Меню

Цвета блока питания монитора

Цвета блока питания монитора

Что может быть сломано

Причин много, и они бывают разными по степени сложности. От разбитой матрицы, до неисправности инвертора.

  1. Монитор гаснет при включении;
  2. Не включается;
  3. Полосы на экране;
  4. Выключается через несколько минут работы;
  5. Во время работы издает разные звуки и выключается.

Визуальный осмотр

Это один из главных факторов хорошей диагностики. Обратите внимание на шнур питания, в порядке ли он? Нет ли повреждений изоляции, сильно согнутых участков провода? После вскрытия блока питания и монитора нужно внимательно осмотреть все внутренности устройства. Особое внимание уделите на предмет наличия вздутых конденсаторов, обугленных резисторов или на наличие плохой пайки контактов.

Если на мониторе имеются глубокие трещины как от удара, и он не включается, то это это значит, что матрица скорее всего повреждена. В таком случае ремонт практически не рентабелен, цена новой матрицы чаше всего равна 70% от стоимости, а доноров очень мало.

Необходимые инструменты для ремонта

Понадобятся отвертки, пластиковые медиаторы для разборки монитора.

Также нужен паяльник, припой, оплетка, мультиметр и новые детали, которые понадобятся после диагностики.

Техника безопасности

После разборки монитора нельзя трогать детали и контакты на обратной стороне платы. В первую очередь обратите внимание на электролитические конденсаторы. Они могут быть заряжены до опасных значений напряжения, несмотря на то, что визуально целые.

С помощью мультиметра в режиме измерения постоянного напряжения измерьте его на конденсаторах. Если напряжение хотя бы на одном электролитическом конденсаторе выше, чем 0, его надо обязательно разрядить.

Лучше всего разряжать конденсаторы через лампочки накала. Они заберут через себя всю емкость, и загорятся на несколько секунд. Некоторые радиолюбители исполняют отвертку, но это не самый лучший выбор. Появится хлопок или искра, которые могут повредить рядом находящиеся детали от резкого движения отверткой.

Если вы обнаружили, что вышел из строя только предохранитель — это не повод сразу его менять и включать монитор в сеть. Проверьте все компоненты платы неисправность. Перед включением в сеть 220 В подключите через вилку лампочку накала на 40 Вт. Она подействует как предохранитель. Если монитор неисправен — лампочка загорится и зашунтирует короткое замыкание.

Как разобрать монитор

Большинство мониторов крепятся на болтики, однако некоторые могут вскрываться только через клипсы. Поэтому, перед самостоятельной разборкой, поищите в интернете модель своего монитора и мануал по разборке, чтобы случайно его не повредить.

Монитор не включается

вообще, хотя индикатор питания может мигать. При этом монитор загорается на секунду и тухнет, включается и сразу выключается. При этом не помогают передергивания кабеля, танцы с бубном и прочие шалости. Метод простукивания монитора нервной рукой обычно тоже не помогает, так что даже не старайтесь. Причиной такой неисправности ЖК мониторов чаще всего является выход из строя платы источника питания, если он встроен в монитор.

Последнее время стали модными мониторы с внешним источником питания. Это хорошо, потому что пользователь может просто поменять источник питания, в случае поломки. Если внешнего источника питания нет, то придется разбирать монитор и искать неисправность на плате. Разобрать ЖК монитор в большинстве случаев труда не представляет, но нужно помнить о технике безопасности.

Перед тем, как чинить бедолагу, дайте ему постоять минут 10, отключенным от сети. За это время успеет разрядиться высоковольтный конденсатор. ВНИМАНИЕ! ОПАСНО ДЛЯ ЖИЗНИ, если сгорел и ШИМ-транзистор! В этом случае высоковольтный конденсатор разряжаться не будет за приемлемое время.

Поэтому ВСЕМ перед ремонтом проверить напряжение на нем! Если опасное напряжение осталось, то нужно разрядить конденсатор вручную через изолированный около 10 кОм в течение 10 сек. Если Вы вдруг решили замкнуть выводы , то берегите глаза от искр!

Далее приступаем к осмотру платы блока питания монитора и меняем все сгоревшие детали – это обычно вздутые конденсаторы, перегоревшие предохранители, транзисторы и прочие элементы. Также ОБЯЗАТЕЛЬНО нужно пропаять плату или хотя бы осмотреть под микроскопом пайку на предмет микротрещин.

По своему опыту скажу – если монитору более 2 лет – то 90 %, что будут микротрещины в пайке, особенно это касается мониторов LG, BenQ, Acer и Samsung. Чем дешевле монитор, тем хуже его делают на заводе. Вплоть до того, что не вымывают активный флюс – что приводит к выходу из строя монитора спустя год-два. Да-да, как раз когда кончается гарантия.

