Меню

Высокочастотные трансформаторы для блоков питания



Высокочастотный трансформатор своими руками

Импульсный, он же высокочастотный, трансформатор – это отдельный вид трансформаторов, который может работать с очень короткими импульсами тока и напряжениями на входе, обеспечивая при этом минимальный уровень искажения выходных импульсов.

Чисто технически ничего не меняется, в составе высокочастотного трансформатора, также как и в силовом, имеются:

1. Первичная обмотка, которая представляет собой катушку индуктивности.

2. Сердечник, который позволяет равномерно распределить возникающую магнитную индукцию.

3. Вторичная обмотка, в которой из-за магнитной индукции первой катушки возникает ток.

Если так разобраться, и силовой, и импульсный трансформатор работают только с переменными токами. Однако, отличие первых от вторых в том, что импульсные имеют специальный сердечник, который позволяет работать с очень быстрыми колебаниями. при повышении частот в таких сердечниках возникает обратный эффект, когда в первичной обмотке уже нет тока, но сердечник всё еще передаёт остаточную энергию вторичной обмотке.

Таким образом, существенно возрастает эффективность преобразования тока (коэффициент) и ощутимо уменьшаются габариты конечного устройства.

Виды высокочастотных трансформаторов

Как и было отмечено выше, конструктивно импульсные тр-ры практически ничем не отличаются от силовых. Поэтому они могут быть:

  • Броневыми;
  • Стержневыми;
  • Бронестержневыми (комбинация первых двух);
  • Тороидальными.

В первых трех конструктивных решениях применяется специальное трансформаторное железо, которое должно быть по габаритам соотнесено с катушками первичной и вторичной обмоток. Собрать и намотать такие трансформаторы достаточно сложно, поэтому их проектируют сразу как готовое отраслевое решение (для применения в конкретных приборах и условиях).

Тороиды (кольца) из ферритов, которые могут эксплуатироваться на высоких частотах, заметно доступнее. Их можно найти практически в любом магазине радиоэлектроники или заказать на дом.

Собственно, по этой причине самодельную силовую технику с импульсными блоками питания чаще всего делают на тороидальных ВЧ трансформаторах.

В промышленности можно встретить трансформаторы, работающие с напряжениями:

  • До 10 кВ;
  • До 50 кВ;
  • И свыше 50 кВ.

Они предполагают совсем другие подходы в проектировании.

Преимущества и недостатки

Если на преимуществах можно не останавливаться подробно (это минимальные габариты и высокая эффективность), то о недостатках нужно упомянуть обязательно. Дело в том, что они влияют на проектирование конечного изделия, чаще всего это ИБП (импульсный блок питания). А именно:

1. Для работы обязательно требуется ВЧ-генератор. То есть ток требует подготовки и проходит, по сути, не одну процедуру преобразования после первичного источника. Этот генератор должен быть согласован по параметрам с самим трансформатором.

2. Колебания на высоких частотах создают различные помехи как в первичном источнике тока (например, в сети переменного тока), так и в питаемой цепи. А это может негативно отразиться на работе не только целевого устройства, но и на всех остальных устройств, подключённых к первичному источнику. А значит, необходимо обязательно предусматривать фильтры от ВЧ-помех на входе и выходе ИБП.

3. Без нагрузки эксплуатировать ИБП нельзя. Дело в том, что в силовых трансформаторах закладывается некоторый запас по мощности, а в случае с импульсными сделать это физически очень сложно.

Как и было сказано выше, трансформатор согласуется по параметрам с ВЧ-генератором. То есть для проектирования нужно как минимум знать характеристики вашего генератора или проектировать его вместе с тр-ром.

Наиболее подробную методику, подходящую для профессиональных инженеров можно изучить, например, в методическом пособии Томского политеха, ну или в других научных трудах (их масса).

А можно воспользоваться специальным программным обеспечением, например, PI Expert Suite (она позволяет спроектировать и оптимизировать блоки питания что называется «под ключ»), ExcellentIT или аналогичным ПО.

Из входных параметров вам понадобятся:

  • Максимальная индукция (порог для ферритов — 0,39 Тл, но лучше использовать показатель 0,186 Тл, он характерен для эксплуатации тр-ра в самых плохих условиях).
  • Частота преобразования. Это один из ключевых показателей. Она может быть в диапазоне 20-120 кГц. Ниже минимума – может появится «свист» при работе, а выше – существенно вырастут динамические потери.
  • Плотность тока. Оптимальный диапазон 5-6 А/мм.кв., но не более 10.
  • Напряжение на входе (определяется первичным источником или параметрами генератора).
  • Коэффициент заполнения. В идеале – 0,35 (больше ставить точно не стоит, могут быть проблемы с соотношением габаритов сердечника и обмоток).

