариты и вес, а ведь мы говорим о «космических батарейках».
РИТЭГи планировалось использовать для космических аппаратов, но позже сферу применения расширили (в том числе на медицинскую технику, например электрокардиостимуляторы). Первыми новую технологию, по крайней мере официально, внедрили американские военные в спутниках Transit 4A и 4B. Батарею для них разработали в рамках программы SNAP-3.
Transit 4A находится в нижней части — это цилиндр. Фото сделано незадолго до запуска в 1961 году. Это навигационный спутник, позволявший получать данные вне зависимости от погоды на поверхности. Фото: Johns Hopkins University Applied Physics Laboratory
Ей предшествовало появление SNAP-1 — тестовой платформы, в которой применяли цикл Ренкина (цикл преобразования тепла в работу) с использованием изотопа церия и ртути в качестве теплоносителя. Инженеры продолжили работу над проектом, пытаясь решить вопрос с защитой будущих астронавтов и груза от радиации, удержав вес системы в определенных рамках: иначе ракета не взлетит.
В итоге «щитом» в SNAP-2 стал усеченный конус, заполненный гидридом лития. Реактор разместили вверху, капсулу с условной командой и грузом — за нижней частью. Последовавшие испытания показали, что идея хороша, да только не работает: в определенных условиях, вероятность появления которых высока, смертельная доза радиации пройдет сквозь защиту. Кроме того, конструкция оказалась весьма взрывоопасной.
Transit 4A. Фото: Gunter’s Space Page
Ее изменяли, искали компромисс, нашли его — и вскоре появился SNAP-3, который стал первым РИТЭГом, примененным в космической программе. Атомные батарейки на плутонии-238, которого потратили 96 граммов, установили в навигационные спутники военных Transit 4A и 4B. Они выдавали 2,5 Вт электрической энергии (тепловая была намного больше). Это был 1961 год.
Спустя еще примерно год Transit 4B и некоторые другие спутники были повреждены из-за проведенных США ядерных испытаний в рамках программы Starfish Prime. Тогда на высоте 400 километров взорвали 1,44-мегатонный заряд, устроив небесный фейерверк, а заодно повредив собственную технику. Ведь ядерную энергию воспринимали как-то не всерьез.
После проведения испытаний Starfish Prime во многих точках мира наблюдалось полярное сияние. Фото: Wikimedia
Ну а первым советским спутником с РИТЭГом стал «Космос-84» (его движение можно отследить и сейчас), получивший систему «Орион-1» в 1965-м.
Ошибок случалось немало, в том числе после того, как в гонку «радиоактивных» спутников включился СССР, который вначале использовал полоний-210, а затем перешел на уран-235. Иногда атомные батарейки падали в океан (упоминается несколько случаев), другие горели в атмосфере или были уничтожены при запуске. Были вопросы и к конструкции советских космических аппаратов: ситуацию можно сравнить с водителем, выбрасывающим весь мусор (которого тонны) из машины в окно — чего только не оказалось на мусорной орбите вокруг Земли!
Собственный опыт и опыт «коллег» подтолкнул американских инженеров к тому, чтобы разработать системы, которые активируются лишь после удаления от Земли.
Это было важно, так как мощность батареек планировали нарастить. Однако особенно преуспели в этом Советы, которые быстро перешли на киловаттные установки, но уже в 1970-е. Американцы также запустили экспериментальный вариант на 500 Вт (и 30—40 кВт тепловой энергии) в 1975 году. Это была миссия SNAPSHOT и аппарат SNAP-10A с компактным ядерным реактором: он был менее 40 сантиметров в длину и чуть более 22 сантиметров в диаметре, при этом его вес составлял 290 килограммов.
SNAP-10A. В 1979 году началось частичное разрушение объекта. Причины остались неизвестны, предполагалось столкновение. Также считается, что радиоактивные элементы оказались в космосе. Фото: energy.gov
Здесь стоит упомянуть, что в 1970-х годах и ранее NASA, как и СССР, изучало возможность создания действительно мощной ядерной установки для космических аппаратов, которую можно было бы устанавливать именно на корабли, а не использовать лишь в относительно небольших спутниках.
