Меню

Схемы импульс зарядных устройств для

Схемы импульс зарядных устройств для

Зарядное устройство импульсное для автомобильного аккумулятора своими руками: схема ЗУ для АКБ импульсное зарядное устройство для автомобиля

Что такое импульсное зарядное устройство?

В отличие от трансформаторных собратьев импульсные зарядные устройства заряжают батарею не постоянным током какого-либо значения, а импульсами. Для их образования используется современная элементная база – громоздкие трансформаторы при этом не потребуются. Импульсная зарядка аккумулятора происходит в режиме как постоянного тока, так и постоянного напряжения, плюс комбинированный цикл. А это очень важно, например, для необслуживаемых АКБ.

Принцип действия

Если смотреть по конструкции, речь идёт об устройстве, восстанавливающем заряд автомобильной АКБ особым образом. В импульсное зарядное устройство для автомобильного аккумулятора входят:

  • небольшой импульсный трансформатор;
  • диодный выпрямитель;
  • блок стабилизации;
  • система индикации (аналоговые приборы или цифровой дисплей);
  • электронный модуль, контролирующий процесс заряжания.

Как действует ИЗУ? Электронная схема и трансформатор генерируют высокую частоту, с помощью которой входное напряжение от сети повышается. При этом активно применяются фильтры (в состав которых входят электролитические конденсаторы), задерживающие помехи и сглаживающие напряжение на выходе. Далее происходит его преобразование с одновременным понижением до требуемого значения. К аккумулятору поступает ток, величина которого контролируется дополнительными электронными блоками. По окончании процесса диодный выпрямитель блокируется, зарядка прекращается.

Особенности

Все импульсные зарядки несложны в эксплуатации и имеют свою классификацию. В магазине вы встретите ИЗУ нескольких типов:

  1. Ручные: относительно недорогие устройства, требующие постоянного контроля над процессом заряжания: то есть придётся периодически подстраивать U и I, следить за временем процесса.
  2. Полуавтоматы: здесь часть процессов происходит без участия автовладельца – ему необходимо лишь учитывать продолжительность процедуры.
  3. Автоматы: программируемые устройства, способные сначала определять состояние АКБ, потом выбирать оптимальный режим её восстановления и заряжать с последующим автоматическим отключением.

Полноценная зарядка АКБ импульсным устройством не может происходить в ударном темпе. Для 100-процентного восстановления аккумулятора потребуется от 14 до 20 часов.

Специальный режим зарядки

С помощью ИЗУ батарею можно зарядить постоянным током, напряжением либо использовать комбинированный режим, о чём будет написано далее. Но у многих импульсников существует и специальный метод восстановления АКБ, называемый BOOST. Это чрезвычайный режим, обеспечивающий подзарядку аккумулятора в течение максимум 10 минут. По окончании такого срока двигатель запустится, даже если аккумулятор был разряжен очень сильно.

Но часто пользоваться подобным режимом нежелательно: постоянное сильное воздействие на пластины-электроды быстро приведёт к их разрушению, и батарея потеряет работоспособность окончательно через 2–3 месяца. Применять BOOST можно лишь в крайних случаях: когда нужно срочно ехать, а батарея оказалась разряженной.

Преимущества и недостатки

Чем же обусловлена популярность импульсных устройств у автолюбителей? На это есть довольно веские причины:

  1. Небольшие габариты: некоторые импульсники можно свободно поместить даже в бардачок авто. Поэтому зарядник легко взять с собой в длительную поездку при сильном морозе, чтобы после ночёвки не испытывать проблем с запуском мотора.
  2. Лёгкость в эксплуатации: разобраться с управлением прибором сможет даже человек, не искушённый в тонкостях электроники.
  3. Программное обеспечение в самых современных ИЗУ исключает присутствие человека при процессе заряжания, в крайнем случае его участие сводится к минимуму.
  4. Импульсные зарядки имеют всевозможные виды защиты от замыканий, переполюсовок и т. п.
  5. Автоматический режим работы не допускает перегрев АКБ и продлевает эксплуатационный ресурс батареи.
  6. В некоторые ИЗУ интегрирована система подсказок. При неправильном подключении или неверном выборе режима тревожный сигнал, информация на дисплее подскажут, что нужно делать, чтобы правильно зарядить АКБ.

А что можно сказать об отрицательных сторонах этого зарядного устройства? Здесь стоит выделить пару главных моментов. Первый заключается в относительно высокой стоимости аппарата. Взглянув на цену, большинство покупателей тут же переходят к полке с трансформаторными ЗУ. Поэтому импульсники чаще можно встретить в автосервисах, на станциях ТО, в частных мастерских.

Второе – наличие множества датчиков, приборов, сложной электронной схемы. Всё это очень сильно помогает в процессе работы. Но в случае поломки одного из элементов ремонт может вылиться в копеечку. Да такую, что, возможно, придётся задуматься о приобретении другого аппарата.

Самодельное зарядное для авто,shema Зарядное для авто своими руками, 12

Какие бывают зарядные устройства

Аккумулятор не вечный и даже в самых заботливых руках может прослужить не более 5-6 лет. Но многие и до этого не дотягивают, потому что водители часто пренебрегают элементарными правилами эксплуатации устройства. И обслуживания, в том числе. Правил обслуживания аккумулятора есть много, но качественная подзарядка необходима аккумулятору даже при полной работоспособности всего бортового электрооборудования.