Расчётные выходные параметры:

  • Напряжение (в зависимости от того, что вам требуется);
  • Ток (аналогично);
  • Диаметр провода (чем толще проводник, тем хуже будет его работа);
  • Наличие стабилизации выходов;
  • Тип выпрямления и преобразования (в соответствии с вашей схемой, это может быть мостовое, одно- или двуполярное со средней точкой и т.д.);
  • Потери на диодах (для ультрабыстрых моделей это около 0,6 В даже в самых плохих условиях).

После произведения расчётов вы получаете конкретные параметры и габариты, в том числе:

  • Число витков первички и вторички;
  • Плотность тока;
  • Индуктивность дросселя;
  • И т.д.

По ним остаётся только правильно подобрать сердечники и выполнить намотку.

После всего, что было изложено выше, это самое простое. Нужно только:

  • Намотать первичку. Если вы получили небольшое количество витков, то можно заменить выбранную проволоку на связку из проводов меньшего диаметра, так распределение по сердечнику будет равномернее. Главное, чтобы совокупная площадь сечения не вышла за пределы изначальной.
  • Выполнить изоляцию. Нельзя делать большой зазор (толщину слоя).
  • Намотать вторичку (в соответствии с вашей схемой, например, с выводом средней точки, проволоку тоже можно заменить на связку).

Выполнять проверку трансформатора можно только с нагрузкой и собранным генератором частоты!

Мнения читателей
  • Виктор Смирнов / 14.11.2020 — 23:30

Могу ли я использовать в качестве генератора частоты сварочный инвертор? Выходное напряжение холостого хода прим. 45 В. Частота — 20 кГ.

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Источник

Импульсный трансформатор принцип работы

Принцип работы импульсного трансформатора

Современные электронные и электрические приборы имеют достаточно сложное устройство.

Их эффективную и бесперебойную работу обеспечивает большое количество составляющих.

Одной из них является импульсный трансформатор, принцип работы которого основывается на активном преобразовании электрического тока.

Основная функция

Устройства, работа которых зависит от электрического тока, оснащаются импульсными трансформаторами.

Делается это для того, чтобы обеспечить защиту от короткого замыкания, слишком высокого напряжения, исходящего от сети, и перегревания корпуса электроприборов.

Он присутствует как в технике, используемой в быту (цветных телевизорах, компьютерных мониторах), так и в специальном оборудовании, в основе которого заложено действие импульса (газовых лазерах, магнетронах, триодных генераторах, дифференцирующих трансформаторах).

Механизм действия и виды устройств

Работа импульсного трансформатора обеспечивается за счёт пары катушек, соединённых магнитоводом и имеющих обмотку различной конфигурации.

Количество витков на обмотке определяет мощность электрической энергии, получаемой на выходе.

Первичный контур обмотки принимает на себя однополярные импульсные сигналы. На ней же определяются импульсы с коротким временным интервалом, имеющие прямоугольную форму. Затем эти же импульсы находят отражение на вторичной обмотке. Принцип отражения является основным в работе всех ИТ.

Трансформаторы могут иметь различное устройство.

В зависимости от типа обмотки выделяют следующие разновидности прибора:

  • тороидальный,
  • стержневой,
  • броневой,
  • бронестержневой.

Импульсный трансформатор: принцип действия и функциональные особенности

Трансформатор представляет собой достаточно сложное техническое устройство, основной функцией которого служит преобразование определенных свойств и качеств электрической энергии, таких, как напряжение или крутящий момент. Также современный трансформатор способен превращать переменный ток в постоянный и наоборот.

Среди огромного разнообразия используемых в настоящее времяприборов особо следует выделить их импульсные разновидности.

Импульсный трансформатор широко используется в системах связи, ВТ, устройствах автоматики, для внесения изменений амплитуды импульсов, а также их полярности. Главное условие для успешной работы данного вида прибора состоит в том, что искажение сигнала, который передается с его помощью, должно быть минимальным.