Мигает или гаснет изображение

При включении монитора. Это чудо напрямую нам указывает на неисправность блока питания.

Конечно, первым делом нужно проверить кабели питания и сигнала – они должны надежно крепиться в разъемах. Мигающее изображение на мониторе говорит нам о том, что источник напряжения подсветки монитора постоянно соскакивает с рабочего режима.

Чаще всего причина тому – вздутые электролитические конденсаторы, микротрещины в пайке и неисправная . Вздутые конденсаторы чаще всего стоят 820 мкФ 16 В, их можно заменить на большую емкость и большее напряжение, например на али самые дешевые и надежные — это конденсаторы и конденсаторы . Есть подешевле из приличных (но обязательно на 105 градусов) . Все остальное из Китая долго не прослужит.

Самопроизвольно выключается

по истечении времени или включается не сразу. В этом случае опять три частые неисправности ЖК мониторов в порядке частоты появления — вздутые электролиты, микротрещины в плате, неисправная микросхема .

При этой неисправности также может быть слышен высокочастотный писк трансформатора подсветки. Он обычно работает на частотах от 30 до 150 кГц. Если режим его работы нарушается, колебания могут происходить в слышимом диапазоне частот.

Отсутствие подсветки матрицы

Если изображение на дисплее ,на первый взгляд, отсутствует. Но при этом индикатор питания горит, попробуйте посмотреть на монитор сверху или сбоку. В том случае, если под таким углом просматривается тусклое подобие изображения, у вас проблемы с матрицей или перегорел инвертор.

Замена матрицы монитора — очень тонкая работа. Поэтому не стоит делать это собственноручно. Особенно если вы не обладаете достаточными знаниями. То же самое касается и замены матрицы ноутбуков.

Источник



Изучаем блок питания и инвертор ламп подсветки ЖК-монитора.

Изучаем блок питания и инвертор ламп подсветки ЖК-монитора.

Наиболее ремонтопригодным и поэтому интересным в плане изучения, является блок питания ЖК-монитора. Назначение его элементов и схемотехника более конкретны и легче в понимании. По статистике ремонта неисправности блоков питания, особенно импульсных, занимают лидирующие позиции среди всех остальных. Практические знания по принципам построения и работы блоков питания, его элементной базы и схемотехники будут особенно полезны и востребованы в практике ремонта подавляющего большинства электронных устройств и различной радиоаппаратуры.

Блок питания ЖК-монитора состоит из двух функциональных частей (по сути это два преобразователя):
— AC/DC адаптер или по-другому сетевой импульсный блок питания;
— DC/AC инвертор, обеспечивающий питание люминесцентных ламп подсветки.
AC/DC адаптер служит для преобразования переменного напряжения сети (220 В) в постоянное напряжение небольшой величины (обычно на выходе импульсного блока питания формируются напряжения от 3,3 до 12 В). Инвертор DC/AC преобразует полученное постоянное напряжение (DC) в переменное (AC) величиной около 600 — 700 В и частотой около 50 кГц, которое подаётся на электроды люминесцентных ламп, встроенных в ЖК-панель.

AC/DC адаптер. Большинство импульсных блоков питания строится на базе специализированных микросхем контроллеров, например, в блоке питания ЖК монитора Acer AL1716 (рис. 1) применена микросхема TOP244Y (в документации на микросхему TOP244Y можно найти типовые примеры принципиальных схем блоков питания, что можно использовать при ремонте блоков питания ЖК мониторов, так как схемы во многом соответствуют типовым, которые указаны в описании микросхемы). На рис. 1 и рис. 2 рассмотрены два примера принципиальных схем импульсных блоков питания на базе микросхем серии TOP242 — 249.

QIP Shot - Image: 2016-07-22 12:10:28
Рис. 1.

QIP Shot - Image: 2016-07-22 12:11:42

В схеме на рис. 2 применены сдвоенные диоды с барьером Шоттки (MBR 20100). Аналогичные диодные сборки (SRF5-04) применены в блоке питания (рис. 3) монитора Acer AL1716 (приведённые принципиальные схемы являются примерами, а реальные схемы импульсных блоков питания могут несколько отличаться).