В рамках проекта NERVA, например, были испытаны ЯРДы (ядерные ракетные двигатели, относятся к радиоизотопным источникам энергии, как и РИТЭГ), способные произвести до 4500 мегаватт тепловой энергии и 1,1 млн ньютонов реактивной тяги (половина тяги маршевого двигателя шаттла), работая до 90 минут. Плюс таких двигателей — в значительном сокращении времени полета. Но это другая история, которая пока не закончилась.
Ракетный двигатель NERVA. Фото: Atomic Energy Commission
За пределы околоземной «кольцевой дороги» американские РИТЭГи отправились в 1969 году. Модификация одного из них обогревала измерительный инструмент, который взяли с собой участники миссии «Аполлон-11». Другой установили в комплект научных инструментов ALSEP в «Аполлоне-12» для изучения Луны, а также последующих миссиях.
РИТЭГ SNAP-27, который был установлен на поверхности Луны в рамках миссии «Аполлон-14»
Советы сыграли в «догонялки», и в 1970-м появился «Луноход-1» с радиоизотопным нагревателем (RHU) — и США, и СССР использовали технологию не только для выработки энергии, но и для обогрева электроники.
Модель «Лунохода-1», аппарат 8ЕЛ №203. Фото: Wikimedia
Часто высказывается идея, что высокоэффективного источника энергии из РИТЭГа не получится. И пока это так. Однако подобные системы практически незаменимы при отправке зондов на сверхдальние расстояния — туда, где солнечные батареи бесполезны. Первопроходцем в этом деле стала межпланетная станция «Пионер-10», отправленная в космос 3 марта 1972 года.
«Пионер-10». Изображение: Wikimedia
На нее установили четыре РИТЭГа SNAP-19s (для питания и обогрева). Перед запуском они выдавали 155 Вт электроэнергии, но при подлете к Юпитеру показатель снизился до 140 Вт. Этого было более чем достаточно для работы систем, потреблявших 100 Вт, но к 2001 году энергии уже едва хватало на поддержание функционирования лишь некоторых модулей.
Очередной вехой в развитии технологии стала разработка MHW-RTG для «Вояджеров», отправленных в дальнее путешествие в 1977 году. До этого новые системы прошли обкатку в спутниках на околоземной орбите. Каждый из космических аппаратов получил по три РИТЭГа общей электрической мощностью 470 Вт на момент запуска с перспективой снижения электрической мощности в два раза примерно через 88 лет. Источниками энергии стали 24 спрессованные сферы из оксида плутония. Плюс на борту имелось по девять нагревателей RHU (их может быть и больше, они устанавливаются точечно в рассчитанных местах).
В аббревиатуре MHW-RTG буквы MHW означают Multi-Hundred Watt, то есть это указание на выходную мощность более 200 Вт электрической энергии. Инженерам приходилось решать проблемы с нагревом в тысячи градусов как в случае с новой системой, так и в прошлом и будущем
Спустя пару лет после запуска «Вояджеров» США временно вышли из гонки, а СССР, напротив, наращивал количество запущенных спутников — это были аппараты серии УС-А. Но на них устанавливали ядерные энергетические установки БЭС-5 «Бук», работавшие на уране. Их электрическая мощность составляла 3 кВт при тепловой мощности 100 кВт, что заметно превосходило показатели американских систем, работавших по несколько иному принципу.
Фото: Los Alamos National Laboratory
Срок работы спутников с «Буками» был заметно меньше: он составлял около полугода (потом аппарат становился мусором, который летает вокруг Земли до сих пор), и это при более высоком весе ядерного топлива. Поэтому требовались регулярные запуски, с которыми то и дело не ладилось. На смену БЭС-5 пришли ядерные установки «Топаз», которые были мощнее предшественников более чем в два раза. Однако новые системы получили лишь два спутника, и один из них был уничтожен.
В дальнейшем страны вновь поменялись местами (одна попросту перестала существовать), и успеха добивались лишь США, осваивая очередную технологию — GPHS-RTG (это модернизированные РИТЭГи). Однако какого-то значительного шага вперед с точки зрения эффективности сделано не было.