Нынешние зарядные устройства для автомобильных аккумуляторов представлены только двумя типами:

  • импульсными зарядками;
  • трансформаторными устройствами.

Трансформаторные модели устройств при всех своих достоинствах имеют огромный вес и габариты. Это не проблема для тех, у кого есть полноценная мастерская, просторный гараж. Да и по надежности и стабильности зарядных характеристик трансформаторные динозавры гораздо лучше импульсных устройств. Но время идет, и тяжелые трансформаторы заменяют импульсные устройства.

Как собрать простое импульсное ЗУ самому

Собрать импульсное зарядное устройство своими руками довольно сложно даже хорошо подготовленному автолюбителю. К тому же придётся подыскивать электронные компоненты, которые есть далеко не в каждом магазине. Использование деталей б/у тоже риск, так как, по сути, это «кот в мешке», их придётся проверять, для чего понадобится специальная аппаратура.

Схема

Достаточно взглянуть на приведённую ниже схему импульсного зарядного устройства для автомобильного аккумулятора, причём далеко не самую замысловатую, чтобы убедиться в его сложности:

Автомобильные импульсные зарядные устройства, сделанные своими руками

Однако выход есть! Можно использовать работоспособный блок питания, вытащив его из отработавшего своё компьютера. Мощность извлечённого модуля должна быть не меньше 150 Вт. Но, как показывает практика, надёжнее (чтобы не тратить зря время) приобрести недорогой БП, например, с заводским обозначением S-120-12. Купить его можно в известном китайском интернет-магазине. Прелесть этого изделия не только в том, что оно нуждается в минимальной переделке, но и в том, что в нём уже имеется заводская защита от КЗ и перегрузок.

В блоке на лицевой панели уже есть подстроечное сопротивление, позволяющее регулировать напряжение в пределах 1 В. Однако для ЗУ этого явно недостаточно: требуется диапазон хотя бы 9–20 В. Чтобы переделать блок, найдите кроме подстроечного резистора обычный, обозначаемый как R1 с номиналом 5 кОм. Его нужно поменять на сопротивление в 2,7 кОм. В свою очередь «подстроечник» номиналом в 1 кОм заменяется на такой же сопротивлением 5 кОм. Теперь можно будет регулировать напряжение в требуемом диапазоне. Чтобы повысить мощность БП, поменяйте электролитические конденсаторы в 1000 мкФ (этакие «бочонки») на такие же, но рассчитанные на напряжение не 16, а 25 В (они такого же размера и точно подойдут к месту). Если есть желание, можно добавить в схему прибор, измеряющий силу тока и напряжение, как это показано на схеме импульсного зарядного устройства для автомобильного аккумулятора ниже:

Автомобильные импульсные зарядные устройства, сделанные своими руками

Инструкция по изготовлению импульсного ЗУ своими руками

Простая схема для изготовления импульсной зарядки

Сделать ЗУ для автоаккумуляторов можно в домашних условиях, рассмотрим процесс изготовления девайса со схемой IR2153. В этой схеме нет двух конденсаторных элементов, подключенных к средней точке, вместо них устанавливается электролит. По этой схеме можно изготовить девайс, который изначально рассчитан на невысокую мощность, но если вы хотите получить более мощное ЗУ, то можете немного изменить схему, добавив в нее мощные компоненты.

  1. Схема импульсного зарядного устройства подразумевает использование ключей 8N50, которые оснащаются защитным корпусом. Также вам потребуются и диодные мосты, их не обязательно покупать в магазине, можно взять со старого БП компьютера. Если у вас нет возможности достать такие диоды, то в принципе, мост можно сделать из выпрямительных диодных элементов, потребуется четыре штуки.
  2. Не менее важным этапом является обустройство цепи питания, для реализации вам понадобится резисторный элемент для гашения тока, наиболее оптимальным вариантом будет резистор на 18 кОм. За резисторным компонентом устанавливается выпрямитель, который монтируется на диоде. В данном случае питание от бытовой сети будет передаваться на плату, это нам подходит. На самом питании нужно будет установить электролит, а его также надо будет соединить с конденсаторным элементом — можно использовать керамическое устройство или пленочное. Конденсатор в обязательном порядке нужно добавить в схему, поскольку это позволит максимально сгладить возможные помехи в работе ЗУ.
  3. Трансформаторный узел можно взять из старого компьютерного БП, важно убедиться в том, что он рабочий. Устройства, которые ставятся в блоки питания, оптимально подходят для изготовления ЗУ, так как они выдают хороший ток на выходе. Диодные элементы трансформатора должны быть в любом случае импульсными, так как обычные детали будут не в состоянии работать в условиях высокой частоты.
  4. Что касается фильтрующего элемента, то его использование не является обязательным, но все же добавить фильтр можно. Также в схему можно добавить термистор на 5 Ом и установить его перед фильтром, это позволит добиться максимального снижения помех. К слову, термистор также можно демонтировать из компьютерного БП.
  5. Не забудьте установить и электролитический конденсаторный компонент, при его выборе необходимо руководствоваться соотношением 1 Вт — 1 мкФ (автор видео о пошаговом изготовлении ЗУ — канал Паяльник TV).
Читайте также:  Зарядное устройство для аккумуляторов 18650 220в для 2шт

На первый взгляд эта схема может показаться достаточно сложной, но в целом в ее реализации нет ничего сложного. Если вы все сделаете правильно и учтете все моменты и рекомендации, то процесс изготовления не вызовет сложностей, даже если вы никогда ранее не сталкивались с такой задачей.