Импульсный трансформатор основывается в своей деятельности на следующем принципе: в то время как на его вход поступают прямоугольные импульсы определенного напряжения, в первичной обмотке постепенно появляется электрический ток, сила которого постепенно начинает увеличиваться. Это, в свою очередь, повлечет за собой изменение магнитного поля и появление электродвижущей силы во вторичной обмотке. В этом случае искажения сигнала практически не происходит, а возможные потери тока настолько малы, что ими можно пренебречь.

Читайте также:  Мощный блок питания для трансивера трансформаторный

Что касается отрицательной части импульса, появление которой неизбежно в то время, как импульсный трансформатор выходит на проектную мощность, то его влияние можно свести к минимуму, установив простой диод во вторичную обмотку. Тем самым и здесь импульс станет максимально близким к прямоугольному.

Импульсный трансформатор отличается от других разновидностей данной технической системы тем, что работает исключительно в ненасыщенном режиме. Его магнитопровод изготавливается из специального сплава, который в обязательном порядке обладает значительной пропускной способностью магнитного поля.

Помимо импульсных, в современной энергетической и электронной промышленности используют следующие основные виды трансформаторов:

  1. Деятельность ни одного современного радиоприбора невозможна без силовых трансформаторов. Их деятельность многогранна: с одной стороны, они необходимы для того, чтобы приемники можно было запитывать от обычной сети с переменным током, а с другой, для того, чтобы повышать или понижать напряжение той или иной частоты в усилителях. С этой функцией связана и важная конструктивная особенность силовых трансформаторов – вместо стальных сердечников здесь используют вставки из магнетита или карбонильного железа.
  2. Еще одной разновидностью прибора, применяемого преимущественно в современных системах слежения и бортовых компьютерах самолетов, является вращающийся трансформатор. Его принцип действия заключается в том, что угол поворота рамки преобразуется в напряжение электрического тока. Внешне вращающийся трансформатор представляет собой небольшую электрическую машину, работающую исключительно от переменного тока. Кроме того, в зависимости от того, где эти трансформаторы применяются, они могут быть как двухполюсными, так и многополюсными.
  3. В зависимости от того, какой ток поступает на первичную обмотку, выделяют трансформаторы переменного и постоянного тока. Основной вид первого типа – автотрансформатор, который состоит исключительно из одной катушки, которая непосредственно включается в электрическую цепь. Данный вид приборов предназначен исключительно для понижения напряжения и только для очень маленьких токов. Трансформатор постоянного тока – это более сложный прибор, состоящий из динамомашины и двигателя. В этом случае первичный ток вырабатывается двигатель, а вторичный – динамомашиной, которая приводится в движение тем же электродвигателем. Нередко встречается ситуация, когда трансформатор постоянного тока представляет собой двигатель и динамомомашину, соединенные между собой одним металлическим каркасом. Делается это для экономии материала, а также для повышение качества работы прибора.

Преимущества импульсного трансформатора

Он имеет небольшие габариты, более стабилен в работе, дает качественное напряжение и независящее от параметров исходной синусоиды.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания на входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов.

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность. Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц. Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Схемы импульсных блоков питания

Схема импульсного блока питания содержит пять обязательных блоков плюс обратная связь.

Вариант импульсного источника питания с выходным напряжением 5 В и 12 В и разной полярности

Входной фильтр

Схема простейшего входного фильтра

Конденсаторы используются специальные — X-типа. Икс-конденсаторы были разработаны специально для этих целей. Они выдерживают мгновенные киловольтные всплески напряжения (до 2,5 кВ), гася тем самым помехи между фазой и нейтралью (противофазные помехи). Дроссель — это ферритовый сердечник с намотанными лакированными медными проводами. В нем наводятся токи, нейтрализующие токи помех.

Приведенная выше схема входного фильтра для импульсного источника питания не устраняет помехи, которые возникают между фазой и землей (корпусом) или между нейтралью и корпусом. Для их нейтрализации в схему добавляют два конденсатора Y-типа (которые выдерживают скачки напряжения до 5 кВ). Специальная конструкция Y-конденсатора гарантирует обрыв цепи, а не короткое замыкание, в случае выхода его из строя.

Оба типа конденсаторов (X и Y), который ставят во входных фильтрах, выполняют из специальных негорючих материалов, так как они могут греться до очень высоких температур и могут стать причиной пожара. Именно в этом, да еще в конструктивных особенностях кроется причина их высокой стоимости (по сравнению с обычными).

Схема для компенсации всех типов помех

Но для корректной работы этой схемы необходимо рабочее заземление. Его надо подключить к корпусу блока питания. Без заземления, корпус блока питания будет находиться под напряжением около 110 В. Ток будет очень маленьким, но прикосновения будут ощутимы.