QIP Shot - Image: 2016-07-22 12:18:58

Микросхема TOP245Y (рис. 3) представляет собой законченный функциональный прибор, в корпусе которого имеется ШИМ-контроллер и мощный полевой транзистор, который переключается с частотой от десятков до сотен килогерц и формирует импульсы в первичной обмотке трансформатора (отсюда пошло и название блок питания — импульсный).
Процесс работы такого импульсного блока питания сводится к следующему:
1) Выпрямление переменного сетевого напряжения 220В.
Выпрямление сетевого напряжения 220В выполняет диодный мост и фильтрующий конденсатор. После выпрямления на конденсаторе формируется напряжение немного больше чем сетевое. На рис. 3 показан диодный мост, а рядом фильтрующий электролитический конденсатор (емкостью 82 мкФ 450 В).
2) Преобразование напряжения и его понижение с помощью трансформатора.
Коммутацию постоянного напряжения 220-240 В с частотой в несколько десятков — сотен килогерц в обмотку высокочастотного импульсного трансформатора выполняет микросхема TOP245Y (рис. 3). Импульсный трансформатор выполняет ту же роль, что и обычный трансформатор, но работает он на более высоких частотах, во много раз больше, чем 50 Гц (поэтому для изготовления его обмоток требуется меньшее число витков, а, следовательно, и меди). В импульсном трансформаторе необходим сердечник из феррита, а не из трансформаторной стали как у трансформаторов на 50 Гц. В результате трансформатор получается очень компактным. Кроме того, импульсные блоки питания очень экономичны и у них высокий КПД.
3) Выпрямление пониженного трансформатором переменного напряжения. Для выпрямления пониженного переменного напряжения используют мощные выпрямительные диоды, в нашем примере (см. рис. 3) использованы диодные сборки с маркировкой SRF5-04. Для выпрямления токов высокой частоты используют диоды Шоттки и обычные силовые диоды с p-n переходом (обычные низкочастотные диоды для выпрямления токов высокой частоты менее предпочтительны, но часто используются для выпрямления повышенных напряжений (20 — 50 В), что нужно иметь ввиду при замене дефектных диодов.
У диодов Шоттки тоже есть некоторые особенности, которые необходимо учитывать. Эти диоды имеют малую ёмкость перехода и способны быстро переключаться (переходить из открытого состояния в закрытое). Это положительное свойство и используется для работы на высоких частотах. Диоды Шоттки имеют малое падения напряжения около 0,2-0,4 В (против 0,6 — 0,7 В у обычных диодов). Это свойство повышает их КПД. Но есть у диодов Шоттки и негативные свойства, которые ограничивают их более широкое использование в электронной технике — они очень чувствительны к превышению обратного напряжения (при превышении обратного напряжения диод Шоттки необратимо выходит из строя). Обычный же диод переходит в режим обратимого пробоя и может восстановиться после превышения допустимого значения обратного напряжения. Именно это обстоятельство и является ахиллесовой пятой, которое служит причиной выгорания диодов Шоттки в выпрямительных цепях всевозможных импульсных блоков питания. Об этом надо помнить и учитывать при проведении работ по диагностики и ремонте.
Для устранения опасных для диодов Шоттки всплесков напряжения, образующихся в обмотках трансформатора на фронтах импульсов, применяются так называемые демпфирующие цепи (на схеме рис. 1 она обозначена как R15- C14). На печатной плате блока питания ЖК монитора Acer AL1716 (рис. 4) также имеются демпфирующие цепи, состоящие из SMD резистора номиналом 10 Ом (R802, R806) и конденсатора (C802, C811), которые защищают диоды Шоттки (D803, D805).

Читайте также:  Негерметичный блок питания 12в

QIP Shot - Image: 2016-07-22 12:19:45

Как правило, диоды Шоттки используются в низковольтных цепях с обратным напряжением, не выше 10 — 18 В, а если требуется получение напряжения в несколько десятков вольт (от 20 до 50В), то применяются диоды на основе p-n перехода. Диоды Шоттки чувствительны к перегреву, в связи с этим их, как правило, для отвода тепла устанавливают на алюминиевый радиатор (отличить диод на основе p-n перехода от диода Шоттки можно по условному графическому обозначению на схеме (рис. 5).

QIP Shot - Image: 2016-07-22 12:13:19

Рис. 5. Условное обозначение диода: а) с барьером Шоттки; б) на основе p-n перехода.

После выпрямительных диодов всегда ставятся электролитические конденсаторы, обеспечивающие сглаживание пульсаций постоянных выходных напряжений (12 В; 5 В; 3,3 В), которые запитывают все блоки LCD-монитора.

Инвертор DC/AC. По своему назначению инвертор схож с электронными пуско-регулирующими аппаратами, применяемыми в осветительной технике для питания бытовых осветительных люминесцентных ламп, но у инверторов ЖК мониторов есть существенные отличия. Инвертор ЖК-монитора, как правило, построен на специализированной микросхеме, которая значительно расширяет набор функций и повышает надёжность схемы (например, инвертор ламп подсветки ЖК-монитора Acer AL1716 построен на базе ШИМ контроллера OZ9910G, который запаян на печатной плате планарным монтажом (см. рис. 6).

