Меню

Ток разряда аккумулятора никель кадмиевого аккумулятора

Ток разряда аккумулятора никель кадмиевого аккумулятора

Как правильно заряжать Ni-cd и Ni-mh аккумуляторы

Никель-кадмиевые и никель-металлогидридные аккумуляторы – два основных вида щелочных химических источников тока для автономного питания различной аппаратуры. Они сходны по своей структуре. В качестве электролита используется щёлочь, в качестве катода — оксид никеля.

Первым был изобретён Ni-cd. Этой технологии более ста лет. NI-MH широко применятся в бытовых устройствах, начали только в 90-х годах двадцатого века. Массовое появление на рынке более ёмких (NI-MH) батарей поначалу вызвало настоящий фурор. Но потом выявились и недостатки.

  1. Особенности и применение Ni-cd батарей
  2. Зарядка ni cd аккумуляторов
  3. Основные правила заряда никель кадмиевых аккумуляторов
  4. Особенности и применение NI MH аккумуляторов
  5. Заряд никель металлогидридных аккумуляторов
  6. Зарядные устройства и методы заряда
  7. NI-MH аккумуляторы с низким саморазрядом
  8. Правила заряда NI MH

Особенности и применение Ni-cd батарей

По сравнению с металлогидридными батареями, Ni-cd имеют два главных недостатка. Это меньшая ёмкость и эффект памяти. Эффектом памяти называют “запоминание” батареей нижнего предела разряда. Той есть, если такую батарею разрядить не полностью, длительность работы в следующем цикле будет меньше на эту самую величину от полного разряда до того предела, который “запомнил” аккумулятор. Чтобы “сбросить” память , нужно два-три раза полностью зарядить-разрядить такую батарею.

Казалось бы, при таких свойствах, этот тип батарей должен уйти в небытие. Но этого не происходит. Благодаря двум другим свойствам этого типа батарей – высокая токоотдача и способность хорошо работать при отрицательных температурах.

Приблизительно 90% Ni-cd на сегодняшний день, это аккумуляторные сборки для электроинструмента, детских игрушек, электробритв, автономных пылесосов, медицинского оборудования и т.д. Применение в бытовом сегменте (вместо обычных первичных батареек) практически сведено к нулю.

Некоторые страны законодательно ограничивают использование Ni-cd элементов в связи с токсичностью кадмия. В новых устройствах их место занимают литий-ионные аккумуляторы с большой токоотдачей.

Зарядка ni cd аккумуляторов

Один элемент имеет номинальное напряжение 1,2V. При работе это значение может меняться от 1,35V (полностью заряжен) до 1V (полный разряд). У этих элементов есть одна интересная особенность, на которой завязан режим отключения в зарядном устройстве (если оно автоматическое). После набора ёмкости, напряжение на выводах несколько снижается на 50-70 mV. Такой скачок обозначают ΔV(дельта V). Зарядное реагирует на такое снижение и отсекает ток заряда.

На практике срабатывать по ΔV умеют только зарядные устройства среднего и продвинутого уровня. И часто приходится вручную просчитывать, как заряжать ni cd аккумуляторы.

Напряжение заряда любая зарядка будет выдавать из расчёта 1,5-1,6v на один элемент. А вот ток заряда может быть разным. Его всегда можно посмотреть на самом зарядном устройстве (как правило, с тыльной стороны).

Ёмкость аккумулятора нужно поделить на ток заряда и умножить на коэффициент потерь 1,4. Например, 1000mAh/200mA=5 часов*1,4 = 7 часов. Каким током заряжать? Номинальный ток заряда 0,1С, где С- ёмкость батареи. Для 1000mAh номинальным является ток 100mA. Время заряда в таком случае составит 14 часов. Не очень удобно. Почти всегда используется ускоренный режим 0,2-0,5С. Это несколько сокращает срок службы аккумуляторов, но повышает удобство использования.

Важно! Средний срок службы никель-кадмиевых аккумуляторов составляет 500 циклов заряд-разряд. Производитель заявляет, как правило, ДО 1000. Таких показателей можно достичь только в идеальных условиях и чётко выдерживая номинальные режимы работы.

Основные правила заряда никель кадмиевых аккумуляторов

  • перед зарядом аккумуляторы обязательно разрядить;
  • подключить зарядное устройство (или установить в него аккумуляторы при бытовом исполнении) и дождаться отключения при полном заряде;
  • в случае если зарядное не обеспечивает автоотключение, рассчитать необходимое время заряда и по его истечении произвести отключение;
  • хранить ni cd аккумуляторы в разряженном состоянии.

Особенности и применение NI MH аккумуляторов

Область применения металлогидридных батарей напрямую связана с их свойствами. Максимальная ёмкость при минимальном объёме позволила им занять место в той электронике, где одноразовые батарейки приходится менять очень часто. Это фотоаппараты, беспроводные мыши и клавиатуры, радиопульты, детские игрушки.

В основном используется два размера таких элементов – это АА и ААА. Использовать такие элементы можно в любом месте, где используются одноразовые батарейки. Но часто это не имеет экономического смысла (в том случае, если одноразовая батарейка служит в устройстве годами)

Номинальное напряжение ni mh аккумулятора 1,2v. С незначительным отклонением под нагрузкой такое напряжение держится в течение всего цикла работы батареи. Напряжение одноразовой батарейки в работе плавно падает от 1,5 до 1 вольта. Той есть 1,2-среднее значение. Это позволяет аккумулятору отлично заменять одноразовую батарейку в 99% случаев. Случаи, когда необходимо именно 1,5v для работы устройства единичные и часто “лечатся” сменой режима в меню устройства “батарейка/аккумулятор”.

Внимание! Максимальная ёмкость (физический предел) для аккумулятора АА составляет 2700mAh,для ААА 1000mAh.В случае, если на этикетке большее значение и “загадочное” название фирмы-изготовителя, перед вами гарантированный обман.

Эффект памяти при заряде никель металлогидридных аккумуляторов менее заметен, чем у Ni-cd элементов. Первые несколько лет массовых продаж производители размещали надпись “без эффекта памяти”. Впоследствии эту надпись убрали. Рекомендация “заряд после разряда” актуальна и для металлогидридных аккумуляторов.

