Меню

Высокочастотный фильтр для блока питания

ЭМП-фильтры для контроллеров импульсных DC/DC источников питания

Чтобы обеспечить высокую эффективность, потери мощности у современных источников питания (ИП) должны быть невелики. Современные импульсные ИП и контроллеры импульсных DC/DC источников питания обеспечивают высокую эффективность, но если используемая схема и топология печатной платы не отвечают строгим требованиям, напряжение радиопомех может вырасти. В статье обсуждается реализация входных и выходных фильтров, позволяющих уменьшить помехи в DC/DC-преобразователях ИП.

Необходимость во входном фильтре

Измерение напряжения помех

Прежде всего, следует определить тип проектируемого входного фильтра с учетом разницы между дифференциальным и синфазным шумом. Для подавления дифференциального шума фильтр устанавливают на вход импульсного контроллера. Еще на этапе проектирования фильтра напряжение помех можно измерять с помощью схемы стабилизации импеданса линии (LISN) и анализатора спектра. На рисунке 1 показана применяемая в таких случаях схема испытаний. С ее помощью измеряются дифференциальные шумы, т. к. опорным напряжением является потенциал земли импульсного ИП, а не шина заземления.

Рис. 1. Схема для испытаний

Схема LISN служит для развязки переменного напряжения помех. Внутренний фильтр нижних частот LISN-схемы предотвращает сбои в работе других электронных устройств, которые подключены к общему источнику питания. На рисунке 2 показана осциллограмма напряжения помех VNOISE (дБмкВ) понижающего DC/DC-контроллера, который работает на коммутационной частоте 2 МГц; входное напряжение составляет 10 В, а эффективное значение входного тока равно 07 А.

Рис. 2. Напряжение помех в отсутствие входного фильтра

Величина напряжения помех VNOISE определяется следующей формулой:

Из рисунка 2 видно, что основная гармоника соответствует частоте переключения. Амплитуда гармоник в верхнем мегагерцовом диапазоне становится меньше, но все-таки превышает пороговую величину. При 116 дБмкВ у основной гармоники – максимальная амплитуда. Таким образом, VRIPPLE можно определить следующим образом:

Поскольку VRIPPLE = 631 мВ, это значит, что на входе требуется фильтр.

Влияние управляющего контура

Рис. 3. Схема фильтра

Прежде всего, следует выбрать собственную резонансную частоту дросселя, поскольку он теряет фильтрующую способность в верхнем частотном диапазоне из-за паразитной емкости. Во избежание насыщения сердечника его допустимый ток должен превышать пиковый ток на входе, по крайней мере, на 10%. С этой целью рекомендуется использовать резистор RDC, который позволяет минимизировать падение постоянного напряжения. Далее выбирается величина индуктивности с учетом того, что частота среза фильтра равна 1/10 от значения коммутационной частоты контроллера, т. е. намного меньше частоты среза импульсного контроллера, благодаря чему ослабляется амплитуда основной и большей части других гармоник. Поскольку у высококачественного фильтра резонанс имеет ярко выраженный характер, этот эффект необходимо ослабить.

Чтобы обеспечить стабильную работу контура контроллера импульсного источника питания, необходимо разнести рабочую частоту преобразователя и резонансную частоту фильтра. При совпадении этих частот на входе контроллера появляются колебания, из-за которых он теряет способность быстро менять величину входного напряжения. Причина такого поведения – в отрицательном входном сопротивлении контроллера импульсного ИП. Т еоретически, равенство POUT = PIN применимо и к контроллеру. Это значит, что при неизменных начальных условиях входной ток контроллера IIN уменьшается с увеличением входного напряжения UIN, что обусловлено наличием отрицательного входного сопротивления контроллера ZIN:

Читайте также:  Как зарядить акб от блока питания шуруповерта

Поскольку это соотношение получено на основе анализа больших сигналов, а в контроллере импульсного ИП используются зависящие от частоты компоненты, величина входного сопротивления является динамической, и потому требуется анализ поведения системы при малых сигналах. Рекомендуется, чтобы выходной импеданс входного фильтра ZFILTER был намного меньше входного импеданса контроллера ZIN: ZFILTER

Источник



Простые практические варианты сетевого фильтра ВЧ-помех для самостоятельного изготовления

Для различной радиоэлектронной аппаратуры рекомендуется применение сетевых фильтров. Например, для аудио или телевизионной аппаратуры, измерительных приборов, компьютерных мониторов и других подобных устройств, чувствительных к сетевым помехам. В аппаратуре хорошего качества такие фильтры, как правило, заранее предусмотрены и уже установлены производителем (например, в компьютерных блоках питания).

Если же такого фильтра в составе аппарата нет, то его простейший вариант не сложно сделать самостоятельно.