QIP Shot - Image: 2016-07-22 12:20:43

Инвертор преобразует постоянное напряжение (значение которого обычно составляет 12 В — это зависит от варианта схемотехники инвертора) в переменное 600-700 В частотой 50 кГц. Контроллер инвертора может управлять яркостью люминесцентных ламп. Сигналы изменения яркости ламп поступают от контроллера ЖКИ (специализированный микропроцессор — мониторный скалер). К микросхеме-контроллеру подключены полевые транзисторы или их сборки.

На рис. 5 показана плата инвертора, на которой к контроллеру OZ9910G подключены две сборки комплементарных полевых транзисторов AP4501SD (сборка полевых транзисторов AP4501SD и её цоколёвка показаны на рис.8, назначение выводов мощной комплементарной пары МДП-транзисторов AO4600 в корпусе SOIC-8 см. в табл. 1).

QIP Shot - Image: 2016-07-22 12:21:31

QIP Shot - Image: 2016-07-22 12:22:03

Таблица 1. Назначение выводов мощной комплементарной пары
МДП-транзисторов AO4600 в корпусе SOIC-8

QIP Shot - Image: 2016-07-22 12:22:48

На плате установлено два высокочастотных трансформатора, служащих для повышения переменного напряжения и подачи его на электроды люминесцентных ламп. Кроме основных элементов, на плате установлены всевозможные радиоэлементы, служащие для защиты от короткого замыкания и неисправности ламп.

Источник

Как работает RGB-подсветка в компьютерных комплектующих и периферии

Разноцветная подсветка проникла во все виды компьютерных комплектующих: от клавиатур и мышек до блоков питания и SSD. Но что это и как она работает? Давайте разбираться.

Начнем немного издалека. Человеческий глаз имеет три вида рецепторов: по одному для красного, синего и зеленого цвета (части спектра, если точнее). Основываясь на этих знаниях (почти), была разработана RGB-модель представления/описания цвета, по заглавным буквам трех основных цветов: Red — красный, Green — зеленый, Blue — синий.

Смешивая эти цвета друг с другом в различных пропорциях, можно получить большое количество разнообразных цветов и оттенков.

Чем создается RGB-подсветка?

Но вернемся к нашей «радуге». Все видели индикаторы на различной технике — выключения/выключения на телевизоре, портов, режимов работы на модемах и роутерах и т. д. Свечение обеспечивают одноцветные светодиоды. Но в какой-то момент этого оказалось мало. Нужна была возможность одним элементом воспроизводить больше цветов, чем один фиксированный оттенок. Решение было найдено — RGB-светодиоды.

Что же такое RGB-светодиоды и какие они бывают?

Что представляет собой одноцветный светодиод (СД, LED)? Это полупроводниковый прибор, преобразующий электрический ток непосредственно в световое излучение.

Углубляться в физику процессов мы не будем, достаточно знания того, что мы подаем ток — получаем свет.

Для создания разноцветных светодиодов была взята за основу RGB-цветовая модель. Конструкция такого светодиода проста — внутри него, на подложке, находятся три независимых кристалла, каждый из которых отвечает за свой цвет. Они накрыты общей линзой.

Подавая ток на каждый светодиод, мы заставляем его испускать свет определенного цвета, а «смешивая» цвета, можно добиться различного цвета свечения. Так, например, на максимальной интенсивности всех трех мы получим белый цвет.

RGB-светодиоды выпускаются в разных типах корпусов:

  • DIP LED. Светодиоды такой формы, используемые в качестве различных индикаторов, видели практически все.
  • SMD LED. Наиболее часто встречающийся тип. Широко применяется при изготовлении светодиодных лент. Имеет различные размеры: от чуть более 2 мм до 5 мм. Могут излучать свет как перпендикулярно плоскости монтажа, так и вдоль нее (с боковым свечением).
  • Типа «Пиранья». Отличительной особенностью таких светодиодов являются четыре жестких вывода, обеспечивающих механическую жесткость и улучшенный отвод тепла, использование различных линз, обеспечивающих угол освещения до 140°, и, конечно же, увеличенный световой поток. За последнее свойство их также называют сверхъяркими.

Источники питания и контроллеры управления

Для того, чтобы светодиод заработал, нам нужно как минимум подать на него питание, а как максимум — как-то управлять и задавать его цвет.

К питанию светодиодов предъявляются определенные требования. Так, для нормальной работы им требуется источник постоянного стабилизированного тока, обычно напряжением 3-5 Вольт.

Подача повышенного напряжения (т.н. форсирование) приведет не только к увеличению яркости, но и к быстрой деградации, уменьшению светового потока и/или выходу из строя.