Заряд никель металлогидридных аккумуляторов

Напряжение зарядки ni mh такое же, как и у никель-кадмиевых батарей. Зарядное устройство будет подавать на один элемент 1,5-1,6v. Ток заряда ni mh аккумуляторов может меняться от 0,1 до 1С. Но любой производитель бытовых батарей обязательно указывает на них свою рекомендацию этого параметра. Рекомендация производителей составляет 0,1С. Например для 2500mAh номинальный ток заряда ni mh аккумуляторов составляет 250mA. Время заряда номинальным током 14 часов. По той же формуле. Ёмкость/ток заряда, результат умножить на 1,4. При таком режиме можно рассчитывать на заявленное производителем, количество циклов. При ускоренном режиме срок службы уменьшается.

Металлогидридные батареи плохо переносят перегрев, глубокий разряд, сильный перезаряд. Перегрев может возникнуть при большом токе заряда, повышенном внутреннем сопротивлении. При сильном нагреве заряд следует прекратить. Глубокий разряд возникает при длительном неиспользовании элемента. При бездействии в течение года и более, аккумулятор, скорее всего, придётся заменить. Избыточный перезаряд случается при использовании зарядного устройства без функции отключения или неправильно просчитанном времени заряда.

Зарядные устройства и методы заряда

Зарядных устройств в продаже представлено огромное количество. В них реализованы разные схемы отключения или отключение не реализовано вообще. Можно легко их разделить на подвиды по внешнему виду.

  1. Простейшие. Включили в розетку — заряд пошёл, выключили – заряд закончен. Контроль над временем заряда лежит на пользователе. Такие устройства имеют право на существование с целью экономии средств. Необходимо лишь выбрать из них такое, которое будет заряжать каждый элемент отдельно. Если каналы заряда спарены, возникает перекос. Такой режим сокращает срок службы батарей. Отличить несложно. Количество светодиодных индикаторов должно совпадать с количеством каналов заряда.
  2. С надписью AUTO. Такая надпись говорит о том, что здесь реализовано отключение по таймеру. Обычно от 6 до 12 часов. Не самый плохой вариант. Перезаряда точно не будет. Но скорее всего не будет и полного заряда. В таком случае можно подобрать аккумуляторы именно под это зарядное устройство. Но корректной работа зарядного устройства будет первые 100-200 циклов.
  3. ΔV контроль. Если у производителя реализована эта функция, он обязательно напишет это на упаковке. Если надписи нет, зарядное устройство относится к пункту 2. С наличием ΔV контроля, зарядное устройство уже полноценно автоматическое. Не забываем о раздельной зарядке каждого канала (популярные лет 10-12 назад зарядные с индексом 508 имеют контроль ΔV, но воспринимают установленные в него аккумуляторы как одну батарею).
  4. С жидкокристаллическим дисплеем. Как правило, его наличие говорит о том, что реализовано всё, что перечислено выше и плюс температурный контроль. Зарядные устройства с дисплеем начального уровня не предполагают программирование режима и тока заряда, но со своей функцией — правильно заряжать ni mh батареи, справляются отлично.
  5. Зарядка – комбайн. Больше размером, чем в пункте 4. Предполагают программирование пользователем режимов и тока заряда. Если ничего не программировать в режиме “по умолчанию” заряжают батареи минимальным током и отключают заряд по ΔV контролю.

Чем более функциональное зарядное устройство, тем оно дороже. Но даже в дорогом исполнении, стоимость равна примерно 50 щелочным батарейкам. Окупаемость наступает достаточно быстро. Зарядное устройство такого класса обычно универсальное. И позволяет заряжать кроме никелевых аккумуляторов, ещё и литиево-ионные батареи. А также имеет функции измерения ёмкости, внутреннего сопротивления батарей, режим сброса эффекта памяти у никелевых аккумуляторов.

NI-MH аккумуляторы с низким саморазрядом

Это достаточно новая технология. Иногда применяется аббревиатура LSD. Что в переводе с английского “low self-discharge” – низкий саморазряд.

В продаже такие батареи появились чуть больше 10 лет назад и зарекомендовали себя очень хорошо. По сравнению с обычными аккумуляторами, они имеют более низкое внутреннее сопротивление и как следствие большие токи разряда. Ёмкость у них несколько ниже, чем у обычных NI-MH батарей. Но за счёт того, что у обычной батареи саморазряд в первые сутки около 10%, показывают себя не менее эффективно.

Отличить такой аккумулятор от обычного, достаточно несложно. На упаковке и на самом элементе будет присутствовать надпись “ready to use” т.е. “готово к использованию”. Продаются такие элементы уже заряженные. Это оптимальный выбор для любительской фотосъёмки, когда не стоит задача сделать несколько тысяч кадров за один день.

Правила заряда NI MH

Ответ на вопрос — как заряжать ni mh аккумуляторы зависит, прежде всего, от того, какое у пользователя зарядное устройство. Для того, чтобы заряжать правильно, достаточно придерживаться простых норм.

  • Перед зарядом, аккумуляторы желательно разрядить. Это не строгая норма в отличие от Ni-cd батарей, но желательная.
  • Температура окружающего воздуха должна быть не ниже 5 o C. Верхний предел температуры 50 o C. Такая температура может возникнуть летом при попадании прямых солнечных лучей.
  • Изучить функции зарядного устройства. Если оно не обеспечивает автоматическое отключение, рассчитать время заряда.
  • Установить батареи в зарядное устройство и подключить его к сети. Через некоторое время проверить степень нагрева аккумуляторов. В случае сильного нагрева, заряд прекратить.
  • Отключить зарядное устройство либо по истечении расчётного времени, либо после включения соответствующей индикации (зависит от типа зарядного устройства).
  • Хранить Ni-MH элементы заряженными на 10-20% ёмкости. Напряжение не должно падать ниже, чем 0,9v.

При правильном заряде никель металлогидридных аккумуляторов, служат они достаточно долго. От 500 до 1000 циклов заряд-разряд. Основная причина преждевременного выхода из строя – длительное неиспользование и как следствие глубокий разряд. Часто желание пользователей отказаться от технологии Ni-MH или Ni-cd и перевести всю свою технику на литий ионные батареи, совершенно не оправдано. Эти батареи прочно занимают своё место, как в бытовом сегменте, так и в промышленности.

Источник



Как заряжать Ni-Cd аккумуляторы — правила заряда и разряда батареи

Как заряжать Ni-Cd аккумуляторы — предназначение батарей

NiCad и NiMH аккумуляторы являются одними из самых сложных аккумуляторов для зарядки. В то время как с ионно-литиевыми и свинцово-кислотными батареями вы можете контролировать перезарядку, просто устанавливая максимальное зарядное напряжение, никелевые батареи не имеют напряжения «заряда на поплавке». Таким образом, зарядка основана на протекании тока через аккумулятор. Напряжение для этого не зафиксировано в камне, как для других батарей.