Фотогалерея «Схемы для изготовления ЗУ»

Ниже представлены более сложные схемы для изготовления зарядных устройств. Если вы владеете навыками, то можете использовать эти схемы.


1. Более сложная схема для импульсного ЗУ


2. Схема мощного импульсного прибора

Что нужно знать владельцу такого устройства?

Особенностей у самодельного аппарата, собранного по схеме импульсного зарядного устройства, приведённой выше, не так много, сам процесс несложен, контроль над ним сведён к минимуму. Электронная защита исключает выход из строя компонентов при неправильном подключении или перегрузках в сети.

Как правильно заряжать

Подключите ИЗУ к сети 220 В, переведите выключатель в рабочее положение. Когда прибор, измеряющий ток и напряжение, заработает, переведите ручку подстроечного сопротивления влево до конца: получится на выходе 9 В. Теперь подсоедините выходные провода к клеммам АКБ, соблюдая соответствие (+) и (-). Переменным резистором не спеша увеличивайте напряжение до 13,5 В (если батарея совсем села) или 14,5 В (если аккумулятор неработоспособен на 50 %). Посмотрите на амперметр: I должна составлять 10 % от ёмкости. Например, для АКБ 55 А/ч это будет 5,5 А.

По ходу процесса сила тока будет падать, плотность электролита – повышаться. Процедуру можно считать законченной, когда I = 0,1 А или менее.

Как функционирует защита?

При случайном замыкании выходных проводов ИЗУ останется работоспособным: просто он выключится. Вытащите вилку из сети, устраните причину КЗ, и блок снова готов к работе. Ещё есть защита от перегрузки: устройство срабатывает при появлении тока в 10 А. Как только возникает подобное значение, устройство автоматически отключается.

Часто допускаемые ошибки

В первую очередь это спешка. Нельзя полноценно зарядить батарею ИЗУ за 4–5 часов. Понадобится не менее 14-ти. Тем более, если процесс осуществляется при отрицательной температуре. Также рекомендуется внимательно смотреть на полюса при подключении аккумулятора: не каждое ЗУ имеет защиту «от дурака». Если у вас аккумулятор свинцово-кислотный, обслуживаемый, на период зарядки стоит выкрутить (можно наполовину) пробки банок. Оберегайте устройство от проникновения влаги, образования конденсата. Последний может осесть на корпусе при внесении ЗУ с мороза в тёплое помещение. В этом случае эксплуатацию устройства можно начинать примерно через пару часов, когда влага, осевшая на электронных компонентах, высохнет.

Типичные поломки ЗУ и их ремонт

Один из наиболее распространённых дефектов, появляющихся обычно после года-второго срока эксплуатации, – отсутствие напряжения на выходе. В лучшем случае причина заключается в сгоревшем предохранителе: его нужно просто заменить. Если же он исправен, осмотрите печатную плату: в первую очередь обратите внимание на электролитические конденсаторы – их вздутие говорит о выходе из строя.

Однако не стоит ограничиваться только их заменой: поломка конденсаторов могла по принципу цепочки привести к выходу из строя других элементов. Поэтому надо выпаять и проверить:

  • выпрямительный диодный мост;
  • конденсаторы фильтра;
  • полевые транзисторы (они стоят на алюминиевых радиаторах).

Также не забудьте проверить целостность проводов питания и работоспособность выключателя. Если под рукой нет нужного предохранителя, его временно заменит «жучок»: проволока сечением 0,11 мм соответствует току в 3 А.

Самые популярные модели

Среди наиболее популярных ИЗУ – устройства производства России, Италии, Германии, КНР, Украины и других стран. Ниже представлены аппараты из бюджетного сегмента:

  1. Voin VL 156-6(12)В. Оснащён цифровым дисплеем, благодаря которому процесс оказывается под контролем. Есть несколько режимов зарядки и электронная защита в 3 уровня. Размеры компактные, цена доступная.
  2. Elegant. Долгое время держит статическое напряжение. Реализует медленную, бережную зарядку. Все процессы отображаются на цифровом мониторе.
  3. Master Watt. Универсальный аппарат, уверенно работающий с любыми типами аккумуляторов. Так как это полуавтомат, то необходим несложный контроль. Производитель уверяет о большом сроке эксплуатации – до 25 лет.
  4. KeePower Medium. Полностью автоматическое устройство. Достаточно просто подключить аппарат к АКБ и установить требуемую программу. Батарея будет заряжаться медленно, быстро либо со средним темпом.