Поэтому в качестве источников питания применяются «драйверы» (стабилизируют ток) и блоки питания (стабилизируют напряжение, реже — и то, и другое). Первые применяются для питания отдельных светодиодов и светодиодных матриц, а вторые — для светодиодных лент, где уже установлена микросхема драйвера или балансный резистор.

Источники питания для светодиодов со стабилизацией по току обеспечивают постоянный выходной ток в некотором диапазоне выходного напряжения. Источники со стабилизацией по напряжению формируют постоянное выходное напряжение при токе нагрузки, не превышающем максимально допустимого значения. Некоторые источники питания имеют комбинированный режим стабилизации, при этом до достижения номинального значения тока осуществляется стабилизация по напряжению, а при дальнейшем увеличении нагрузки поддерживается стабильный выходной ток.

Итак, поскольку мы имеем фактически три элемента в одном, ими надо управлять. Есть несколько разновидностей распиновки таких светодиодов.

  • С общим катодом — катоды всех трех СД соединены, управление осуществляется положительными сигналами, которые подаются на аноды;
  • С общим анодом — в противопоставление предыдущему варианту вместе соединяются аноды, а управление происходит через катоды;
  • С 6 выводами — с отдельной парой контактов для каждого кристалла.
Читайте также:  Как удлинить провод от блока питания 12в

В первых двух случаях корпус диода имеет 4 вывода, а в последнем — шесть.

Управлять каждым из трех (красный, синий, зеленый) элементов светодиода можно несколькими путями, но наиболее часто в данный момент применяется метод широтно-импульсной модуляции (ШИМ).

Для этого используются специальные контроллеры, которые могут не только включать и отключать каждый из трех цветов, но и регулировать их яркость, получая нужный цвет путем смешения основных цветов. Также такие контроллеры могут иметь функцию управления с пульта или телефона.

Если не требуется раздельное управление большим количеством светодиодов, это достаточно хорошее решение. Но, допустим, у вас есть 10 светодиодов и вы хотите сделать эффект змейки или волны. Делать 10 независимых каналов затратно, а при последовательном соединении диодов мы сможем управлять сразу всеми чипами одного цвета.

Исправить такое положение дел призваны модели со встроенным микрочипом — драйвером управления RGB-светодиодом. Также их называют адресными (ARGB).

Такие светодиоды имеют 4 и более вывода, позволяют подключать большое количество LED и управлять отдельно каждым светодиодом. Соединяются светодиоды последовательно, питаются от стабилизатора напряжения, а управляются микроконтроллером.

Контроллер по последовательному интерфейсу передает на светодиоды информацию о заданном цвете в виде цифрового кода (последовательности бит). Первый светодиод считывает первые n-бит информации, а остальное передает дальше к следующему. Второй СД делает то же самое, и таким способом вся цепочка получает данные о заданном цвете.

Какое количество цветов могут воспроизвести RGB-светодиоды?

Доступно 16,7 млн цветов. Знакомая фраза? Если вас всегда интересовало, почему именно такое число, то все и просто, и сложно одновременно.

На практике для хранения информации о цвете каждой точки в модели RGB обычно отводится по 8 бит на один цвет или 24 бита на все три. Таким образом, каждый из трех цветов может принимать значение в диапазоне от 0 до 255 (всего 2 в 8 степени = 256 значений). Где 0 — отсутствие свечения, а 255 — максимальная яркость.

В результате можно получить 256 х 256 х 256 = 16 777 216 цветов, смешивая цвета в различных пропорциях и изменяя яркость каждой составляющей. Это можно представить в виде куба, где любая точка внутри него будет иметь определенный цвет и координаты.

С другой стороны, это лишь только теория. Восприятие цвета человеком — достаточно сложная вещь. Здесь много как индивидуальных, так и общих особенностей, сформированных в процессе эволюции. Так, например, глаз по-разному реагирует на разные длины волн (собственно цвета). Кроме того, существует такая особенность, как метамери́я, благодаря которой, в общем-то, мы можем воспринимать солнечный свет и свет от RGB-светодиодов как белый оттенок.

Также количество цветов может отличаться из-за несовершенства драйвера, где для кодирования каждого цвета может применяться не восемь, а пять бит. Следовательно, и количество доступных цветов будет меньше.

Применение RGB-подсветки в компьютерной технике

Основное применение в подсветке вообще и в компьютерной сфере в частности нашли именно SMD RGB LED. Подсветка настолько широко проникла в компьютерные девайсы, что уже прочно с ними ассоциируется и становится трудно сказать, где производители ее еще не применили.