Читайте также:  Док станция для зарядки аккумуляторов

Это делает эти элементы и батареи особенно трудными для параллельной зарядки. Это потому, что вы не можете быть уверены, что каждая ячейка или пакет имеют одинаковое сопротивление и поэтому некоторые из них будут потреблять больше тока, чем другие, даже когда они заполнены. Это означает, что вам нужно использовать отдельную цепь зарядки для каждой строки в параллельном блоке или балансировать ток каким-либо другим способом, например, используя резисторы такого сопротивления, что оно будет доминировать в управлении током.

Особенности использования

Эффективность кулонометрической зарядки никель-кадмия составляет около 83% для быстрой зарядки (от C / 1 до C / 0,24) и 63% для зарядки C / 5. Это означает, что в C / 1 вы должны использовать 120 ампер-часов на каждые 100 ампер-часов, которые вы получаете. Чем медленнее вы заряжаете, тем хуже становится. В С / 10 это 55%, в С / 20 он может получить менее 50%. (Эти цифры только для того, чтобы дать вам представление, производители батарей отличаются).

Когда заряд завершен, кислород начинает генерироваться на никелевом электроде. Этот кислород диффундирует через сепаратор и реагирует с кадмиевым электродом с образованием гидроксида кадмия. Это вызывает снижение напряжения элемента, которое можно использовать для определения конца заряда. Этот так называемый минус дельта V / дельта t удар, который указывает на конец заряда, гораздо менее выражен в NiMH, чем NiCad, и очень сильно зависит от температуры. Многие из перечисленных здесь зарядных устройств используют сложный алгоритм, который использует -deltaV для точной зарядки пакетов NiMH и NiCad.

Никель кадмиевые аккумуляторы правила эксплуатации и зарядки

Производители никель-кадмиевых аккумуляторов не полностью форматируют свои аккумуляторы перед отправкой, чтобы при хранении они не ухудшались. В результате лучше всего дать новым батарейкам медленный заряд перед использованием. Обычно это занимает от 15 до 24 часов. Это гарантирует, что каждый элемент имеет одинаковый уровень заряда, так как саморазряжается с разной скоростью во время транспортировки.

Кроме того, установлено, что производительность новых элементов достигает оптимального значения только после ряда циклов зарядки / разрядки. Обычно элементы должны достигать своего определенного уровня производительности после пяти-десяти циклов разрядки.

Помимо этого, пиковая емкость может быть достигнута после примерно 100 или более циклов зарядки-разрядки, после которых производительность начнет падать.

Это предполагает, что никель-кадмиевые батареи заряжаются и разряжаются требуемым образом, и они не подлежат злоупотреблению.

Как продлить срок работы

Как правильно разряжать батарею

Независимо от того, используется ли медленная или быстрая зарядка, необходимо следить за тем, чтобы ни один из элементов NiCd не перезаряжался. Поэтому необходимо уметь определять конец заряда. Есть несколько методов достижения этого.

  • Базовое зарядное устройство: некоторые базовые зарядные устройства NiCd, которые можно купить, просто заряжают около C / 10. Они не включают в себя таймер и предполагают, что пользователь снимает зарядку, когда заряжается элемент. Этот режим не совсем удовлетворителен, так как ячейки будут перегружены, если пользователь забудет и в результате получит повреждение. Также нет возможности узнать точное состояние зарядки перед началом зарядки.
  • Истекшее время / таймер: некоторые из самых основных зарядных устройств предполагают, что элементам потребуется полная зарядка, и, зная их емкость, им можно дать заряд в течение заданного времени. Это простой способ зарядки никель-кадмиевых элементов и аккумуляторов. Одним из основных недостатков этой формы прекращения зарядки является то, что предполагается, что все батареи полностью разряжены до того, как их зарядить. Чтобы обеспечить разрядку аккумуляторов, зарядное устройство может поместить элемент в цикл разрядки.Это не особенно точный метод перезарядки батарей и элементов, потому что количество заряда, которое они могут удерживать, изменяется в течение их полезного срока службы. Однако это лучше, чем отсутствие какой-либо формы прекращения заряда.
  • Подпись напряжения: Подпись напряжения Зарядные устройства NiCd используют подпись напряжения никель-кадмиевого элемента, чтобы определить, где он находится в пределах своего цикла зарядки.Обнаружено, что, когда никель-кадмиевая батарея полностью заряжена, наблюдается небольшое падение напряжения на клеммах. Микропроцессорные зарядные устройства способны контролировать напряжение и определять точку полной зарядки, когда они прекращают процесс зарядки.Эту форму прекращения заряда NiCd часто называют отрицательным дельта-напряжением, NDV. Он обеспечивает наилучшую производительность при быстрой зарядке, поскольку отрицательная точка дельта-напряжения более очевидна при использовании быстрой зарядки.
  • Повышение температуры. Метод определения времени окончания быстрой зарядки – это метод измерения температуры. Проблема в том, что это неточно, потому что ядро ячейки будет иметь гораздо более высокую температуру, чем периферия. Для нормальных скоростей зарядки скорость повышения температуры может быть недостаточной для точного определения.

До какого уровня надо разряжать

Когда батарея достигает конца заряда, кислород начинает образовываться на электродах и рекомбинировать на катализаторе. Эта новая химическая реакция создает тепло, которое можно легко измерить с помощью термистора. Это самый безопасный способ определения конца заряда во время быстрой зарядки. Этот метод часто используется с многоэлементными батареями , а в зарядных устройствах на 20, 30 и 40 батарей здесь используется термистор.

Зарядные устройства для никель-кадмиевых аккумуляторов должны отключать заряд, когда температура превышает максимальную температуру зарядки, обычно 45 градусов C для контролируемой быстрой зарядки и 50 градусов C для быстрой или быстрой зарядки в течение ночи.

Как часто надо производить разрядку

В отличие от свинцово-кислотных элементов, NiCad заряжаются с использованием источника постоянного тока. Их внутреннее сопротивление таково, что, если бы использовалось постоянное напряжение, они потребляли бы чрезмерно большие токи, которые могли бы повредить ячейки.

Обычно клетки заряжаются со скоростью около C / 10. Другими словами, если их емкость составляет 1 ампер-час, они будут заряжаться со скоростью 100 мА. Время зарядки обычно превышает десять часов, потому что не вся энергия, поступающая в элемент, преобразуется в накопленную электрическую энергию.

Обнаружено, что во время первой стадии зарядки, до примерно 70% полной зарядки, процесс зарядки эффективен почти на 100%. После этого он падает.