Как видно, импульсные зарядные устройства всё больше распространяются на рынке. Очевидно, что со временем, когда конкуренция будет более сильной, цена на изделия упадёт. А если вы не хотите ждать, можно попробовать собрать импульсное зарядное устройство своими руками. Это наверняка окажется дешевле.

Источник



Основные схемы импульсных сетевых адаптеров для зарядки телефонов

Схемы импульсных сетевых адаптеров для зарядки телефонов

Большинство современных сетевых зарядных устройств собрано по простейшей импульсной схеме, на одном высоковольтном транзисторе (рис. 1) по схеме блокинг-генератора.

В отличие от более простых схем на понижающем 50 Гц трансформаторе, трансформатор у импульсных преобразователей той же мощности гораздо меньше по размерам, а значит, меньше размеры, вес и цена всего преобразователя. Кроме того, импульсные преобразователи более безопасны — если у обычного преобразователя при выходе из строя силовых элементов в нагрузку попадает высокое нестабилизированное (а иногда и вообще переменное) напряжение со вторичной обмотки трансформатора, то при любой неисправности «импульсника» (кроме выхода из строя оптрона обратной связи — но его обычно очень хорошо защищают) на выходе вообще не будет никакого напряжения.

Рис. 1
Простая импульсная схема блокинг-генератора
Подробнейшее описание принципа действия (с картинками) и расчета элементов схемы высоковольтного импульсного преобразователя (трансформатор, конденсаторы и пр.) можно прочитать, например, в «ТЕА152х Efficient Low Power Voltage supply» по ссылке http://www. nxp.com/acrobat/applicationnotes/AN00055.pdf (на английском).

Переменное сетевое напряжение выпрямляется диодом VD1 (хотя иногда щедрые китайцы ставят целых четыре диода, по мостовой схеме), импульс тока при включении ограничивается резистором R1. Здесь желательно поставить резистор мощностью 0,25 Вт — тогда при перегрузке он сгорит, выполнив функцию предохранителя.

Преобразователь собран на транзисторе VT1 по классической обратноходовой схеме. Резистор R2 нужен для запуска генерации при подаче питания, в этой схеме он необязателен, но с ним преобразователь работает чуть стабильней. Генерации поддерживается благодаря конденсатору С1, включенному в цепь ПОС на обмотке частота генерации зависит от его емкости и параметров трансформатора. При отпирании транзистора напряжение на нижних по схеме выводах обмоток / и II отрицательное, на верхних — положительное, положительная полуволна через конденсатор С1 еще сильней открывает транзистор, амплитуда напряжения в обмотках возрастает. То есть транзистор лавинообразно открывается. Через некоторое время, по мере заряда конденсатора С1, базовый ток начинает уменьшаться, транзистор начинает закрываться, напряжение на верхнем по схеме выводе обмотки II начинает уменьшаться, через конденсатор С1 базовый ток еще сильней уменьшается, и транзистор лавинообразно закрывается. Резистор R3 необходим для ограничения базового тока при перегрузках схемы и выбросах в сети переменного тока.

В это же время амплитудой ЭДС самоиндукции через диод VD4 подзаряжается конденсатор СЗ — поэтому преобразователь и называется обратноходовым. Если поменять местами выводы обмотки III и подзаряжать конденсатор СЗ во время прямого хода, то резко возрастет нагрузка на транзистор во время прямого хода (он может даже сгореть из-за слишком большого тока), а во время обратного хода ЭДС самоиндукции окажется нерастраченной и выделится на коллекторном переходе транзистора — то есть он может сгореть от перенапряжения. Поэтому при изготовлении устройства нужно строго соблюдать фазировку всех обмоток (если перепутать выводы обмотки II — генератор просто не запустится, так как конденсатор С1 будет наоборот, срывать генерацию и стабилизировать схему).

Выходное напряжение устройства зависит от количества витков в обмотках II и III и от напряжения стабилизации стабилитрона VD3. Выходное напряжение равно напряжению стабилизации только в том случае, если количество витков в обмотках II и III одинаковое, в противном случае оно будет другое. Во время обратного хода конденсатор С2 подзаряжается через диод VD2, как только он зарядится до примерно -5 В, стабилитрон начнет пропускать ток, отрицательное напряжение на базе транзистора VT1 чуть уменьшит амплитуду импульсов на коллекторе, и выходное напряжение стабилизируется на некотором уровне. Точность стабилизации у этой схемы не очень высока — выходное напряжение гуляет в пределах 15. 25% в зависимости от тока нагрузки и качества стабилитрона VD3.
Схема более качественного (и более сложного) преобразователя показана на рис. 2

Рис. 2
Электрическая схема более сложного
преобразователя
Для выпрямления входного напряжения используется диодный мостик VD1 и конденсатор , резистор должен быть мощностью не менее 0,5 Вт, иначе в момент включения, при зарядке конденсатора С1, он может сгореть. Емкость конденсатора С1 в микрофарадах должна равняться мощности устройства в ваттах.