Новые «атомные батарейки» устанавливали в автоматическую межпланетную станцию (АМС) «Улисс», изучавшую Солнце и Юпитер; в спускаемый зонд «Галилео» для исследования атмосферы Юпитера; в станцию «Кассини-Гюйгенс», которая исследовала Сатурн, его кольца и спутники; в АМС «Новые горизонты», выполняющую программу исследования объектов Солнечной системы.
АМС «Улиcс». Фото: ESA
Наконец, на базе старого SNAP-19 была разработана система MMRTG, которая помогла роверу Curiosity исследовать Марс (и помогает до сих пор).
Китай также предпринял попытки использовать технологию — в АМС «Чанъэ-3» и вездеходе «Юйту», прибывшем на Луну тем же «рейсом». Точно не известно, были это источники питания или обогреватели, так как данные разнятся. Не исключено, что РИТЭГ был дублирующей системой в дополнение к солнечным батареям.
NASA и министерство энергетики США ведут экспериментальный проект Kilopower. В рамках него планируется разработать систему, которая позволит активнее путешествовать по Солнечной системе. Правда, это уже не «атомные батарейки», а стационарная система на обогащенном уране. Плюс ее состоит в том, что инженерам, судя по всему, удалось достичь неплохих показателей КПД в 30%. Для сравнения: у РИТЭГа он составляет 3—7% и даже в экспериментах не превышал 10%.
Рендер реактора Kilopower с рассеивающим тепло «зонтом». Фото: NASA
Не исключено, что развитие получит и проект NERVA по разработке ядерного ракетного двигателя для межпланетных полетов. В 2019 году сообщалось о выделении средств — может, в 2024-м появится демонстрационная модель.
Плутоний как топливный элемент
Что касается «атомных батареек», то самые эффективные их образцы пока можно найти лишь в научной фантастике. В последнее время плутоний, уран и другие элементы таблицы Менделеева в качестве источников питания практически не рассматриваются.
Источник
Атомная батарейка в современном мире
На данный момент наука прогрессирует и развивается. На сегодняшний день уже изобретена ядерная батарейка. Прослужить такой источник энергии может до 50, а иногда и до 100 лет. Здесь все зависит от размера и какое радиоактивное вещество используется.
В первые заявление об производстве атомной батарейки прозвучало от Росатома. В 2017 году этой компанией на выставке был представлен опытный образец.
Исследователям удалось выполнить оптимизацию слоев ядерной батарейки, которая для выработки электричества использует бета распад изотопа никеля 63.
1 грамм такого вещества содержит 3300 милливатт часов.
Принцип работы атомной батарейки
Получение энергии основывается на химической реакции с использованием разных типов изотопов. Вовремя бета распада создается электрический потенциал. А это дает ток.
Опасны ли ядерные батарейки?
Разработчики утверждают, что подобные элементы питания для обычных граждан являются полностью безопасными. А все потому что конструкция корпуса выполнена добротно.
Известно, что бета излучение вредит организму. Но в созданной ядерной батарейке оно мягкое и будет поглощаться внутри энергетического элемента.
На данный момент специалисты выделяют несколько отраслей в которых планируется использовать ядерную батарейку «Россия А123»:
- Медицина.
- Космическая отрасль.
- Промышленность.
- Транспорт.
Так же по мимо этим сферам новые долговечные источники энергии можно использовать и в других.
Плюсы ядерной батарейки
Выделяют ряд положительных качеств:
- Долговечность. Смогут проработать до 100 000 лет.
- Способность переносить критические температуры.
- Маленький размер позволит их сделать портативными и использовать в компактной технике.
Минусы ядреной батарейки
- Сложность производства.
- Присутствует опасность облучения. Особенно при повреждении корпуса.
- Дороговизна. Одна ядерная батарейка может стоить от 500 000 до 4 500 000 рублей.
- Доступны узкому кругу людей.
- Небольшой ассортимент.
Исследованием и разработкой ядерных батарей занимаются не только большие компании, но и обычные студенты. Так в Томске студент разработал свой аккумулятор, на ядерной энергетике, который может проработать без подзарядки порядка 12 лет. Работа изобретения основана на распаде трития. Такая батарейка не меняет своих характеристик с течением времени.