Сетевой выпрямитель и сглаживающий фильтр

Как уже сказано выше, выпрямитель проводит предварительное выпрямление синусоиды. Если установлен один диод, он отсекает нижние (отрицательные) полуволны.

Сравнение однополупериодного и двухполупериодного выпрямителя.

В самом простом случае выпрямитель — диод Шоттки, но может использоваться и диодный мост с параллельно подключенным конденсатором. Для диодных мостов часто применяют обычные диоды типа 1N4007, но лучше все-таки устанавливать все те же диоды Шоттки. Они «быстрее», так что можно получить лучше результаты на выходе.

Несколько схем фильтров разной степени сложности

Один диод ставят в блоках питания к недорогой технике. На его выходе напряжение имеет вид идущих с некоторыми промежутками положительных полуволн. На выходе диодного моста пульсации намного ниже, так что такой выпрямитель ставят для более требовательных к питанию приборов. Пульсирующее напряжение с выхода диода/диодного моста подается на конденсатор (он должен быть рассчитан на напряжение 270-400 В), который из полуволн делает «зубчики». Тут уже получаем более-менее стабильное постоянное напряжение.

Инвертор или блок ключей

На следующем блоке выпрямленное напряжение преобразуется в импульсы. Частота импульсов высокая — от 10 до 50 кГц. Есть два способа реализации этих блоков: при помощи микросхем, на основе автогенератора (блокинг-генератора).

Еще одна блок-схема ИИП

Во втором случае используется пара транзисторов, которые включаются попеременно, формируя на выходе последовательность импульсов. Частота переключений задается генератором. Такие схемы встречаются и сейчас, но большинство реализуется на микросхемах.

Пример схемы инвертора на транзисторах

Если есть микросхема, зачем городить огород из нескольких десятков деталей. Тем более, что требуемый тип микросхем широко распространен и стоит немного. Это так называемые ШИМ-контроллеры ( TL494, UC384х, DH321, TL431, IR2151, IR2153 и др). К этим микросхемам надо добавить всего-лишь пару полевых транзисторов и несколько мелких деталей и получим требуемый инвертор.

Схема ИИП с ШИМ контроллером для обратноходового и полумостового преобразователей

ШИМ-контроллер отлично встраивается в любой тип схем. Он совместим с обратноходовыми, полумостовыми и мостовыми схемами выпрямителей. Естественно, отличается количество элементов, но все они простые и доступные.В обратноходовых схемах транзисторы должны быть рассчитаны на более высокое напряжение, чем подается на вход.

Устройство импульсного источника напряжения с ШИМ контроллером и двухтактным и мостовым выпрямителем

По полумостовым схемам построены импульсные блоки питания в осветительных приборах, в энергосберегающих и светодиодных лампах, электронный балласт для люминисцентных ламп (ЭПРА). Мостовые схемы применяют в более мощных блоках. Например, в сварочных инверторах.

Есть и более «серьезные» контроллеры, которые параллельно с работой, проверяют параметры входного и выходного напряжения и, при неисправностях, просто блокируют свою работу. Так как в импульсном блоке питания этот компонент, обычно, самый дорогой, это очень неплохо. Заменив неисправные детали (обычно резисторы или конденсаторы), получаем рабочий агрегат.

Читайте также:  Светодиодный светильник с блоком аварийного питания бап

Силовой трансформатор

Узел трансформатора на блоке питания является одним из самых стабильных. В этом блоке содержится небольшая группа элементов которая нейтрализует выброс тока, который возникает на обмотках трансформатора при смене полярностей.

Эта группа называется «снаббер».

Рассматриваемый блок обведен красным, а снаббер — зеленым

Трансформатор — один из самых надежных элементов. В нем очень редко возникают проблемы. Он может повредиться при пробое инвертора. В этом случае через обмотку течет слишком высокий ток, который и выводит из строя трансформатор.

Схема блока силового трансформатора для ИИП

Работает все это следующим образом:

  • На первом такте работы импульсного источника питания открыт ключ ВТ1 (полевой транзистор с индуцированным каналом n-типа). Ток течет через первичную обмотку трансформатора, заряд накапливается в сердечнике.
  • На втором такте ключ закрывается, ток течет во вторичной обмотке через диод VD2.
  • При переключении на первичной обмотке возникает выброс, который вызван неидеальностью деталей. Тут в работу вступает снаббер. Его задача поглотить этот выброс, так как напряжение может быть достаточно большим и может повредить ключевой транзистор, что приведет к неработоспособности схемы. Ток выброса течет через первичную обмотку трансформатора, диод VD1, через сопротивление R1 и емкость C2.
  • Далее полярность снова меняется, вступает в работу ключ ВТ1.