Сам преобразователь собран по уже знакомой схеме на транзисторе VT1. В цепь эмиттера включен датчик тока на резисторе R4 — как только протекающий через транзистор ток станет столь большим, что падение напряжения на резисторе превысит 1,5 В (при указанном на схеме сопротивлении — 75 мА), через диод VD3 приоткроется транзистор VT2 и ограничит базовый ток транзистора VT1 так, чтобы его коллекторный ток не превышал указанные выше 75 мА. Несмотря на свою простоту, такая схема защиты довольно эффективна, и преобразователь получается практически вечный даже при коротких замыканиях в нагрузке.

Читайте также:  Пуско зарядные устройства 1500 energy

Для защиты транзистора VT1 от выбросов ЭДС самоиндукции, в схему добавлена сглаживающая цепочка VD4-C5-R6. Диод VD4 обязательно должен быть высокочастотным — идеально BYV26C, чуть хуже — UF4004-UF4007 или 1 N4936, 1 N4937. Если нет таких диодов, цепочку вообще лучше не ставить!

Конденсатор С5 может быть любым, однако он должен выдерживать напряжение 250. 350 В. Такую цепочку можно ставить во все аналогичные схемы (если ее там нет), в том числе и в схему по рис. 1 — она заметно уменьшит нагрев корпуса ключевого транзистора и значительно «продлит жизнь» всему преобразователю.

Стабилизация выходного напряжения осуществляется с помощью стабилитрона DA1, стоящего на выходе устройства, гальваническая развязка обеспечивается оптроном V01. Микросхему TL431 можно заменить любым маломощным стабилитроном, выходное напряжение равно его напряжению стабилизации плюс 1,5 В (падение напряжения на светодиоде оптрона V01)’, для защиты светодиода от перегрузок добавлен резистор R8 небольшого сопротивления. Как только выходное напряжение станет чуть выше положенного, через стабилитрон потечет ток, светодиод оптрона начнет светиться, его фототранзистор приоткроется, положительное напряжение с конденсатора С4 приоткроет транзистор VT2, который уменьшит амплитуду коллекторного тока транзистора VT1. Нестабильность выходного напряжения у этой схемы меньше, чем у предыдущей, и не превышает 10. 20%, также, благодаря конденсатору С1, на выходе преобразователя практически отсутствует фон 50 Гц.

Трансформатор в этих схемах лучше использовать промышленный, от любого аналогичного устройства. Но его можно намотать и самому — для выходной мощности 5 Вт (1 А, 5 В) первичная обмотка должна содержать примерно 300 витков проводом диаметром 0,15 мм, обмотка II — 30 витков тем же проводом, обмотка III — 20 витков проводом диаметром 0,65 мм. Обмотку III нужно очень хорошо изолировать от двух первых, желательно намотать ее в отдельной секции (если есть). Сердечник — стандартный для таких трансформаторов, с диэлектрическим зазором 0,1 мм. В крайнем случае, можно использовать кольцо внешним диаметром примерно 20 мм.

Источник

ИМПУЛЬСНОЕ ЗАРЯДНОЕ ДЛЯ АККУМУЛЯТОРА АВТО

В настоящее время, при построении мощных автомобильных зарядных устройств с токами до 10 ампер и более, мало кто использует обычные трансформаторы, да и достать их проблематично, не говоря уже о том, что пару кило меди обмоток будут стоить пару десятков долларов. В то же время практически у каждого есть готовый 12-ти вольтовый импульсный блок питания AT или ATX. Их мы и приспособим для создания самодельного зарядного к авто. Изучим схему устройства, клик по картинке для увеличения размера.

Схема переделки БП в импульсное зарядное

Зарядка сделана на основе стандартного компьютерного блока питания. Схема не содержит цепей запуска блока, цеплять к зарядке дежурное питание не имеет смысла, а подпитка ключей только сильнее разогревает их, соответственно без АКБ работать не будет.

ИМПУЛЬСНОЕ ЗАРЯДНОЕ ДЛЯ АККУМУЛЯТОРА 12в

Налаживание зарядки довольно простое: не включая в сеть надо стать осциллографом на Б-Э любого ключа, к выходу зарядки подключить регулируемый БП, дальше выставить примерно 14,4-14,8 вольт, и подстроечным резистором R31 добиться прекращения генерации. Далее включить зарядное устройство в сеть, подключить нагрузку и подбором шунта выставить требуемый максимальный зарядный ток.

ИМПУЛЬСНОЕ ЗАРЯДНОЕ ДЛЯ АККУМУЛЯТОРА авто

Печатка прилагается, она находится в архиве на форуме. Зарядку можно дополнить цифровым вольтамперметром, собранном, к примеру, по такой схеме:

Схема цифрового ампервольтметра для ЗУ

Плата для схемы цифрового ампервольтметра для ЗУ

Выбор между вольтами и током осуществляется нажатием одной единственной кнопки. Печатная плата и прошивка там же на форуме, в архиве.

Пайка цифрового ампервольтметра для ЗУ

цифрового ампервольтметра для зарядного

Если нет возможности собрать или купить блок цифровой индикации напряжения и тока — ставьте любой подходящий стрелочный вольтметр на напряжение 20 вольт и амперметр на 10 ампер. Сборка, испытания и фото прибора — nickolay78.