  • Вентиляторы и всё, куда они устанавливаются: системы охлаждения, корпуса, блоки питания.
  • Материнские платы
  • Твердотельные накопители

Источник

Как отремонтировать монитор

Содержание

  1. Модули монитора
  2. Вздутые конденсаторы
  3. Выход из строя стабилитрона
  4. Проблемы в высоковольтной части блока питания (инверторе)
  5. Нет подсветки монитора
  6. Пропадает подсветка монитора

В этой статье мы рассмотрим как можно своими силами отремонтировать монитор.

Модули монитора

Современный ЖК-монитор состоит всего из двух плат: скалера и блока питания

Скалер – это плата управления работой монитора. Его мозг. Здесь монитор преобразует цифровой сигнал в цвета на дисплее, а также содержит в себе различные настройки. На ней содержатся процессор, flash-память, куда записывается прошивка монитора, и EEPROM-память, в которой сохраняются текущие настройки.

Блок питания. Он обеспечивает питанием цепи монитора. Может в себе также содержать инвертор для мониторов с LCD подсветкой. В мониторах с LED подсветкой инвертора нет. (Статья про LED)

Блок питания для монитора выглядит примерно вот так:

Есть также и существенное различие. В блоках питания для мониторов с LCD подсветкой можно увидеть высоковольтную часть. Он же инвертор. О его присутствии говорят надписи типа “High Voltage” и клеммы, для подключения ламп. Имейте ввиду, что напряжение, подаваемое на лампы, составляет более 1000 Вольт! Лучше не трогать и тем более не лизать эту часть при включении монитора в сеть.

Вздутые конденсаторы

Это, конечно же, электролитические конденсаторы в фильтре блока питания.

Это одна из самых распространенных поломок ЖК-мониторов. Перепаиваются конденсаторы легко и просто. Иногда на платах стоит не стандартный номинал конденсаторов, например 680 или 820 мкФ х 25 вольт. Если вы столкнулись со вздувшимися конденсаторами такого номинала и их не оказалось в вашем радиомагазине, не спешите обходить все радиомагазины вашего города в поисках точно такого же номинала. Это как раз тот случай, когда “много не вредно”. Это вам скажет любой электронщик. Смело ставьте 1000 мкф х 25 вольт и все будет нормально работать. Можно даже больше.

В связи с тем, что блок питания при работе излучает тепло, которое вредно сказывается на сроке службы конденсаторов, ставьте обязательно конденсаторы с обозначением “105С” на корпусе. Также после перепаивания конденсаторов не помешает проверить предохранитель вторичных цепей, в роли которого часто выступает простой SMD резистор с нулевым сопротивлением, типоразмером 0805, находящийся с обратной стороны платы со стороны трассировки.

Выход из строя стабилитрона

И еще один нюанс, на выходе блока питания, перед самим разъемом питания идущим на скалер, часто ставят SMD стабилитрон

В случае, если напряжение на нем превышает номинальное, он уходит в короткое замыкание и тем самым отключает через цепи защиты наш монитор. Заменить его можно на любой, подходящий по номиналу напряжения. Можно даже использовать с выводами

После того, как все сделали и отремонтировали, проверяем мультиметром напряжения на разъеме питания, который идет на скалер. Там все напряжения подписаны. Убеждаемся, что они совпадают с показаниями мультиметра.

Проблемы в высоковольтной части блока питания (инверторе)

Если есть возможность, то в первую очередь, всегда отыскивайте схемы ремонтируемого устройства. Давайте рассмотрим высоковольтную часть одного из мониторов

Если вы видите, что предохранитель блока питания монитора сгорел, это означает, что сопротивление между проводами питания шнура монитора (входное сопротивление), на какой-то момент стало очень низким (короткое замыкание). Где-то около 50 Ом и меньше, что в свою очередь, по закону Ома, вызвало повышения тока в цепи. От большой силы тока у нас и сгорел проводок предохранителя.

Если предохранитель в металлическо-стеклянном корпусе, мы можем вставить абсолютно любой предохранитель в крепление и прозвонить мультиметром в режиме Омметра 200 Ом сопротивление между штырьками вилки. Если у нас сопротивление равно нулю и до 50 Ом, то ищем пробитый радиоэлемент, который звонится на ноль или на землю.

Шаги будут такие:

Вставляем предохранитель, переключаем мультиметр на 200 Ом и подключаем его к вилке шнура питания. Убеждаемся, что сопротивление очень маленькое. Далее не торопимся вынимать предохранитель.

Итак давайте по схеме посмотрим, какие радиодетали у нас могут коротнуть. На фото выделены цветными рамками те детали, которые необходимо будет проверить при коротком замыкании в высоковольтной части

Все эти процедуры для измерения сопротивления, делаются для того, чтобы вызвонить перечисленные детали по одной. То есть выпаиваем и снова замеряем через вилку сопротивление. Как только мы получим на входе вилки высокое сопротивление, заменив или убрав дефектный радиоэлемент, то можно смело включать вилку в розетку и копать уже дальше.