Ядерная батарейка для смартфона
На 2019 год выпускают атомные источники энергии для телефонов. Выглядят они так как показано на картинке ниже.
Напоминают некую микросхему, которая вставляется в специальные разъемы в мобильнике. Такая батарея способна проработать 20 лет. Причем все это время ее не нужно заряжать. Подобное возможно за счет процесса ядерного деления. Правда многих такой источник энергии может испугать. Ведь всем известно, что радиация вредна и разрушает организм. И таскать такой телефон рядом с собой на протяжение суток мало кому понравится.
Но как утверждают ученые такая ядерная батарея полностью безопасна. Так как в качестве активного вещества задействован тритий. Его излучение, появляющееся при распаде, является без вредным. Посмотреть работу трития можно на светящихся в темноте кварцевых часах. Выдерживает батарейка мороз в минус 50 градусов. Так же стабильно функционирует при плюс 150 C 0 . При этом ни каких колебаний в ее работе отмечено не было.
Неплохо под рукой иметь такой аккумулятор хотя бы для того чтобы подзарядить телефон на обычной АКБ.
Напряжение такой батареи колеблется от 0,8 – 2,4 вольт. Так же она генерирует от 50 до 300 нано ампер. И все это происходит на протяжение 20 лет.
Емкость рассчитана следующим образом: C = 0,000001W * 50 лет * 365 дней * 24 часа / 2V = 219mA
На данный момент АКБ оценивается 1 122 доллара. Если перевести на рубли по нынешнему курсу (65,42), то это выйдет 73 400 рублей.
Где используются ядерные батарейки?
Область применения практически такая же, как и у обычных элементов питания. Применяют их в:
- Микроэлектронике.
- Датчиках давления и температуры.
- Имплантантах.
- В качестве повербанков для литиевых элементов.
- Системах идентификации.
- Часах.
- SRAM памяти.
- Для питания процессоров малой мощности, например, FPGA, ASIC.
Это не единственные устройства в будущем их список заметно расширится.
Ядерная батарейка на никеле 63 и ее характеристики
Данный атомный источник энергии, выполненный на 63 изотопе может прослужить до 50 лет. Работает она за счет бета вольтоического эффекта. Он практически похож на фото электрический эффект. В нем электронно дырочные пары в кристаллической решетке полупроводника создаются под действием быстрых электронов или бета частиц. А при фотоэлектрическом эффекте они появляются под воздействием фотонов.
Атомная батарейка на никеле 63 производится за счет процесса облучения в реакторе мишеней из никеля 62. Исследователь Гаврилов утверждает, что на это уходит около 1 года. Нужные мишени уже имеются в Железногорске.
Если сравнивать новые российские ядерные батарейки на никеле 63 с литий-ионными элементами питания, то они будут в 30 раз меньше.
Специалисты утверждают, что эти энергетические источники безопасны для человека так как выделяют слабые бета лучи. К тому же они не выходят наружу, а остаются внутри устройства.
Такой источник питания на данный момент отлично подойдет для медицинских кардиостимуляторов. Но вот о стоимости разработчики не говорят. Но можно подсчитать ее и без них. 1 грамм Ni-63 на данный момент стоит примерно 4000$. От сюда можно сделать вывод что на полноценную батарею потребуется очень много денег.
Состав ядерной батарейки
Никель 63 добывают из алмазов. Но чтобы получить данный изотоп потребовалось создать новую технологию по нарезке прочного алмазного материала.
Вообще ядерная батарея состоит из излучателя и отделенного с помощью специальной пленки коллектора. Когда идет распад радиоактивный элемент выпускает бета излучение. В итоге происходит его положительный заряд. В это время коллектор заряжается отрицательно. После чего появляется разность потенциалов и образуется электрический ток.
По сути наш атомный элемент питания представляет из себя слоистый пирог. Промеж 200-т алмазных полупроводников стоят 200 источников энергии, выполненных из никеля 63. Высота источника энергии составляет около 4 мм. Его вес равен 250 миллиграмм. Маленький размер — это большой плюс для Российской атомной батарейки.