Форум по обсуждению материала ИМПУЛЬСНОЕ ЗАРЯДНОЕ ДЛЯ АККУМУЛЯТОРА АВТО

Самодельный аккумулятор на 9 В, литий-полимерный, собранный под стандартный корпус типа Крона.

Электромагнитное реле — теория и практика применения. Обозначение, виды, основные параметры и правила эксплуатации.

Схема усилителя и микрофона из пьезоэлемента, подходящая для сборки своими руками.

Источник

Импульсное ЗУ для автомобильного аккумулятора своими руками

Зарядное устройство импульсное для автомобильного аккумулятора своими руками: схема ЗУ для АКБ импульсное зарядное устройство для автомобиля

Что такое импульсное зарядное устройство?

В отличие от трансформаторных собратьев импульсные зарядные устройства заряжают батарею не постоянным током какого-либо значения, а импульсами. Для их образования используется современная элементная база – громоздкие трансформаторы при этом не потребуются. Импульсная зарядка аккумулятора происходит в режиме как постоянного тока, так и постоянного напряжения, плюс комбинированный цикл. А это очень важно, например, для необслуживаемых АКБ.

Принцип действия

Если смотреть по конструкции, речь идёт об устройстве, восстанавливающем заряд автомобильной АКБ особым образом. В импульсное зарядное устройство для автомобильного аккумулятора входят:

  • небольшой импульсный трансформатор;
  • диодный выпрямитель;
  • блок стабилизации;
  • система индикации (аналоговые приборы или цифровой дисплей);
  • электронный модуль, контролирующий процесс заряжания.

Как действует ИЗУ? Электронная схема и трансформатор генерируют высокую частоту, с помощью которой входное напряжение от сети повышается. При этом активно применяются фильтры (в состав которых входят электролитические конденсаторы), задерживающие помехи и сглаживающие напряжение на выходе. Далее происходит его преобразование с одновременным понижением до требуемого значения. К аккумулятору поступает ток, величина которого контролируется дополнительными электронными блоками. По окончании процесса диодный выпрямитель блокируется, зарядка прекращается.

Особенности

Все импульсные зарядки несложны в эксплуатации и имеют свою классификацию. В магазине вы встретите ИЗУ нескольких типов:

  1. Ручные: относительно недорогие устройства, требующие постоянного контроля над процессом заряжания: то есть придётся периодически подстраивать U и I, следить за временем процесса.
  2. Полуавтоматы: здесь часть процессов происходит без участия автовладельца – ему необходимо лишь учитывать продолжительность процедуры.
  3. Автоматы: программируемые устройства, способные сначала определять состояние АКБ, потом выбирать оптимальный режим её восстановления и заряжать с последующим автоматическим отключением.

Полноценная зарядка АКБ импульсным устройством не может происходить в ударном темпе. Для 100-процентного восстановления аккумулятора потребуется от 14 до 20 часов.

Специальный режим зарядки

С помощью ИЗУ батарею можно зарядить постоянным током, напряжением либо использовать комбинированный режим, о чём будет написано далее. Но у многих импульсников существует и специальный метод восстановления АКБ, называемый BOOST. Это чрезвычайный режим, обеспечивающий подзарядку аккумулятора в течение максимум 10 минут. По окончании такого срока двигатель запустится, даже если аккумулятор был разряжен очень сильно.

Но часто пользоваться подобным режимом нежелательно: постоянное сильное воздействие на пластины-электроды быстро приведёт к их разрушению, и батарея потеряет работоспособность окончательно через 2–3 месяца. Применять BOOST можно лишь в крайних случаях: когда нужно срочно ехать, а батарея оказалась разряженной.

Преимущества и недостатки

Чем же обусловлена популярность импульсных устройств у автолюбителей? На это есть довольно веские причины:

  1. Небольшие габариты: некоторые импульсники можно свободно поместить даже в бардачок авто. Поэтому зарядник легко взять с собой в длительную поездку при сильном морозе, чтобы после ночёвки не испытывать проблем с запуском мотора.
  2. Лёгкость в эксплуатации: разобраться с управлением прибором сможет даже человек, не искушённый в тонкостях электроники.
  3. Программное обеспечение в самых современных ИЗУ исключает присутствие человека при процессе заряжания, в крайнем случае его участие сводится к минимуму.
  4. Импульсные зарядки имеют всевозможные виды защиты от замыканий, переполюсовок и т. п.
  5. Автоматический режим работы не допускает перегрев АКБ и продлевает эксплуатационный ресурс батареи.
  6. В некоторые ИЗУ интегрирована система подсказок. При неправильном подключении или неверном выборе режима тревожный сигнал, информация на дисплее подскажут, что нужно делать, чтобы правильно зарядить АКБ.

А что можно сказать об отрицательных сторонах этого зарядного устройства? Здесь стоит выделить пару главных моментов. Первый заключается в относительно высокой стоимости аппарата. Взглянув на цену, большинство покупателей тут же переходят к полке с трансформаторными ЗУ. Поэтому импульсники чаще можно встретить в автосервисах, на станциях ТО, в частных мастерских.

Второе – наличие множества датчиков, приборов, сложной электронной схемы. Всё это очень сильно помогает в процессе работы. Но в случае поломки одного из элементов ремонт может вылиться в копеечку. Да такую, что, возможно, придётся задуматься о приобретении другого аппарата.