Читайте также:  Комплект светодиодной ленты с пультом контроллером и с блоком питания

Нет подсветки монитора

Чем же отличаются мониторы с LCD подсветкой от мониторов с LED подсветкой? В LCD мониторах для подсветки у нас используются лампы CCFL. На русский язык эта аббревиатура звучит как “люминесцентная лампа с холодным катодом” .

Такие лампы располагаются сверху и снизу дисплея и подсвечивают изображение.

В LED мониторах используются для подсветки светодиоды, которые располагаются либо по бокам дисплея, либо за ним.

Сейчас все производители мониторов и ТВ перешли на LED подсветку, так как она почти в половину сокращает энергопотребление и намного долговечнее чем LCD подсветка.

Если нет подсветки, то дело может быть либо в лампах CCFL, либо в LED-ленте. Если они вообще не горят, то изображение будет настолько тусклым, что на дисплее ничего не будет видно. Только внимательный осмотр включенного монитора под освещением может показать, что изображение все-таки есть. Поэтому, если изображения вообще нет, то первым дело осмотрите включенный монитор под потоком света. Если изображение хоть немного видно, то дальше принимайте меры, либо менять лампы, либо дело в инверторе.

Пропадает подсветка монитора

Монитор у нас включается, работает секунд 5-10 и тухнет. Это говорит о том, что одна из ламп CCFL подсветки дисплея пришла в негодность. Перед этим часть экрана может также немного моргать. Инвертор в этом случае будет уходить в защиту, что и будет проявляться в автоматическом отключении подсветки монитора.

Для того, чтобы мы могли проверить лампы и исключить дефектную, надо купить в радиомагазине высоковольтный конденсатор. 27 пикофарад х 3 киловольта для мониторов диагональю 17 дюймов, 47 пф для монитора 19 дюймов и 68 пф для 22 дюйма.

Данный конденсатор нужно припаять к контактам разъема, к которому подключается лампа подсветки. Саму лампу, разумеется, при этом нужно отключить. Соединяя конденсатор поочередно к каждому разъему, мы добиваемся того, что инвертор у нас перестает уходить в защиту. Монитор заработает, хотя будет немного тусклым.

Конечно, редко кто так делает. Самая фишка – это отключить защиту на самой микросхеме ШИМ ))). Для этого гуглим “снять защиту инвертора xxxxxxx” Вместо “хххххх” ставим марку нашей микросхемы ШИМ. Как-то я отключал защиту на мониторе с микросхемой ШИМ TL494 по схеме ниже, припаяв резистор на 10 КилоОм. Моник работает до сих пор. Нареканий нет).

Источник

Устройство, описание принципа работы узлов монитора.

Для того чтобы починить ЖК монитор своими руками, необходимо в первую очередь понимать, из каких основных электронных узлов и блоков состоит данное устройство и за что отвечает каждый элемент электронной схемы. Начинающие радиомеханики в начале своей практики считают, что успех в ремонте любого прибора заключается в наличии принципиальной схемы конкретного аппарата. Но на самом деле, это ошибочное мнение и принципиальная схема нужна не всегда.

Итак, вскроем крышку первого попавшегося под руку ЖК монитора и на практике разберёмся в его устройстве.

ЖК монитор. Основные функциональные блоки.

Жидкокристаллический монитор состоит из нескольких функциональных блоков, а именно:

Жидкокристаллическая панель представляет собой завершённое устройство. Сборкой ЖК-панели, как правило, занимается конкретный производитель, который кроме самой жидкокристаллической матрицы встраивает в ЖК-панель люминесцентные лампы подсветки, матовое стекло, поляризационные цветовые фильтры и электронную плату дешифраторов, формирующих из цифровых сигналов RGB напряжения для управления затворами тонкоплёночных транзисторов (TFT).

Рассмотрим состав ЖК-панели компьютерного монитора ACER AL1716. ЖК-панель является завершённым функциональным устройством и, как правило, при ремонте разбирать её не надо, за исключением замены вышедших из строя ламп подсветки.

Маркировка ЖК-панели: CHUNGHWA CLAA170EA

На тыльной стороне ЖК-панели расположена довольно большая печатная плата, к которой от основной платы управления подключен многоконтактный шлейф. Сама печатная плата скрыта под металлической планкой.

ЖК-панель компьютерного монитора Acer AL1716

На печатной плате установлена многовыводная микросхема NT7168F-00010. Данная микросхема подключается к TFT матрице и участвует в формировании изображения на дисплее. От микросхемы NT7168F-00010 отходит множество выводов, которые сформированы в десять шлейфов под обозначением S1-S10. Эти шлейфы довольно тонкие и на вид как бы приклеены к печатной плате, на которой находиться микросхема NT7168F.