Сложно отыскать нужные габариты. Большая толщина изотопа не даст появившимся в нем электронам выйти. Маленькая толщина не выгодна, так как снижается количество бета распадов в единицу времени. То же самое и с толщиной полупроводника. Лучше всего батарейка функционирует при толщине изотопа около 2-х микрон. А алмазного полупроводника 10 микрон.
Но то что удалось достигнуть ученым на данный момент не является пределом. Выхлоп можно повысить еще минимум в три раза. А это значит, что ядерную батарейку можно сделать в 3-и раза дешевле.
Ядерная батарейка на углероде 14 работающая 100 лет
У данной атомной батарейке по сравнению с другими радиационными источниками энергии имеются следующие преимущества:
- Дешевизна.
- Экологическая чистота.
- Долгий срок работы до 100 лет.
- Низкая токсичность.
- Безопасность.
- Способна работать в экстремальных температурных условиях.
Радио активный изотоп углерод 14 имеет период полураспада 5700 лет. Он абсолютно не токсичен и имеет низкую стоимость.
Активную работу по модернизации ядерной батарейки ведут не только США и Россия, но и другие страны! Исследователи научились наращивать пленку на карбидной подложке. В результате чего подложка подешевела в целых 100 раз. Такая структура устойчива к радиации, а это делает данный энергетический источник безопасным и долговечным. Применяя карбид кремния в ядерные батареи можно добиться ее работы при температуре в 350 градусов Цельсия.
Таким образом ученым удалось создать атомную батарейку своими руками!
Источник
Атомная батарейка для телефона: принцип работы, преимущества и недостатки
Мобильные телефоны появились около сорока лет назад. Прогресс не стоит на месте. Вряд ли в те времена кто-то мог мечтать о том, что когда-нибудь появится атомная батарейка для телефона. Прогресс позволил добиться существенных прорывов во многих сферах, особенно в последнее время. Данный обзор будет посвящен применению атомных аккумуляторов в современных электронных устройствах.
Современные технологии
Рынок электроники является одним из наиболее перспективных направлений. С каждым годом эта сфера развивается все более динамично. Еще недавно в продажу поступили iPhone 3, а сегодня уже можно купить iPhone 8. Специалистам пришлось пройти большой путь, чтобы порадовать пользователей совершенными с аппаратной точки зрения устройствами. Это же касается Windows Phone и Android. Несколько лет назад телефон на базе ОС Android был чем-то удивительным.
Все дети мечтали поиграть в игры, где управлять действиями главного героя можно было путем поворота экрана. Этим сегодня уже трудно удивить. Даже первоклашки используют iPhone и не чувствуют от этого особого восторга. Они уже не смогут понять, что раньше существовали телефоны, функционирующие на основе кнопочного управления, а что еще ужаснее, на телефонах того времени было всего 2-3 примитивных игры. Тогда для детей даже змейка на монохромном дисплее была поводом для безмерного счастья. Играть в нее могли круглыми сутками. Игры в то время были не такими качественными. Использовать такие телефоны можно было в течение нескольких дней, не применяя при этом зарядку.
Атомная батарея – отличное решение для долгих игр
Игры на смартфонах с каждым годом выходят на более высокий уровень. Поэтому устройствам требуются более сильные аккумуляторы. Сколько сегодня способен продержаться наиболее мощный смартфон с огромным ресурсом автономной работы? При пассивном использовании такое устройство продержится не больше трех дней. Именно по этой причине инженеры и решили поднять вопрос о создании атомного аккумуляторного элемента. Сегодня в смартфонах в качестве источников питания обычно применяются литий-ионные батарейки. Реже встречаются элементы, функционирующие на полимерных аккумуляторах. Такие телефоны на самом деле не выдерживают продолжительного функционирования. Играть или смотреть на них фильмы можно всего несколько часов.
Может ли использоваться атомный аккумулятор в смартфонах?
Большинство компаний, занимающихся производством смартфонов, соревнуются по следующим показателям:
- диагональ экрана;
- быстродействие;
- габариты (как правило, борьба идет за уменьшение толщины устройств);
- длительность автономной работы устройства.