Номиналы выбираются исходя из параметров трансформатора. Подбор сложный, так что описывать его не имеет смысла. И еще: не во всех схемах есть снаббер, но его наличие увеличивает надежность и стабильность работы импульсного источника питания.

Несколько слов о диодах, которые используют в снабберах. Это может быть обычный диод, подобранный по параметрам, но более надежны схемы со стабилитроном. Еще может быть вариант без резистора и емкости, но с включенным навстречу супрессором (на схеме ниже).

Супрессор — это защитный диод, принцип работы похож на стабилитрон, вот только выравнивается импульсный ток и рассеиваемая мощность. Может быть несимметричный и симметричным.

Выходной выпрямитель и фильтр, стабилизатор

Наиболее простой и дешевый способ стабилизации используется в дешевых блоках питания — обратная связь на пассивных элементах. На схеме ниже, это два резистора R6 и R7, подключенные к вспомогательной обмотке силового трансформатора. Не слишком надежно, потому что есть влияние между обмотками, но просто и недорого.

Простой способ стабилизации

Второй вариант стабилизатора выходного напряжения сделан на стабилизаторе VD9 и оптроне HL1. Выходное напряжение складывается из падения на стабилитроне и напряжения на оптроне. Это чуть более надежная схема для ИИП средней мощности.

Стабилизация выхода ИИП при помощи стабилитрона и оптрона

Наиболее стабильные выходные показатели имеют схемы ИИП со стабилизатором TL431.

TL431 — интегральная схема трёхвыводного регулируемого параллельного стабилизатора напряжения с улучшенной температурной стабильностью. С внешним делителем TL431 способна стабилизировать напряжения от 2,5 до 36 В при токах до 100 мА.

ИБП с использованием микросхемы TL431 более сложные, но надежные. В таких схемах может быть подстроечный переменный резистор, который позволяет изменять выходное напряжение в небольших пределах. Обычно подстройка составляет не более 20%, так как в противном случае схема может быть нестабильной.

Схема со стабильным напряжением на выходе

Если подстройка выходного напряжения не нужна, лучше подстроечный резистор заменить обычным, так как переменные менее надежны.

Источник

Импульсный трансформатор

Импульсный трансформатор – трансформатор, предназначенный для преобразования тока и напряжения импульсных сигналов с минимальным искажением исходной формы импульса на выходе. Рассмотрим особенности конструктивного устройства этой техники, область применения, выпускаемые разновидности и другие характеристики, связанные с данным оборудованием.

  1. Конструкция и принцип работы
  2. Область применения
  3. Разновидности
  4. Стоимость трансформатора
  5. Преимущества и недостатки
  6. Порядок проверки исправности
  7. Процедура намотки

Конструкция и принцип работы

Импульсный трансформатор, по аналогии с другими идентичными устройствами, состоит из следующих элементов:

  • первичной и вторичной обмоток;
  • сердечника.

При подаче на входную катушку однополярных импульсов “е(t)” временной интервал между которыми довольно короткий, он вызывает возрастание индуктивности во время интервала t и , после чего наблюдается ее спад в интервале (Т-t и). Благодаря разнице в количестве витков на катушках входа и выхода и импульсному характеру подачи тока, получается добиться высокого коэффициента трансформации с сокращением габаритных размеров устройства.

Временная диаграмма

Одновременно решаются задачи измерения уровня и полярности токового импульса или характеристик по напряжению, согласования значения сопротивления аппарата, создающего сигналы, с потребляющим оборудованием, создание схем обратной связи и пр.,

Подключение импульсного трансформатора

Подключение импульсного трансформатора

Область применения

По большей части указанные трансформаторы применяются в импульсных устройствах:

Виды трансформаторов

  • газовых лазерах;
  • триодных генераторах;
  • дифференцирующих модулях;
  • магнетотронах и др.

Виды трансформаторов

Эти приборы используются в современном радиоэлектронном оборудовании, для источников питания импульсного типа, телевизорах, компьютерах и другой технике.