Задача такого фильтра — исключить или значительно снизить уровень высокочастотных помех, которые могут присутствовать в электрической цепи переменного тока 230 вольт. Принцип работы основан на взаимной компенсации высокочастотных колебаний в двух проводах сетевого питания («нулевом» и «фазном»). В данной статье будут приведены практические примеры самых простых вариантов подобных фильтров.

На первом рисунке показан вариант фильтра, который включается между входом сетевого провода, предохранителями и выводами первичной обмотки «силового» трансформатора электронного устройства. Такой фильтр можно намотать, например, на ферритовом кольце (магнитопроводе) размерами около К28х16х9 из феррита марки М2000НМ.

Провод для намотки может быть марки МГШВ, ПЭЛ, ПЭВ, ПЭЛШО, сечением 0,2 … 1,0 мм.кв. В принципе, для этого подойдёт любой провод достаточного сечения в изоляции. Размеры магнитопровода и сечение провода для намотки зависят от мощности, потребляемой устройством от сети.

Обе обмотки лучше мотать одновременно в два провода (смотрите рисунок ниже), сложенных вместе, до полного заполнения «кольца» (обычно это от 8 до 20 витков). При подключении такого дросселя важно соблюдать начало и конец намотки (на схеме начало намотки отмечено точкой).

Второй вариант ещё проще и не предполагает даже разборки самого электронного устройства. В этом случае потребуется магнитопровод (ферритовое кольцо) большего типоразмера, а «обмоткой» будет служить сам сетевой шнур (смотрите рисунки ниже). Сетевой шнур следует обрезать как можно ближе к корпусу электронного прибора, намотать им порядка 8 витков на кольце, а затем снова соединить.

Источник

Как устроен сетевой фильтр и что у него внутри?

Как устроен сетевой фильтр и что у него внутри?

Аватар пользователя

Содержание

Содержание

Наверняка в каждом доме найдется сетевой фильтр, а может даже не один. При этом мало кто серьезно задумывается, зачем он нужен и какие функции выполняет. В данном материале рассмотрим устройство «безмолвного» защитника и назначение его компонентов.

Зачем нужен сетевой фильтр

Прежде чем начать препарировать сетевой фильтр, нужно определиться с проблематикой. Так ли он нужен и может можно без него обойтись?

Современная квартира полна разной электронной техники, которая подключается к обычной электрической розетке. В розетке как раз и кроется основная угроза для «здоровья» техники. Дело в том, что форма питающего напряжения далека от идеала, известного из учебников физики. Помимо основной, «правильной» синусоиды, в ней присутствует огромное количество различных помех, наводок и возмущений, оказывающих негативное влияние на работу электронных компонентов устройств. Природа этих помех многогранна, но, если коротко, то основные причины кроются в следующем:

  • работа импульсных преобразователей и блоков питания, дающих часть «шума» в общую сеть;
  • неравномерность нагрузки общей системы электроснабжения, в которой то и дело включают мощных потребителей (электродвигатели; сварочные трансформаторы, микроволновки и т. д.);
  • природные явления, в частности грозы, вызывающие в проводниках электросети импульсы высокого напряжения;
  • нелинейность нагрузки, что приводит к некоторой разбалансировке питающих сетей, в результате чего между фазным и нейтральным проводом возникают токи высоких гармоник, существенно искажающих эталонную синусоиду как по форме, так и по величине.
Читайте также:  Какой блок питания от компьютера подойдет для автомагнитолы

Если подойти к решению вопроса по созданию комфортных условий для работы техники кардинально, то наилучшим решением будет установка на ввод электропитания в жилище стабилизатора и фильтров помех. Но такое решение громоздко и достаточно дорого. Компромиссом являются сетевые фильтры для бытовой техники. В них удачно сочетаются невысокая стоимость и необходимый уровень защиты.

Устройство сетевого фильтра

В зависимости от комплектации и ценовой категории сетевого фильтра, в нем могут быть установлены различные компоненты, являющиеся элементами тех или иных видов защиты. На данном этапе познакомимся с максимальной комплектацией сетевого фильтра.

Итак, «правильный» сетевой фильтр должен содержать в своем составе следующие элементы.

Кнопка включения

Подает питающее напряжение на группу розеток. Функционал достаточно простой — банальное включение и отключение напряжения для всех устройств, подключенных к фильтру. Может совмещать в себе функции предохранителя, вызывая обесточивание розеток при необходимости.

Если нужна более гибкая конфигурация фильтра — есть модели с индивидуальными кнопками для каждой розетки.

С точки зрения безопасности наиболее правильными считаются широкие кнопки, одновременно размыкающие линейный и нейтральный проводники. Так фаза никогда не появится на контактах при отключенной кнопке.