В настоящий момент вопрос о том, как может использоваться атомная энергия для создания современных смартфонов, остается актуальным. По предположениям ученых, уже в ближайшем будущем появятся устройства, которые можно будет оборудовать аккумуляторами, функционирующими по принципу реакции ядерного элемента. В этом случае телефоны будут функционировать без дополнительной зарядки до 20 лет. Такое время автономной работы не может не впечатлять.
Как возникла идея создания батареи?
Атомная батарейка — довольно-таки современная разработка XXI века. Однозначно, данное изобретение открыло огромное количество возможностей в деятельности как наземных, так и космических областей деятельности. Но действительно ли она не приносит вреда здоровью, как об этом везде говорят?
Идея появления небольших атомных реакторов относительно недавно получила большое распространение. Ученые выдвинули предположения о том, что такая батарейка для телефона позволит избавиться от проблемы необходимости подзарядки. О первом прототипе батарейки, использующей в своей работе атомную энергию, заговорили на отечественном предприятии «Росатом». Никакой определенной конкретики не было. Как говорят инженеры, первый компактный атомный реактор может быть изготовлен в 2017 году. Принцип действия такой батарейки будет состоять в использовании энергии химических реакций, происходящих при участии изотопа никеля. Если говорить более точно, речь идет о бета-излучении. Интерес представляет тот факт, что батарейка, созданная по данному принципу, будет работать в течение 50 лет. Размер такого элемента будет достаточно компактный. Чтобы иметь представление о том, какие габариты будет иметь атомный аккумулятор, достаточно представить себе, что простую батарейку уменьшили в 30 раз.
Безопасность применения батареи
Что касается безопасности, то эксперты уверены в том, что атомный аккумулятор не будет оказывать негативного воздействия на организм человека. Повод для такой уверенности дает уникальная конструкция. Прямое бета-излучение, без всяких сомнений, негативно сказывается на всех живых организмах. Однако стоит учитывать, что в таких аккумуляторах оно будет «мягким». Даже если такое излучение не выйдет наружу, оно будет поглощено внутри аккумуляторного элемента. Поскольку атомная батарейка будет способна поглощать излучение внутри, не давая ему выйти наружу, специалисты сегодня делают прогнозы на применение таких аккумуляторных устройств в медицинской сфере. К примеру, такие батарейки могут использоваться в конструкциях кардиостимуляторов.
Еще одним перспективным направлением использования таких батареек является аэрокосмическая отрасль. Промышленность стоит на третьем месте. Кроме этих основных отраслей, существует еще множество дополнительных проектов, в которых можно будет применять атомную батарею. Одним из важнейших направлений может стать транспортная отрасль.
Основные недостатки
Что же нам дает атомная батарейка? Преимущества и недостатки данного элемента питания будут подробно рассмотрены далее. Прежде всего, стоит отметить, что производство таких автономных источников энергии может стоить достаточно дорого. Научные работники и инженеры пока не решаются назвать точную стоимость такой разработки. Возможно, они просто боятся сделать поспешные выводы. Но есть приблизительная оценка.
Если говорить доступным языком, такая технология будет стоить очень дорого. Этого вполне стоило ожидать, если немного логически поразмыслить. Пожалуй, еще слишком рано думать о выпуске таких элементов питания в промышленных масштабах. Остается только надеяться, что ученым удастся найти альтернативные технологии, которые помогут разработать недорогой мобильный атомный реактор без угрозы радиационного заражения. И скорее всего, произойдет это в ближайшем будущем.
Многих интересует, сколько стоит атомная батарейка. Пока приводятся лишь предварительные оценки стоимости одного грамма активного вещества такой батарейки: 4000 долларов. Получается, что на производство одного такого аккумуляторного устройства нужно будет затратить примерно 4,5 млн рублей. Главная трудность связана с получением самого изотопа. В чистом виде в природе он не встречается. Для его создания необходимо использовать специальные реакторы. У нас в стране работает всего три таких реактора. Возможно, со временем будет разработана технология, позволяющая использовать для производства другие элементы, что позволит снизить расходы на производство данного элемента.