Ещё одна область использования устройств – в качестве защитных элементов при коротком замыкании в условиях холостого хода, чрезмерной нагрузке или избыточном нагреве.

Разновидности

В зависимости от конструктивных особенностей различают следующие разновидности импульсных трансформаторов:

Виды магнитопроводов

  • стержневые;
  • броневые;
  • тороидальные, с намоткой провода на изолированный сердечник, не предполагающие применения катушек;
  • бронестержневые.

Виды магнитопроводов

Поперечное сечение сердечника в большинстве устройств выполняется в форме круга или прямоугольника, по аналогии с силовыми аппаратами.

отличия

Основные характеристики устройств нанесены на корпус, поэтому из условного обозначения можно почерпнуть информацию об главных параметрах оборудования.

Стоимость трансформатора

Цена на единицу продукции может колебаться от 50 до 700 рублей и выше, в зависимости от характеристик устройства. При покупке учитывается производитель изделия и размер приобретаемой партии. Наиболее дешево обойдётся продукция китайского производства, массово представленная на рынке.

Импульсные трансформаторы – устройства, без которых невозможно представить современную бытовую технику и промышленное производство. Эти аппараты обладают рядом преимуществ, по сравнению с аналогичным оборудованием, но в некоторых случаях сопутствующие недостатки не позволяют их использовать.

Преимущества и недостатки

Использование импульсных трансформаторов объясняется следующими преимуществами:

Разобранный импульсный трансформатор

  • высокими показателями выходной мощности;
  • небольшой массой и габаритными размерами;
  • высокой эффективностью, благодаря снижению энергетических потерь;
  • меньшей ценой при сопоставимых характеристиках;
  • высокой надёжностью по причине наличия схем защиты.

Разобранный импульсный трансформатор

Малая масса достигается посредством возрастания частоты импульса. Это приводит к уменьшению объёма конденсаторов и простоте схемы выпрямления.

Возрастание коэффициента полезного действия обеспечивается, благодаря сокращению энергетических потерь.

Уменьшение габаритов связано со снижением количества использованных материалов. Это основная причина удешевления данной продукции. Ещё одно достоинство малых размеров – возможность применения устройства в малогабаритных электротехнических изделиях.

Недостатки связаны со сложностью в ремонте по причине отсутствия в схеме гальванической развязки наличии помех высокой частоты, в связи с особенностями конструкции и принципа действия устройства.

Чтобы предупредить влияние высокочастотных помех, нередко приходится прибегать к использованию специальных защитных средств, если применяется оборудование, для которого такие факторы нежелательны. В некоторых случаях, в связи с помехами, применение импульсных трансформаторов оказывается невозможным.

Порядок проверки исправности

Для проверки исправности импульсного трансформатора используется аналоговый или цифровой мультиметр. Цифровое устройство обладает преимуществами, благодаря удобству применения. Его не нужно дополнительно подстраивать, достаточно убедиться в наличии питания и целостности проводов подключения.

Аналоговый мультиметр настраивается следующим образом:

  • выбирается режим эксплуатации переключением в область минимальной величины сопротивления при измерении;
  • провода вставляются в контакты прибора и соприкасаются друг с другом;
  • специальной подстройкой стрелка выставляется на ноль;

Если совместить стрелку с нулём не получается, это говорит о проблемах с элементами питания, нуждающимися в замене.

Если трансформатор является составной частью некоторого аппарата, желательно отделить этот элемент от остальной конструкции, чтобы исключить воздействие сопутствующих помех при диагностике.

Проверка с помощью осцилографа:

Неисправность прибора может объясняться следующими проблемами:

  • повреждённым сердечником;
  • подгоревшими соединениями;
  • нарушением изоляции проводов, вызывающим короткое замыкание обмотки;
  • разрывом провода.

Кроме инструментальных измерений, необходимо обращать внимание на внешний вид аппарата. О неисправности может свидетельствовать подгоревшая обмотка, следы гари и соответствующий запах.

Процедура намотки

Если провод входной или выходной катушки не пригоден для дальнейшей эксплуатации, трансформатор можно перемотать. Для этого подбирается провод с двойной или тройной изоляцией, который необходимо намотать на сердечник.

Операция выполняется в следующем порядке:

  • наматывается провод первичной катушки, после предварительного припаивания входного контакта. Витки наматываются равномерно и плотно;
  • выходной конец провода припаивается в положенном месте;
  • наносится изоляция в несколько слоёв;
  • наматывается вторичная обмотка, с припаиванием входного и выходного концов.
Читайте также:  Блок питания be quiet 650

Чтобы устройство работало нормально, провод наматывается равномерно, исключив узлы и перекручивания. Количество витков устанавливают, исходя из проведённого расчёта по характеристикам устройства.