Предохранитель

Основная задача предохранителя — защита питающей сети от коротких замыканий в цепях потребителей, а также отключение устройств при превышении расчетной мощности, на которую спроектирован сетевой фильтр. Значения мощности и допустимого тока указываются на информационной табличке, нанесенной на корпус устройства.

Предохранитель состоит из биметаллической пластинки, разрывающей цепь питания при превышении заданной температуры, обусловленной протеканием по цепям токов больших величин. Восстановить цепь можно спустя некоторое время, необходимое для отключения неисправного устройства и остывания биметаллической пластины, просто нажав на кнопку предохранителя.

Варистор

Варистор выполняет в устройстве функцию защиты от импульсного (кратковременного) перенапряжения, вызванного помехами или грозовыми разрядами.

Физически он представляет собой переменный резистор, сопротивление которого резко меняется при достижении определенного порогового значения напряжения. Причем чем выше напряжение порогового значения, тем меньше сопротивление элемента. Таким образом, при прохождении импульса высокого напряжения, варистор шунтирует цепь и вызывает срабатывание предохранителя. При этом, как правило, элемент приходит в негодность.

Конденсатор

Основная задача конденсатора — отсечь от нагрузки высокочастотную помеху, возникающую между фазным и нейтральным проводниками, и вернуть ее обратно в сеть, поскольку он является прекрасным проводником сигналов высокой частоты.

Читайте также:  Распайка usb блока питания

Как правило, для защиты используются конденсаторы, рассчитанные на работу с напряжением питающей сети до 250 В и способные «пережить» кратковременный его всплеск до 2,5 кВ. Обычно емкость используемых конденсаторов находится в диапазоне от 0,1 мкФ до 1 мкФ.

Дроссель

Из курса электротехники известно, что с ростом частоты растет и реактивное сопротивление катушки индуктивности. Она просто не способна пропустить через себя высокочастотные помехи, поскольку они в ней, что называется, «вязнут» и преобразовываются в тепло. Если катушка намотана на ферритовый сердечник, то ее способность противостоять высокочастотным помехам только усиливается.

Свойства дросселя и конденсатора нашли широкое применение в борьбе с помехами высокой частоты, а именно в LC-фильтрах, являющихся недорогим и достаточно эффективным способом противостояния паразитным возмущениям.

Катушка за счет своего индуктивного сопротивления не пропускает к розеткам фильтра высокочастотные помехи, зато их хорошо проводит конденсатор, возвращая их обратно в сеть.

Как работает сетевой фильтр

Работа сетевого фильтра в плане «очистки» от помех и импульсов высокого напряжения наглядно показана на схеме.

В итоге, «грязное» напряжение, пройдя последовательно через функциональные блоки сетевого фильтра, очищается от помех и попадает на сетевые розетки устройства с пригодными для работы подключенных потребителей параметрами.

Источник

Фильтр сетевой наводки 50 Гц

Здравствуйте, уважаемые авторы, журналисты и читатели !

Расскажу о своей самоделке.

Это фильтр сетевой наводки 50 герц.

Чем он может быть полезен.

Любой, кто занимается усилителями, звуковой и измерительной аппаратурой, знает, что такое фон переменного тока. Избавиться от него бывает сложно.

За основу я взял двойной Т мост.

Принцип его работы и расчёт элементов достаточно сложен.
Это описано в разных источниках, при желании можно почитать.

При точной настройке он может сильно ослабить помеху, а также не вносить шумов, поскольку в его схеме нет полупроводников (транзисторов).

И не требует источника питания. Имеет небольшие габариты.

Это — принципиальная схема.

Я указал на самоделке вход и выход. Хотя предполагаю, что они обратимы, не проверял, не было надобности.

Были использованы следующие детали :

Три одинаковых конденсатора КМБП и шесть резисторов МЛТ 0,125 Вт. На схеме я показал всего три резистора, а на фото шесть. Это связано с тем, что у меня не было точных номиналов и пришлось по цифровому мультиметру подбирать путём параллельного соединения.

Припой, небольшой кусочек нефольгированного текстолита, немного клея и монтажного провода и припоя.

Инструменты:

Паяльник, кусачки, ножницы, пинцет и скальпель.

При повторении конструкции следует учесть следующее.

Конденсаторы можно брать КМПБ, МБМ и другие, кроме керамических и оксидных (электролитических). У этих типов сильная зависимость ёмкости от температуры.

Если есть возможность, подберите номиналы деталей по цифровому прибору. От точности подбора зависит качество подавления сетевой наводки 50 Гц.

Или смотрите на процентную точность номинала деталей. +/- 5 % уже даёт хорошее качество подавления помехи.

На графике я показал АЧХ устройства. Конечно, на практике она несколько плавнее.

В заключение добавлю. Изменив номиналы деталей, фильтр можно изготовить для подавления помехи другой частоты.

Источник