Источник

Никель-Кадмиевые аккумуляторы

ni-cd

Во второй половине двадцатого века одними из лучших перезаряжаемых химических источников тока были аккумуляторные батареи, изготовленные по никель-кадмиевой технологии. Они до сих пор широко применяются в различных сферах благодаря своей надежности и непритязательности.

Что такое никель кадмиевый аккумулятор

Никель-кадмиевые батареи являются гальваническими перезаряжаемыми источниками тока, которые были изобретены в 1899 году в Швеции Вальдмаром Юнгнером. До 1932 года их практическое использование было очень ограниченным из-за дороговизны используемых металлов в сравнении со свинцово-кислотными АКБ.

АКБ батарея

Усовершенствование технологии их производства привело к значительному улучшению их эксплуатационных характеристик и позволило в 1947 году создать герметичный необслуживаемый АКБ с отличными параметрами.

Принцип работы и устройство Ni-Cd аккумулятора

Электрическую энергию эти АКБ производят благодаря обратимому процессу взаимодействия кадмия (Cd) с оксидом-гидроксидом никеля (NiOOH) и водой, в результате которого образуется гидроксид никеля Ni(OH)2 и гидроксид кадмия Cd(OH)2, обуславливающий появление электродвижущей силы.

Ni-Cd АКБ выпускаются в герметичных корпусах, в которых размещены электроды, разделенные нейтральным сепаратором, содержащие никель и кадмий, находящиеся в растворе желеобразного щелочного электролита (как правило, гидроксид калия, KOH).

Положительный электрод представляет собой стальную сетку или фольгу, покрытую пастой оксид-гидроксида никеля, смешанную с проводящим материалом

Отрицательный электрод — это стальная сетка (фольга) с впрессованным пористым кадмием.

Один никель кадмиевый элемент способен выдавать напряжение около 1,2 вольта, поэтому для увеличения напряжения и мощности батарей в их конструкции применяется множество параллельно соединенных электродов, разделенных сепараторами.

Технические характеристики и какие бывают Ni-Cd АКБ

Ni-Cd батареи имеют следующие технические характеристики:

  • напряжение разряда одного элемента – около 0,9-1 вольт;
  • номинальное напряжение элемента – 1,2 v, для получения напряжений 12v и 24v применяют последовательное соединение нескольких элементов;
  • напряжение полного заряда – 1,5-1,8 вольт;
  • рабочая температура: от -50 до +40 градусов;
  • количество циклов заряда-разряда: от 100 до 1000 (в самых современных батареях – до 2000), в зависимости от используемой технологии;
  • уровень саморазряда: от 8 до 30% в первый месяц после полного заряда;
  • удельная энергоемкость – до 65 Вт*час/килограмм;
  • срок эксплуатации – около 10 лет.

Ni-Cd АКБ выпускают в различных корпусах стандартных типоразмеров и в нестандартном исполнении, в том числе в дисковом, герметическом виде.

AA 1,2v

Где используются никель кадмиевые АКБ

Эти батареи применяются в устройствах, которые потребляют большой ток, а также испытывают высокие нагрузки при эксплуатации в следующих случаях:

  • на троллейбусах и трамваях;
  • на электрокарах;
  • на морском и речном транспорте;
  • в вертолетах и самолетах;
  • в электроинструментах (шуруповерты, дрели, электроотвертки и прочие);
  • электробритвы;
  • в военной технике;
  • переносных радиостанциях;
  • в игрушках на радиоуправлении;
  • в фонарях для дайвинга.

В настоящее время из-за ужесточения экологических требований большинство аккумуляторов популярных типоразмеров (AA, AAA и другие) выпускается по никель-металлогидридной и литий-ионной технологиям. Вместе с тем, в эксплуатации еще находится множество Ni Cd АКБ различных типоразмеров, выпущенных несколько лет назад.

Ni-Cd элементы имеют продолжительный срок эксплуатации, который порой превышает 10 лет и поэтому еще можно встретить этот вид батарей во множестве электронных устройств, кроме тех, которые перечислены выше.

Батареи

Плюсы и минусы Ni-Cd аккумулятора

Этот вид элементов питания имеет следующие положительные характеристики:

  • большой срок эксплуатации и число циклов заряда-разряда;
  • продолжительный срок службы и хранения;
  • возможность быстрой зарядки;
  • способность выдерживать большие нагрузки и низкие температуры;
  • сохранение работоспособности в самых неблагоприятных условиях эксплуатации;
  • невысокая стоимость;
  • возможность хранить эти батареи в разряженном состоянии до 5 лет;
  • средняя устойчивость к перезаряду.

В то же время, никель кадмиевые источники питания имеют ряд недостатков:

  • наличие эффекта памяти, проявляющийся в потере емкости при зарядке АКБ, не дожидаясь полного разряда;
  • необходимость профилактических работ (несколько циклов заряда-разряда) по набору полной емкости;
  • полное восстановление АКБ после долговременного хранения требует трех-четырех циклов полного заряда-разряда;
  • большой саморазряд (около 10% в первый месяц хранения), приводящий к практически полному разряду батареи за год хранения;
  • невысокая энергетическая плотность по сравнению с другими элементами питания;
  • высокая токсичность кадмия, из-за которой они запрещены в ряде стран, в том числе в ЕС, необходимость проводить утилизацию таких АКБ на специальном оборудовании;
  • больший вес по сравнению с современными батареями.

Ni-Cd и Ni-Mh

Отличие Ni-Cd от Li-Ion или Ni-Mh источников

Батареи с активными компонентами, включающими никель и кадмий, имеют ряд отличий от более современных литий-ионных и никель-металлогидридных источников электроэнергии:

  • Ni-Cd элементы, в отличие от Li-Ion и Ni-Mh вариантов, имеют эффект памяти, обладают меньшей удельной емкостью при одинаковых размерах;
  • NiCd источники более неприхотливы, сохраняют работоспособность при очень низких температурах, во много раз более устойчивы к перезаряду и сильному разряду;
  • Li-Ion и Ni-Mh аккумуляторы стоят дороже, бояться перезаряда и сильного разряда, но имеют меньший саморазряд;
  • срок эксплуатации и хранения Li-Ion аккумуляторов (2-3 года) в разы меньше, чем Ni Cd изделий (8-10 лет);
  • никель-кадмиевые источники быстро теряют емкость при использовании в буферном режиме (например, в UPS). Хотя их можно после этого полностью восстановить путем глубокого разряда и заряда, лучше не использовать Ni Cd изделия в устройствах, где осуществляется их постоянная подзарядка;
  • одинаковость режима заряда Ni-Cd и Ni-Mh батарей позволяет использовать одни и те же зарядные устройства, но при этом нужно учитывать тот факт, что у никель-кадмиевых АКБ более выражен эффект памяти.
Читайте также:  Зарядка для авто аккумулятора imax

Исходя из имеющихся отличий, нельзя сделать однозначный вывод о том, какие АКБ лучше, поскольку у всех элементов есть и сильные и слабые стороны.