Источник

Обзор импульсных блоков питания и электронных трансформаторов. Часть 1

В продолжение темы Электронные трансформаторы на сайте ПАЯЛЬНИК начинается серия статей, в которых будут тестироваться как Электронные Трансформаторы, так и Импульсные Блоки Питания, купленные администрацией сайта на площадке AliExpress специально для этих целей.

Под «Электронными Трансформаторами» подразумеваются устройства с переменным напряжением на входе и переменным напряжением на выходе, а под «Импульсными Блоками Питания» — с переменным напряжением на входе и постоянным стабилизированным напряжением (или током) на выходе.

Сначала все устройства кратковременно (10…30 минут) проверялись на максимальных заявленных токах, потом некоторым преобразователям нагрузка уменьшалась, так как они сильно нагревались, и затем проводились дальнейшие эксперименты.

Нагрузкой в основном были резисторы ПЭВ-15. ПЭВ-50, набранные до нужного сопротивления или галогенные лампы разной мощности. Ток контролировался по падению напряжения на резисторе 0,1 Ом. Графики снимались с помощью программы SpectraPLUS и звуковой карты с открытыми входами.

Первый импульсный блок питания — бескорпусный AC/DC 220/24, 3 Вт

Внешний вид показан на рисунке 1, а плата более подробно — на рисунке 2. Под трансформатором видна цифробуквенная маркировка «B02B» и «20180403». Возможно, что последнее – это дата изготовления печатной платы.

Принципиальная схема показана на рис.3 (ёмкость керамических конденсаторов неизвестна, но примерное их значение можно определить по другим подобным схемам). Микросхема преобразователь – OB2512NJP. Частота преобразования – около 35 кГц. Какие-либо элементы защиты и фильтрации в высоковольтной части отсутствуют – скорее всего, подразумевается установка модуля в плату, где они уже присутствуют.

Преобразователь был нагружен на нагрузку, обеспечивающую ток 0,12 А (2,88 Вт) и проработал с ней около 3-х часов. Трансформатор Tr1 нагрелся примерно до 40-45 градусов. При изменении напряжения питания в пределах от 180 В до 240 В выходное напряжение менялось в пределах +/- 35 мВ (рис.4). Уровень ВЧ пульсаций в выходном напряжении зависит от тока нагрузки и при 0,12 А превышает 250 мВ.

При нагрузке 3 Вт и напряжении питания 240 В в выходном напряжении появлялись пульсации 100 Гц – видимо, преобразователь начинал «уходить в защиту».

На наклейке написано 12 В и 5 A . Внешний вид показан на рисунке 5, вид на внутренности и обратная сторона печатной платы на рисунке 6. Плата имеет маркировку «NxPs60W-V02A».

Вид на детали более подробно на рисунках 7, 8 и 9.

При вынимании печатной платы из корпуса оказалось, что силовой транзистор KF5N60F приклеен к алюминиевой стенке корпуса на силиконовый герметик (тот, что с характерным уксусным запахом). Герметик нанесён неровно и таким толстым слоем (рис.10), что прижимная пластина не смогла обеспечить нормальный прижим транзистора к стенке корпуса.

Второй транзистор (CS5N60F, рис.11) «был посажен» на обычную белую термопасту и намного лучше прижат к алюминиевой стенке.

Схема этого блока питания показана на рисунке 12. Необычные маркировочные обозначения деталей (E, MOS, DO) оставлены «родные». Интересно включение полевого транзистора DO в качестве выпрямительного диода во вторичной цепи преобразователя.

При токе в нагрузке 5 А и при изменении сетевого напряжения от 180 В до 240 В выходное напряжение 12,3 В было очень стабильно, мультиметр ВР-11А изменений не видел, т.е. они не более нескольких милливольт (рис.13). На рисунке 14 показано, в каких пределах менялось выходное напряжение при изменении сопротивления подстроечного резистора VR – от 11,41 В до 13,14 В. Пульсации на выходе при токе в нагрузке 5 А не более 200 мВ, их частота следования около 63 кГц.