Самодельное зарядное для авто,shema Зарядное для авто своими руками, 12

Какие бывают зарядные устройства

Аккумулятор не вечный и даже в самых заботливых руках может прослужить не более 5-6 лет. Но многие и до этого не дотягивают, потому что водители часто пренебрегают элементарными правилами эксплуатации устройства. И обслуживания, в том числе. Правил обслуживания аккумулятора есть много, но качественная подзарядка необходима аккумулятору даже при полной работоспособности всего бортового электрооборудования.

Нынешние зарядные устройства для автомобильных аккумуляторов представлены только двумя типами:

  • импульсными зарядками;
  • трансформаторными устройствами.

Трансформаторные модели устройств при всех своих достоинствах имеют огромный вес и габариты. Это не проблема для тех, у кого есть полноценная мастерская, просторный гараж. Да и по надежности и стабильности зарядных характеристик трансформаторные динозавры гораздо лучше импульсных устройств. Но время идет, и тяжелые трансформаторы заменяют импульсные устройства.

Читайте также:  Все о портативных зарядных устройствах

Как собрать простое импульсное ЗУ самому

Собрать импульсное зарядное устройство своими руками довольно сложно даже хорошо подготовленному автолюбителю. К тому же придётся подыскивать электронные компоненты, которые есть далеко не в каждом магазине. Использование деталей б/у тоже риск, так как, по сути, это «кот в мешке», их придётся проверять, для чего понадобится специальная аппаратура.

Схема

Достаточно взглянуть на приведённую ниже схему импульсного зарядного устройства для автомобильного аккумулятора, причём далеко не самую замысловатую, чтобы убедиться в его сложности:

Автомобильные импульсные зарядные устройства, сделанные своими руками

Однако выход есть! Можно использовать работоспособный блок питания, вытащив его из отработавшего своё компьютера. Мощность извлечённого модуля должна быть не меньше 150 Вт. Но, как показывает практика, надёжнее (чтобы не тратить зря время) приобрести недорогой БП, например, с заводским обозначением S-120-12. Купить его можно в известном китайском интернет-магазине. Прелесть этого изделия не только в том, что оно нуждается в минимальной переделке, но и в том, что в нём уже имеется заводская защита от КЗ и перегрузок.

В блоке на лицевой панели уже есть подстроечное сопротивление, позволяющее регулировать напряжение в пределах 1 В. Однако для ЗУ этого явно недостаточно: требуется диапазон хотя бы 9–20 В. Чтобы переделать блок, найдите кроме подстроечного резистора обычный, обозначаемый как R1 с номиналом 5 кОм. Его нужно поменять на сопротивление в 2,7 кОм. В свою очередь «подстроечник» номиналом в 1 кОм заменяется на такой же сопротивлением 5 кОм. Теперь можно будет регулировать напряжение в требуемом диапазоне. Чтобы повысить мощность БП, поменяйте электролитические конденсаторы в 1000 мкФ (этакие «бочонки») на такие же, но рассчитанные на напряжение не 16, а 25 В (они такого же размера и точно подойдут к месту). Если есть желание, можно добавить в схему прибор, измеряющий силу тока и напряжение, как это показано на схеме импульсного зарядного устройства для автомобильного аккумулятора ниже:

Автомобильные импульсные зарядные устройства, сделанные своими руками

Инструкция по изготовлению импульсного ЗУ своими руками

Простая схема для изготовления импульсной зарядки

Сделать ЗУ для автоаккумуляторов можно в домашних условиях, рассмотрим процесс изготовления девайса со схемой IR2153. В этой схеме нет двух конденсаторных элементов, подключенных к средней точке, вместо них устанавливается электролит. По этой схеме можно изготовить девайс, который изначально рассчитан на невысокую мощность, но если вы хотите получить более мощное ЗУ, то можете немного изменить схему, добавив в нее мощные компоненты.

  1. Схема импульсного зарядного устройства подразумевает использование ключей 8N50, которые оснащаются защитным корпусом. Также вам потребуются и диодные мосты, их не обязательно покупать в магазине, можно взять со старого БП компьютера. Если у вас нет возможности достать такие диоды, то в принципе, мост можно сделать из выпрямительных диодных элементов, потребуется четыре штуки.
  2. Не менее важным этапом является обустройство цепи питания, для реализации вам понадобится резисторный элемент для гашения тока, наиболее оптимальным вариантом будет резистор на 18 кОм. За резисторным компонентом устанавливается выпрямитель, который монтируется на диоде. В данном случае питание от бытовой сети будет передаваться на плату, это нам подходит. На самом питании нужно будет установить электролит, а его также надо будет соединить с конденсаторным элементом — можно использовать керамическое устройство или пленочное. Конденсатор в обязательном порядке нужно добавить в схему, поскольку это позволит максимально сгладить возможные помехи в работе ЗУ.
  3. Трансформаторный узел можно взять из старого компьютерного БП, важно убедиться в том, что он рабочий. Устройства, которые ставятся в блоки питания, оптимально подходят для изготовления ЗУ, так как они выдают хороший ток на выходе. Диодные элементы трансформатора должны быть в любом случае импульсными, так как обычные детали будут не в состоянии работать в условиях высокой частоты.
  4. Что касается фильтрующего элемента, то его использование не является обязательным, но все же добавить фильтр можно. Также в схему можно добавить термистор на 5 Ом и установить его перед фильтром, это позволит добиться максимального снижения помех. К слову, термистор также можно демонтировать из компьютерного БП.
  5. Не забудьте установить и электролитический конденсаторный компонент, при его выборе необходимо руководствоваться соотношением 1 Вт — 1 мкФ (автор видео о пошаговом изготовлении ЗУ — канал Паяльник TV).