Правила эксплуатации

В ходе эксплуатации в Ni Cd источниках питания происходит ряд изменений, которые приводят к постепенному ухудшению характеристик и, в конечном итоге, к утрате работоспособности:

  • уменьшается полезная площадь и масса электродов;
  • изменяется состав и объем электролита;
  • происходит распад сепаратора и органических примесей;
  • утрачивается вода и кислород;
  • появляются утечки тока, связанные с ростом дендритов кадмия на пластинах.

Для того, чтобы максимально уменьшить повреждения батареи, возникающие при ее эксплуатации и хранении, необходимо избегать неблагоприятных воздействий на АКБ, которые связаны со следующими факторами:

  • заряд не полностью заряженной батареи приводит к обратимой утрате ее емкости из-за уменьшения общей площади активного вещества в результате кристаллообразования;
  • регулярный сильный перезаряд, который приводит к перегреву, увеличенному газообразованию, утрате воды в электролите и разрушает электроды (особенно анод) и сепаратор;
  • недозаряд, приводящий к преждевременному истощению батареи;
  • долговременная эксплуатация при очень низких температурах приводит к изменению состава и объема электролита, увеличивается внутреннее сопротивление АКБ и ухудшаются ее эксплуатационные характеристики, в частности падает емкость.

При сильном увеличении давления внутри батареи в результате быстрого заряда большим током и сильной деградации кадмиевого катода в АКБ может выделяться избыточный водород, что приводит к резкому увеличению давления, которое может деформировать корпус, нарушает плотность сборки, увеличивает внутреннее сопротивление и уменьшает рабочее напряжение.

В АКБ, оборудованных аварийным клапаном сброса давления, опасность деформации можно предотвратить, но необратимых изменений химического состава батареи избежать невозможно.

Зарядку Ni Cd аккумуляторов нужно производить током 10% (при необходимости быстрого заряда в специальных АКБ – током до 100% за 1 час) величины их емкости (например, 100 мА при емкости 1000 mAh) в течение 14-16 часов. Самый лучший режим их разряда – током, равным 20% от емкости батареи.

Как восстановить Ni Cd аккумулятор

Никель кадмиевые источники питания в случае потери емкости можно практически полностью восстановить с помощью полного разряда (до 1 вольта на элемент) и последующего заряда в стандартном режиме. Такую тренировку аккумуляторов можно повторить несколько раз для наиболее полного восстановления их емкости.

В случае невозможности произвести восстановление АКБ путем разряда и заряда, можно попробовать их восстановить с помощью воздействия короткими токовыми импульсами (величиной в десятки раз больше емкости восстанавливаемого элемента) на протяжении нескольких секунд. Это воздействие устраняет внутреннее замыкание в элементах батареи, возникающее из-за нарастания дендритов путем их выжигания сильным током. Существуют специальные промышленные активаторы, которые осуществляют такое воздействие.

Полное восстановление первоначальной емкости таких батарей невозможно из-за необратимого изменения состава и свойств электролита, а также деградации пластин, но дает возможность продлить срок эксплуатации.

Методика восстановления в домашних условиях заключается в проведении следующих действий:

  • проводом сечением не менее 1,5 квадратных миллиметров соединяют минус восстанавливаемого элемента с катодом мощной батареи, например автомобильной или из UPS;
  • к аноду (плюсу) одной из батарей надежно прикрепляется второй провод;
  • на протяжении 3-4 секунд свободным концом второго провода быстро касаются свободной плюсовой клеммы (с частотой 2-3 касания в секунду). При этом необходимо не допускать приваривания проводов в месте соединения;
  • вольтметром производится проверка напряжения на восстанавливаемом источнике, при его отсутствии делается еще один восстановительный цикл;;
  • при появлении электродвижущей силы на АКБ, она ставиться на зарядку;

Кроме того, можно попытаться разрушить дендриты в АКБ путем их заморозки на 2-3 часа с последующим их резким отстукиванием. При замораживании дендриты становятся хрупкими и разрушаются от ударного воздействия, что теоретически может помочь избавиться от них.

Ni-Cd АКБ

Существуют и более экстремальные способы восстановления, связанные с добавлением дистиллированной воды в старые элементы путем высверливания их корпуса. Но полноценное обеспечение герметичности таких элементов в последующем очень проблематично. Поэтому не стоит экономить и подвергать здоровье риску отравления соединениями кадмия из-за выигрыша нескольких циклов работы.

Хранение и утилизация

Хранить никель кадмиевые батареи лучше в разряженном состоянии при низкой температуре в сухом месте. Чем меньше температура хранения таких АКБ, тем меньше у них саморазряд. Качественные модели могут храниться до 5 лет без существенного ущерба техническим характеристикам. Для ввода их в эксплуатацию достаточно провести их зарядку.

Вредные вещества, содержащиеся в одной батарее АА, способны загрязнить около 20 квадратных метров территории. Для безопасной утилизации Ni Cd аккумуляторов, их нужно сдавать в пункты переработки, откуда их переправляют на заводы, где их должны разрушать в специальных герметизированных печах, оборудованных фильтрами, улавливающими токсичные вещества.

Источник

Как заряжать ni cd аккумулятор: разновидности зарядных устройств, процесс заряда и разрядки

Источники тока на базе соединений никеля и кадмия, массово выпускающиеся с 50-х гг. прошлого века, используются в портативных электрических инструментах и электронном оборудовании. Низкая стоимость изделий позволяет им конкурировать с батареями на литиевой основе. Пользователю необходимо знать, как заряжать Ni-Cd-аккумулятор, поскольку от корректности этой процедуры зависит ресурс батарейки.