Глядя на транзисторы, видно, что такой способ их прижима неправилен из-за того, что алюминиевая стенка корпуса имеет толщину всего 1,2 мм и прогибается под головкой винта, что приводит к искривлению плоскости стенки. Решить эту проблему можно, подложив под головку винта большую толстую пластину (рис.15). Для дополнительного охлаждения транзисторов пластину можно заменить радиатором – «выпрямительный» транзистор CS5N60 при токе 5 А нагревается достаточно быстро (наклейку в этом случае следует убрать).

Далее — бескорпусный блок питания AC/DC 220/24, 1 A

Внешний вид – на рисунке 16. Маркировка печатной платы — «GMY-001F». Имеет заявленные выходные параметры 24 В и 1 А (24 Вт). Схема приведена на рисунке 17.

При изменении входного напряжения, мультиметр изменений в выходном +24,13 В не заметил (рис.18).

Уровень пульсаций не превышает 100 мВ при токе в нагрузке 0,7 А (рис.19) и менее 50 мВ при токе 1 А. И при этом пульсации носят низкочастотный характер – анализатор спектра определил их как колоколообразные полосы с центральными частотами 750 Гц при токе 0,7 А и 600 Гц при 1 А.

Ещё один блок питания — AC/DC 220/24, 1,5 A

Внешне похож на предыдущий, но имеет другую схемотехнику и, соответственно, маркировку печатной платы — «XPJ-030» (рис.20, 21, 22). На АЛИ выставлена фотография с маркировкой «GMY-030». Заявленные параметры — 24 В и 1,5 А (36 Вт). Схема приведена на рисунке 23. Даташит на микросхему ШИМ контроллера (с нанесёнными надписями «63J04a» и «909») найти не удалось, но по выводам и схемотехническому включения она очень похожа на FAN6862.

При токе в нагрузке 1,5 А и изменении питающего напряжения от 180 В до 240 В, в выходном напряжении +24,3 В мультиметр никаких изменений не видит (рис.24). ВЧ пульсации не более 20 милливольт. После двух часов работы преобразователь сильно нагрелся.

Два электронных трансформатора «YAM» AC/AC 220/12

Первый — модель «YMET80C» (рис.25) с выходным переменным напряжением 12 В и заявленной на этикетке мощность 80 Вт (ток 6,7 А). Маркировка печатной платы «JM-792A». Схема на рисунке 26.

Второй преобразователь — модель «YLET60C» (рис.27). Те же 12 В «переменки» на выходе, но указана меньшая мощность — 60 Вт (ток 5 А). В пластиковом корпусе отсутствуют какие-либо отверстия для вентиляции и при кажущейся внешней аккуратности, на печатной плате были обнаружены брызги припоя и повреждённая изоляция вторичной обмотки трансформатора. На фотографии со стороны дорожек видны капля, замыкающая коллектор Т2 с правым выводом R2 и «длинная сопля» между его же эмиттером и тем же правым выводом R2. Маркировка печатной платы «JM-797». Схема – на рисунке 28.

Оба преобразователя при первых включениях не заработали. У «YMET80C» был сколот край корпуса динистора (возможно, что это я «зацепил» его пинцетом, когда выпаивал соседние резисторы, но изгибов выводов не было – стоял ровно и на некотором расстоянии от платы), а в «YLET60C», скорее всего, были установлены транзисторы без защитных диодов и они оба «ушли в обрыв». После замены транзисторов и установки диодов (как на рис.26), «YLET60C» запустился и проработав около получаса с током в нагрузке 5 А сильно нагрелся. Далее ток был уменьшен до 4,5 А и был снят график стабильности выходного переменного напряжения и просмотрена его форма (рис.29). Видно, что никакой стабильности нет, так как нет никаких цепей стабилизации, и видно, что выходное напряжение состоит из 100-герцовых пачек, заполненных импульсами частотой около 70 кГц (сигнал в звуковую карту брался через случайный делитель и для сдвига спектра пропущен через смеситель, поэтому шкала вольт не соответствует действительности и, возможно, что и разница в амплитудах полуволн с этим связана).

После перестановки рабочего динистора в «YMET80C», тот тоже заработал. Частота преобразования около 55 кГц, выходное напряжение зависит от тока нагрузки и находится в пределах 11,5 В…12,5 В и имеет такой же вид, как и у «YLET60C». Этот преобразователь тоже сильно греется. Даже не верится, что в корпусах без охлаждения они долго проработают при указанных на них мощностях. Возможно, что в данных случаях указана или кратковременная мощность, или максимально возможная потребляемая от сети 220 В.

Источник