Принцип действия аккумулятора
Не только специалисты бьются над проблемой создания атомной батарейки. Недавно молодой ученый из Томска создал прототип аккумулятора, функционирующего на основе ядерной реакции. Как же работает такая атомная батарейка? Принцип работы данной разработки заключается в использовании изотопа трития. При правильном применении можно направить энергию, получаемую во время полураспада этого элемента, в верное русло. Атомная батарейка на базе трития будет работать в правильном режиме в течение 12 лет. Причем за этот промежуток времени аккумулятор не нужно будет подзаряжать. Стоит также отметить, что энергия высвобождается небольшими порциями.
Тритий: преимущества
Какие преимущества даст атомная батарейка для телефона? На сколько хватит такого аккумулятора? Устройство на базе трития со временем не изменит своих первоначальных свойств. Это является неоспоримым преимуществом. Изобретение было протестировано в Институте ядерной физики в Новосибирске. Также опытная модель была опробована в Томском университете.
Аккумулятор на базе никеля
Сотрудники ФГУП «Горно-химический комбинат» высказали готовность изготовить опытный образец атомного аккумулятора на базе никеля. Главным действующим компонентом в такой батарейке выступает изотоп никеля. Данный элемент способен обеспечить автономную работу электроники в течение полувека. Принцип работы аккумуляторного элемента основан на бета-вольтаическом эффекте. Он чем-то напоминает фотоэлектрический эффект. Пары «электро-дырка» в полупроводниковой решетке образуются за счет влияния бета-частиц. Для получения изотопа никеля 63 мишени никель-62 облучают.
Помимо продолжительного времени работы, к преимуществам таких аккумуляторных батарей можно будет отнести компактные размеры. При этом данные элементы питания будут совершенно безопасны для здоровья. Такие достоинства делают атомные батареи особенно привлекательными для многих сфер человеческой деятельности.
Перспективы применения аккумулятора
Атомная батарейка, которая функционирует на основе ядерной реакции, имеет огромные перспективы использования. Такое устройство будет особенно полезно в сфере электроники. Однако оно может использоваться не только как батарейка для телефона. Компактный реактор наверняка найдет применение в военной и аэрокосмической отраслях, а также в медицине.
В заключение
Атомные батарейки – это невероятное достижение науки, так как только такие технологии современного мира могут выдерживать высокие и низкие температуры, работая в различных условиях.
Несмотря на относительно высокую стоимость производства атомных батареек, нам остается только надеяться на то, что мы сможем увидеть такие изделия в новейших моделях телефонов. Вызывает определенные вопросы только элемент, который будет взят за основу такого аккумулятора. Конечно, по своей природе тритий является ядерным элементом. Но он все же имеет достаточно слабое излучение. Это вещество не нанесет вред человеческому организму. При правильном использовании аккумулятора кожа и внутренние органы не пострадают. Именно по этой причине данный элемент сегодня выступает в качестве наиболее вероятного кандидата для создания компактной атомной батарейки.
Источник
Атомная батарейка для мобилы, 20 лет без подзарядки…
Сорок лет назад был создан первый мобильный телефон, а сегодня уже изобретена атомная батарея для него. Технологический прогресс в последние годы идет настолько уверенно, что на прилавках магазинов электроники появляются такие новинки, о которых еще совсем недавно писали фантасты.
Как вы считаете, сколько способен продержаться без подзарядки современный смартфон? Среднее время автономной работы подобного устройства составляет 1-3 суток. А если его оснастить аккумулятором, работающим на основе реакции трития, то это время можно будет растянуть до 20 лет!
Неужели телефоны могут работать на атомных аккумуляторах?
Подобная идея среди ученых появилась относительно недавно. По их предположению, использование атомной энергетики в работе современных гаджетов может решить множество проблем, связанных с постоянной необходимостью подзарядки.
Тритий является радиоактивным веществом, но его излучение слишком слабое. Оно неспособно навредить здоровью человека. От него не пострадает ни кожа, ни внутренние органы – это известно ученым с незапамятных времен. Именно радиоактивный тритий выступает своего рода топливом, которое будет содержаться в этих батареях.