Особенности эксплуатации Ni-Cd-аккумуляторов

Правила эксплуатации никель-кадмиевых батареек:

  1. При использовании источников постоянного тока на никель-кадмиевой основе следует учитывать “эффект памяти”, приводящий к снижению емкости батареи. Явление возникает вследствие частичной разрядки элемента в процессе применения.
    Батарея прекращает работу при достижении зафиксированного значения, несмотря на оставшуюся часть емкости. Для устранения этого эффекта необходимо добиваться разряда батарейки до напряжения 0,9-0,95 В, дальнейшее снижение напряжения негативно влияет на ресурс аккумуляторной батареи.
  2. Перед началом применения никель-кадмиевого элемента выполняется цикл тренировочных разрядов и зарядов, позволяющих довести параметры изделия до заявленных производителем характеристик. Рекомендуется выполнить 4-6 рабочих циклов, для восстановления элементов низкого качества производится 30-40 циклов зарядки и разрядки.
  3. Если аккумулятор не использовался более 4-6 месяцев, то выполняется дополнительный цикл тренировки. Следует учитывать, что злоупотребление тренировочными циклами приводит к необратимому повреждению конструкции никель-кадмиевой батареи.
  4. Новые аккумуляторы допускают длительное хранение без зарядки. Если не планируется использование устройств, то выполнять зарядку не рекомендуется, т.к. при длительном хранении заряженных изделий наблюдается деградация элемента, приводящая к падению емкости и остальных параметров. Если требуется поместить на хранение ранее использовавшиеся источники тока, то они предварительно разряжаются до 0,9 В.
  5. Батареи, разряжавшиеся и заряжавшиеся слабыми токами, теряют свои емкостные характеристики. Подобное явление наблюдается у элементов, установленных в источниках бесперебойного питания. Для восстановления рабочих характеристик достаточно провести цикл глубокой разрядки с последующим набором емкости от зарядного приспособления.

Разновидности зарядных устройств для никель-кадмиевых аккумуляторов

Для восстановления емкости АКБ никель-кадмиевого типа используются 2 разновидности зарядных устройств:

  • автоматического типа;
  • импульсные реверсивные блоки.

Автоматический модуль оснащен гнездами соответствующего аккумуляторам размера. Такие устройства рассчитаны на 2 или 4 элемента, в конструкции блока предусмотрен переключатель, позволяющий выбрать количество заряжаемых изделий.

Зарядка аккумуляторов начинается после подключения блока к бытовой сети напряжением 230 В. Внутри модуля установлен понижающий трансформатор с выпрямительным каскадом, для отображения статуса зарядки применяется линейка светодиодов или многоцветный индикатор.

Во время зарядки индикатор горит красным цветом, после ее завершения включается зеленая лампочка. В конструкции автоматического блока предусмотрена функция разряда батареи, активируемая кнопочным переключателем.

Размеры Ni-Cd аккумулятора.

Для индикации режима разряда применяется диод желтого цвета, после снижения емкости зарядное устройство автоматически переходит в режим зарядки батарей. В процессе зарядки повышается температура корпуса батарейки, в блоке имеется датчик, который отключает подачу тока при достижении порогового значения.

Реверсивный зарядный блок относится к категории профессиональных изделий, отличается наличием микропроцессорного контроллера. Оборудование подает продолжительные импульсы зарядки, которые чередуются с кратковременным разрядом (время цикла изменяется в соответствии с установленным алгоритмом).

Оборудование позволяет поддерживать работоспособное состояние источника тока и продлевает срок службы Ni-Cd-батарей.

Процесс разряда и заряда Ni-Cd-аккумуляторов

В процессе заряда батареи на положительном электроде, выполненном из оксида никеля, происходит химическая реакция с выделением свободного электрона. На кадмиевом отрицательном электроде проходят дополнительные реакции.

При перезарядке элемента происходит выделение атомов кислорода, которые затем подаются через пористый сепаратор к отрицательному полюсу для последующего восстановления. Постоянство цикла восстановления обеспечивает поддержание стабильного давления газа внутри замкнутого корпуса.

При переразряде на отрицательном электроде формируются атомы водорода, который затем окисляется на никелевом положительном элементе. Из-за низкой скорости этого процесса возможно накопление газа. Для устранения эффекта выделения водорода в N-Cd-батареях всегда применяются отрицательные электроды, имеющие больший объем, чем положительные.

Процесс разряда никель-кадмиевых батарей

На процедуру разряда батарей, построенных на основе никель-кадмиевой композиции, влияют несколько факторов:

  • конфигурация и строение электродов;
  • схема и толщина сепаратора;
  • количество электролита и его химический состав;
  • плотность сборки;
  • конструктивные особенности батареи.

Конфигурация корпуса и площадь электродов учитываются при выборе типа аккумулятора, соответствующего условиям работы. Например, дисковые батареи с увеличенным сечением электродов, выполненных по технологии прессования, применяются в условиях продолжительного разряда. Устройства обеспечивают плавное снижение емкости и напряжения до 1,1 В. Остаточная емкость составляет до 10%, она падает в ходе дальнейшей разрядки до 1 В.

Конструкция цилиндрического элемента не позволяет увеличивать ток разряда до значений выше 20% от номинальной емкости.

Марка Ni-Cd аккумуляторов.

Причиной является невозможность обеспечения равномерного функционирования активной массы по всему сечению электродов.

Для устранения недостатка практикуется уменьшение диаметра электродов с одновременным увеличением количества деталей. При использовании 4 элементов обеспечивается увеличение тока до 55-60% от емкости батареи.

Для повышения эффективности работы используются аккумуляторы никель-кадмиевого типа с электродами, выполненными из металлокерамического композита. Детали отличаются пониженным внутренним сопротивлением, обеспечивая поддержание напряжения не ниже 1,2 В до разряда на 90% от заявленной производителем емкости.

При снижении напряжения на клеммах до 1,0 В емкость батареи снижается до 3% от стартового значения. При подключении внешней нагрузки ток разряда превышает номинальную емкость аккумуляторных элементов в 3-5 раз.

Батареи цилиндрического типа АА или ААА оснащаются электродами рулонной конструкции. Устройства обеспечивают ток в цепи до 10 раз выше номинальной емкости. Для обеспечения максимальных характеристик требуется поддержание температуры источника тока в диапазоне 18-22°С.

При нагреве емкость элементов снижается незначительно, при охлаждении батареи до отрицательных температур начинается снижение емкости (пропорционально току). Этот эффект возникает из-за роста сопротивления электролита и материала электродов.

При дальнейшем снижении температуры в замкнутом объеме электролита начинают формироваться кристаллы. Состав и количество твердых фракций зависят от состояния элемента и степени охлаждения. При полном замерзании электролита прекращаются электрохимические процессы, что приводит к падению напряжения до нулевой отметки.

Производители никель-кадмиевых батарей не рекомендуют использовать изделия при температуре ниже -20°С. Существуют модификации, рассчитанные на охлаждение до -40°С, но сколько отработает батарея при таких условиях, неизвестно.