Печатная плата ЖК-панели и её элементы

Плату управления по-другому называют основной платой (Main board). На основной плате размещены два микропроцессора. Один из них управляющий 8-битный микроконтроллер SM5964 с ядром типа 8052 и 64 кбайт программируемой Flash-памяти.

Микропроцессор SM5964 выполняет довольно небольшое число функций. К нему подключена кнопочная панель и индикатор работы монитора. Этот процессор управляет включением/выключением монитора, запуском инвертора ламп подсветки. Для сохранения пользовательских настроек к микроконтроллеру по шине I2C подключена микросхема памяти. Обычно, это восьмивыводные микросхемы энергонезависимой памяти серии 24LCxx.

Основная плата (Main board) ЖК-монитора.

Вторым микропроцессором на плате управления является так называемый мониторный скалер (контроллер ЖКИ) TSU16AK. Задач у данной микросхемы много. Она выполняет большинство функций, связанных с преобразованием и обработкой аналогового видеосигнала и подготовке его к подаче на панель ЖКИ.

В отношении жидкокристаллического монитора нужно понимать, что это по своей сути цифровое устройство, в котором всё управление пикселями ЖК-дисплея происходит в цифровом виде. Сигнал, приходящий с видеокарты компьютера является аналоговым и для его корректного отображения на ЖК матрице необходимо произвести множество преобразований. Для этого и предназначен графический контроллер, а по-другому мониторный скалер или контроллер ЖКИ.

В задачи контроллера ЖКИ входят такие как пересчёт (масштабирование) изображения для различных разрешений, формирование экранного меню OSD, обработка аналоговых сигналов RGB и синхроимпульсов. В контроллере аналоговые сигналы RGB преобразуются в цифровые посредством 3-х канальных 8-битных АЦП, которые работают на частоте 80 МГц.

Мониторный скалер TSU16AK взаимодействует с управляющим микроконтроллером SM5964 по цифровой шине. Для работы ЖК-панели графический контроллер формирует сигналы синхронизации, тактовой частоты и сигналы инициализации матрицы.

Микроконтроллер TSU16AK через шлейф связан с микросхемой NT7168F-00010 на плате ЖК-панели.

При неисправностях графического контроллера у монитора, как правило появляются дефекты, связанные с правильным отображением картинки на дисплее (на экране могут появляться полосы и т.п). В некоторых случаях дефект можно устранить пропайкой выводов скалера. Особенно это актуально для мониторов, которые работают круглосуточно в жёстких условиях.

При длительной работе происходит нагрев, что плохо сказывается на качестве пайки. Это может привести к неисправностям. Дефекты, связанные с качеством пайки нередки и встречаются и у других аппаратов, например, DVD плееров. Причиной неисправности служит деградация либо некачественная пайка многовыводных планарных микросхем.

Блок питания и инвертор ламп подсветки.

Наиболее интересным в плане изучения является блок питания монитора, так как назначение элементов и схемотехника легче в понимании. Кроме того, по статистике неисправности блоков питания, особенно импульсных, занимают лидирующие позиции среди всех остальных. Поэтому практические знания устройства, элементной базы и схемотехники блоков питания непременно будут полезны в практике ремонта радиоаппаратуры.

Блок питания ЖК монитора состоит из двух. Первый – это AC/DC адаптер или по-другому сетевой импульсный блок питания (импульсник). Второй – DC/AC инвертор. По сути это два преобразователя. AC/DC адаптер служит для преобразования переменного напряжения сети 220 В в постоянное напряжение небольшой величины. Обычно на выходе импульсного блока питания формируются напряжения от 3,3 до 12 вольт.

Инвертор DC/AC наоборот преобразует постоянное напряжение (DC) в переменное (AC) величиной около 600 — 700 В и частотой около 50 кГц. Переменное напряжение подаётся на электроды люминесцентных ламп, встроенных в ЖК-панель.

Вначале рассмотрим AC/DC адаптер. Большинство импульсных блоков питания строится на базе специализированных микросхем контроллеров (за исключением дешёвых зарядников для мобильного, например).

Так в блоке питания ЖК монитора Acer AL1716 применена микросхема TOP245Y. Документацию (datasheet) по данной микросхеме легко найти из открытых источников.

В документации на микросхему TOP245Y можно найти типовые примеры принципиальных схем блоков питания. Это можно использовать при ремонте блоков питания ЖК мониторов, так как схемы во многом соответствуют типовым, которые указаны в описании микросхемы.

Вот несколько примеров принципиальных схем блоков питания на базе микросхем серии TOP242-249.

Источник