Батарея представляет собой интегральную микросхему, источником энергии которой является ядерная реакция трития. Такой принцип работы позволяет производить 0.8 – 2.4 ватт энергии. И этот уровень вырабатываемой электроэнергии может поддерживаться на протяжении 20 лет, при этом радиоактивную батарею не придется подзаряжать.
Многие не подозревают, что тритий уже давно используется во многих сферах производства. Каждый из нас видел, либо носил часы, стрелки которых отчетливо светятся в темноте. В большинстве случаев для создания такого эффекта используется именно этот радиоактивный элемент. Он не получил распространения в основной сфере атомной энергетики из-за своего минимального радиоактивного излучения.
Среди особенностей аккумулятора, которому посвящен сегодняшний обзор, следует также выделить его устойчивость к внешним факторам. Он отлично работает при резких перепадах высоты, давления и температуры, а также демонстрирует хорошую стойкость при сильных вибрациях. Что касается температуры, то ее диапазон составляет от -50 до +150 градусов по Цельсию.
Несмотря на то, что эта идея еще не внедрена в производство, известна приблизительная стоимость атомной батареи — 124 доллара. Но далеко не каждый человек, даже если ему нужна высокая производительность аккумулятора его телефона, согласится на ношение в своем кармане крохотного радиоактивного источника энергии.
Источник
Почему до сих пор нет телефона с ядерной батареей?
Почему в телефонах или даже ноутбуках нет ядерных батарей, подобных тем, которые использовались в прошлом в кардиостимуляторах? Чтобы ответить на этот интересный вопрос, мы обратились к инженерам-химикам Мюнхенского университета прикладных наук, где было несколько проектов и исследований в этой области.
1. Телефон с ядерной батареей — это дорого
Первая причина отсутствия такой технологии, конечно, заключается в невероятно высокой стоимости ядерной батарейки. Для питания смартфона, телефона, планшета или ноутбука нужны элементы питания стоимостью ниже 100 долларов США в производстве.
Просто помните, что 1 грамм Плутония-238, из которого будет сделан аккумулятор, стоит более 8000 долларов США.
2. Безопасность телефона с ядерной батареей
Такие радиоактивные металлы, как плутоний, использовались в прошлом в качестве источника энергии для кардиостимуляторов. Плутоний не слишком опасен, как источник альфа-излучения (он не может проникнуть через кожу и блокируется листом бумаги). Однако, он очень токсичен — даже больше, чем свинец.
Ноутбуки и телефоны часто подвергаются физическому повреждению — вряд ли вы хотели бы поглощать токсичную и радиоактивную пыль от сломанной ядерной батареи.
3. Ядерная батарея должна быть мощной
Даже если бы вы могли создать ядерную батарею мощностью 10 Вт, преобразователи тепла в электричество работают примерно на 5%-7%. То есть батарея будет выделять 200 Вт тепла! И при этом она разряжается даже тогда, когда не используется (такова особенность Плутония-238).
Ядерные батареи в кардиостимуляторах генерируют лишь милливатты, а тому же ноутбуку нужно около 10 Вт.
***
Плутоний-238, который сегодня используют в ядерных батареях, чрезвычайно дорог и его трудно получить.
Космическое агентство NASA использует их для питания космических зондов, которые не могут заряжаться от солнца, правда их у ведомства немного.
Общее количество Плутония-238, существующего сейчас, вероятно, недостаточно для производства даже какой-нибудь одной марки телефонов в течение всего лишь одного года.
Смогли бы вы пользоваться ноутбуком с толстой свинцовой стенкой, который греется больше, чем ваша игровая видеокарта с учётом того, что, например, в кардиостимуляторах на Плутонии период полураспада длится до 88 лет? Напишите ответ в комментарии или отправьте сообщение нам ВКонтакте @NeovoltRu.
Подпишитесь в группе на новости из мира гаджетов, узнайте об улучшении их автономности и прогрессе в научных исследованиях аккумуляторов. Подключайтесь к нам в Facebook и Twitter. Мы также ведём насыщенный блог в «Дзене» и на Medium — заходите посмотреть.
Источник