Процесс заряда никель-кадмиевых батарей

При восстановлении емкости никель-кадмиевых источников тока производится принудительное ограничение степени зарядки. В процессе зарядки происходит выделение кислорода, который повышает давление внутри корпуса батареи, проходящие электрохимические процессы снижают эффективность использования поступающего тока.

Читайте также:  От бортового компьютера садиться аккумулятор

Часть подводимой электроэнергии преобразуется в тепло, в конструкции батареи предусмотрен дренажный клапан, который стравливает излишки газа при росте давления выше допустимого.

Долговечность аккумулятора зависит от того, каким током производится зарядка. Для обеспечения максимального эффекта сила тока устанавливается на уровне 1,6-2,0 от номинальной емкости заряжаемого элемента. Конструкция батареи позволяет вести зарядку при температуре от 0° до 40°С, но рекомендуется выполнять операцию при нагреве до 10-30°С.

При попытке зарядить замерзшую батарею образующийся кислород не поглощается материалом отрицательного электрода, что приводит к росту давления и деформации металлического кожуха аккумулятора.

9.6 В 1400 мАч Ni-Cd аккумулятор

При повышении температуры выделение ионов кислорода на положительном электроде происходит быстрее, что ускоряет процедуру восполнения емкости. При поддержании стабильной температуры интенсивность зарядки регулируется силой тока, подаваемого на клеммы, который изменяет интенсивность выделения ионов.

При этом скорость поглощения не зависит от степени нагрева, этот параметр определяется конструкцией никель-кадмиевого элемента.

Поскольку интенсивность поглощения кислорода зависит от конфигурации электродов, конструкции сепаратора и объема электролита, то возможно создание батареек, допускающих ускоренную зарядку. Для этого применяются источники тока с увеличенным числом электродов, имеющих уменьшенное сечение. Например, цилиндрические элементы заряжаются в 2-3 раза быстрее плоских аккумуляторов.

Также существуют методики зарядки никель-кадмиевых аккумуляторов с деградировавшим электролитом. В корпусе элемента сверлится отверстие, через которое закачивается дистиллированная вода. Если производится восстановление аккумуляторной банки, собранной из нескольких батарей, то предварительно определяются детали с напряжением на клеммах около 0 В.

Заполненные водой аккумуляторы выдерживаются при комнатной температуре на протяжении 10-12 часов, затем на выводы подается напряжение, позволяющее активировать электрохимические процессы.

После появления на выходах напряжения, отличного от 0 В, производится стандартная зарядка. Рекомендуется выдержать источники тока 2-3 дня, а затем провести контрольный замер напряжения. В случае его падения выполняется повторная доливка дистиллированной воды (объем зависит от размера корпуса).

Если напряжение не снизилось, отверстия заделывают, а элементы 2-3 раза заряжают и разряжают, при необходимости производится сборка компонентов в единую банку.

Режим заряда Ni-Cd-аккумулятора

При стандартном алгоритме восполнения заряда на протяжении 14-16 часов выполняется подача постоянного тока силой 10% от емкости батареи (исходное напряжение на клеммах аккумулятора составляет 0,9-1,0 В).

Дополнительные рекомендации по зарядке указываются производителем АКБ. Например, при зарядке цилиндрической батареи сила тока составляет 20% от номинальной емкости, а время восполнения емкости не превышает 6-7 часов. При увеличении тока до 30% время зарядки падает до 4 часов.

Существуют специальные серии аккумуляторов, позволяющие восстанавливать емкость за 1-1,5 часа. При ускоренном режиме используются различные средства контроля (по времени и по температуре корпуса). При ускоренной зарядке происходит активное газообразование, и если нет контроля, то наступает быстрая деградация элемента или разрыв корпуса.

Восстановление заряда Ni-Cd-аккумулятора состоит из 2 этапов:

  1. Фаза начальной зарядки никель-кадмиевого аккумулятора характеризуется увеличением напряжения на клеммах, а затем происходит стабилизация значения, что фиксируется микропроцессором зарядного устройства. Ток зарядки устанавливается на уровне до 200% от емкости аккумулятора, часть зарядных блоков оснащена переключателем, позволяющим выбрать вид импульса при подаче напряжения.
  2. После полной зарядки батареи происходит снижение напряжения, что является сигналом к прекращению подачи тока на клеммы. Параметр падения обозначается DP (Delta Peak), от точности замера значения зависит качество зарядки, также она влияет на снижение риска перезаряда батареи, сопровождаемого повышенным газообразованием.
    Часть зарядных устройств позволяют корректировать параметр DP вручную, рекомендуется установка корректора в минимальное положение.

Профессиональные зарядные блоки производят заряд аккумулятора по ступенчатой методике с одновременным контролем температуры корпуса (не допускается прогрев выше 50°С). Ступенчатый алгоритм позволяет снизить время зарядки стандартных батарей.

Для восполнения первых 10-15% емкости используется ток силой до 100% от емкости, затем происходит плавное увеличение этого параметра до 150%. После зарядки батареи на 90% сила тока снижается в 3 раза, что позволяет уменьшить газообразование и исключает вредный эффект перезаряда Ni-Cd-аккумулятора.

После отключения питания внутри аккумулятора продолжаются электрохимические процессы, связанные с преобразованием веществ на поверхности электродов. Затем начинается постепенное выравнивание скорости выделения ионов кислорода на положительном электроде и интенсивности поглощения вещества кадмиевым отрицательным элементом.

Давление внутри батареи падает, но при предварительном перезаряде источника тока снижение давления занимает до 5-6 часов.

Источник

Эксплуатационные характеристики Ni-Cd аккумуляторов

Режимы разряда
Разрядные характеристики аккумуляторов при разных плотностях тока определяются особенностями аккумуляторов, влияющими на величину их внутреннего сопротивления. К таким особенностям принадлежат прежде всего толщина электродов и их структурные характеристики, плотность сборки пакета электродов, толщина и структура сепаратора, количество электролита и отдельные параметры конструкции аккумулятора.

Для дисковых аккумуляторов с толстыми прессованными электродами, предназначенных для работы при продолжительном режиме разряда, характерна разрядная кривая с изменением напряжения с постоянно малой скоростью до напряжения 1,1В. Разрядная емкость, снимаемая при дальнейшем разряде до 1В, составляет 5-10 % Сн.

У этих аккумуляторов отмечается заметное снижение среднего разрядного напряжения и отдаваемой емкости с увеличением плотности тока до 0,2С. Это определяется невозможностью равномерного быстрого разряда активной массы по всей толщине электрода.

Снижение толщины электродов (при увеличении их числа с 2 до 4) позволило для дисковых аккумуляторов, предназначенных для использования при среднем режиме разряда, увеличить границу токов разряда до 0,6 С.

Короткоразрядные аккумуляторы с металлокерамичеекими электродами благодаря малому внутреннему сопротивлению обладают более высокими энергетическими показателями. При номинальных токах разряда разрядная кривая аккумуляторов имеет меньший градиент спада напряжения. Обычно, напряжение аккумуляторов выше 1,2В сохраняется вплоть до исчерпания 0,9 Сн. При разряде от 1,1 до 1,0В снимается не более 3% Сн. Такие аккумуляторы могут быть использованы при разряде токами до 3-5 С.

Современные цилиндрические Ni-Cd аккумуляторы с рулонными электродами допускают еще более высокие разрядные токи: для некоторых типов аккумуляторов максимальный долговременный ток составляет 7-10С.

Влияние режима разряда на величину разрядной емкости изображено на рисунках 2 и 3. Из рисунка видно, насколько существенным фактором внешнего влияния на электрические характеристики аккумуляторов является температура окружающей среды. Емкость, которая может быть получена от аккумулятора при 20 °С, наибольшая. Она почти не уменьшается и при разряде при более высокой температуре. Но при температуре ниже 0 °С разрядная емкость уменьшается, и тем больше, чем больше разрядный ток.

Снижение емкости при низкой температуре связано со снижением разрядного напряжения аккумулятора из-за существенного роста как омического, так и поляризационного сопротивления. Рост сопротивления определяется малым количеством электролита в герметичном аккумуляторе. Именно поэтому так существенно сказываются на характеристиках аккумулятора концентрация и состав электролита, которые определяют температуру образования в электролите той или иной твердой фазы: льда, кристаллогидратов, солей и др. Замерзание электролита вообще исключает вероятность разряда. Поэтому нижняя температурная граница работоспособности герметичных никель-кадмиевых аккумуляторов редко бывает ниже -20 °С. Но при коррекции состава и концентрации электролита в отдельных типах аккумуляторов при -40 °С удается получить — 0,5Сн при токе разряда 0,2С и 0,2Сн при токе 1С.

Режимы заряда Ni-Cd аккумуляторов
При заряде герметичного аккумулятора кроме проблемы восстановления истраченной энергии, важным является ограничение его перезаряда, поскольку процесс заряда сопровождается повышением давления внутри аккумулятора. По мере заряда оксидно-никелевого электрода начинается побочный процесс выделения кислорода, и коэффициент использования тока к окончанию заряда заметно падает. На рисунке 5 показаны типичные кривые, отображающие зависимость разрядной емкости цилиндрического аккумулятора от емкости, сообщенной при разных скоростях заряда. Из этих кривых видно, что для полного заряда аккумулятора ему достаточно сообщать не более 160 % номинальной емкости.

Рис.5. Эффективность заряда никель-кадмиевого аккумулятора при различной скорости заряда

Аккумуляторы могут быть заряжены при температуре от 0 до +40 °С, наиболее эффективно в интервале температур от +10 до +30 °С. При низкой температуре поглощение кислорода на отрицательном электроде сильно замедляется и при перезаряде быстрое повышение давления может привести к открытию аварийного клапана. При высокой температуре понижается потенциал, при котором на положительном электроде начинает выделяться кислород, что приводит к более раннему началу этого процесса.

При одной и той же температуре повышение тока для ускорения процесса заряда приводит к увеличению скорости выделения кислорода. Скорость газо-поглощения кислорода при этом практически не изменяется. Она в большей степени зависит от особенностей аккумулятора, которые определяют перенос кислорода от положительного электрода к отрицательному, а именно: от плотности компоновки пакета электродов, толщины и структурных параметров электродов и сепарационного материала, количества электролита.

Заряд тем эффективнее, чем тоньше электроды аккумулятора и плотнее сборка их пакета. Именно поэтому цилиндрические аккумуляторы с электродами рулонного типа больше приспособлены к заряду с большой скоростью. Из кривых на рисунке 5 видно, что для таких аккумуляторов эффективность заряда в интервале токов заряда 0,1-1С практически не изменяется. А уменьшение тока заряда приводит к заметному уменьшению емкости, которую можно получить от аккумулятора при последующем разряде.

Номинальным (стандартным) режимом заряда является режим, при котором аккумулятор, разряженный до 1В, заряжается током 0,1С в течение 16 ч. Для отдельных аккумуляторов продолжительность заряда в номинальном режиме составляет 14 ч. Это ограничение оговаривает предприятие-изготовитель, оно определяется особенностями конструкции аккумулятора или повышенной закладкой активных масс с целью увеличения емкости.

Кроме гальваностатического заряда (заряда при постоянном токе) для герметичных никель-кадмиевых аккумуляторов могут быть применены другие стратегии заряда, при которых в конце зарядного процесса ток снижается плавно или ступенчато до величин, позволяющих вести процесс практически бесконечно без повреждения аккумулятора. В этом случае на начальной ступени заряда ток может быть значительно выше стандартного тока 0,1 С.

В настоящее время во многих случаях появляется настоятельная необходимость в ускорении процесса заряда. Эта проблема решается при применении аккумуляторов, способных к эффективному заряду током повышенной плотности, постоянным по величине в процессе всего заряда, и систем контроля, не допускающих чрезмерного перезаряда аккумуляторов.

Большая часть цилиндрических аккумуляторов может быть заряжена постоянным током 0,2 С за 6-7 ч либо током 0,3 С за 3-4 ч (при контроле лишь времени заряда). При ускоренном относительно стандартного заряде рекомендуется перезаряд не более чем до 120-140 %. При этом обеспечивается разрядная емкость не менее номинальной. Аккумуляторы серий, разработанных для циклирования в ускоренных режимах, могут быть заряжены еще быстрее: в течение около 1 ч. Но в этом случае они требуют специфического контроля напряжения и/или температуры во избежание деградации аккумуляторов из-за быстрого увеличения давления.

Пауза между зарядом и разрядом
После прекращения заряда повышение давления в аккумуляторе некоторое время продолжается, так как на оксидно-никелевом электроде идет процесс окисления гидроксильных ионов. По мере снижения потенциала оксидно-никелевого электрода за счет саморазряда скорость процесса газовыделения понижается и становится соизмеримой со скоростью поглощения кислорода на отрицательном электроде. В результате давление в аккумуляторе начинает понижаться. Понятно, что при одинаковом уровне перезаряда чем больше была скорость заряда, тем больше растет давление в аккумуляторе после прекращения заряда.

Источник