На первый взгляд эта схема может показаться достаточно сложной, но в целом в ее реализации нет ничего сложного. Если вы все сделаете правильно и учтете все моменты и рекомендации, то процесс изготовления не вызовет сложностей, даже если вы никогда ранее не сталкивались с такой задачей.

Фотогалерея «Схемы для изготовления ЗУ»

Ниже представлены более сложные схемы для изготовления зарядных устройств. Если вы владеете навыками, то можете использовать эти схемы.


1. Более сложная схема для импульсного ЗУ


2. Схема мощного импульсного прибора

Что нужно знать владельцу такого устройства?

Особенностей у самодельного аппарата, собранного по схеме импульсного зарядного устройства, приведённой выше, не так много, сам процесс несложен, контроль над ним сведён к минимуму. Электронная защита исключает выход из строя компонентов при неправильном подключении или перегрузках в сети.

Как правильно заряжать

Подключите ИЗУ к сети 220 В, переведите выключатель в рабочее положение. Когда прибор, измеряющий ток и напряжение, заработает, переведите ручку подстроечного сопротивления влево до конца: получится на выходе 9 В. Теперь подсоедините выходные провода к клеммам АКБ, соблюдая соответствие (+) и (-). Переменным резистором не спеша увеличивайте напряжение до 13,5 В (если батарея совсем села) или 14,5 В (если аккумулятор неработоспособен на 50 %). Посмотрите на амперметр: I должна составлять 10 % от ёмкости. Например, для АКБ 55 А/ч это будет 5,5 А.

По ходу процесса сила тока будет падать, плотность электролита – повышаться. Процедуру можно считать законченной, когда I = 0,1 А или менее.

Как функционирует защита?

При случайном замыкании выходных проводов ИЗУ останется работоспособным: просто он выключится. Вытащите вилку из сети, устраните причину КЗ, и блок снова готов к работе. Ещё есть защита от перегрузки: устройство срабатывает при появлении тока в 10 А. Как только возникает подобное значение, устройство автоматически отключается.

Часто допускаемые ошибки

В первую очередь это спешка. Нельзя полноценно зарядить батарею ИЗУ за 4–5 часов. Понадобится не менее 14-ти. Тем более, если процесс осуществляется при отрицательной температуре. Также рекомендуется внимательно смотреть на полюса при подключении аккумулятора: не каждое ЗУ имеет защиту «от дурака». Если у вас аккумулятор свинцово-кислотный, обслуживаемый, на период зарядки стоит выкрутить (можно наполовину) пробки банок. Оберегайте устройство от проникновения влаги, образования конденсата. Последний может осесть на корпусе при внесении ЗУ с мороза в тёплое помещение. В этом случае эксплуатацию устройства можно начинать примерно через пару часов, когда влага, осевшая на электронных компонентах, высохнет.

Типичные поломки ЗУ и их ремонт

Один из наиболее распространённых дефектов, появляющихся обычно после года-второго срока эксплуатации, – отсутствие напряжения на выходе. В лучшем случае причина заключается в сгоревшем предохранителе: его нужно просто заменить. Если же он исправен, осмотрите печатную плату: в первую очередь обратите внимание на электролитические конденсаторы – их вздутие говорит о выходе из строя.

Однако не стоит ограничиваться только их заменой: поломка конденсаторов могла по принципу цепочки привести к выходу из строя других элементов. Поэтому надо выпаять и проверить:

  • выпрямительный диодный мост;
  • конденсаторы фильтра;
  • полевые транзисторы (они стоят на алюминиевых радиаторах).

Также не забудьте проверить целостность проводов питания и работоспособность выключателя. Если под рукой нет нужного предохранителя, его временно заменит «жучок»: проволока сечением 0,11 мм соответствует току в 3 А.

Самые популярные модели

Среди наиболее популярных ИЗУ – устройства производства России, Италии, Германии, КНР, Украины и других стран. Ниже представлены аппараты из бюджетного сегмента:

  1. Voin VL 156-6(12)В. Оснащён цифровым дисплеем, благодаря которому процесс оказывается под контролем. Есть несколько режимов зарядки и электронная защита в 3 уровня. Размеры компактные, цена доступная.
  2. Elegant. Долгое время держит статическое напряжение. Реализует медленную, бережную зарядку. Все процессы отображаются на цифровом мониторе.
  3. Master Watt. Универсальный аппарат, уверенно работающий с любыми типами аккумуляторов. Так как это полуавтомат, то необходим несложный контроль. Производитель уверяет о большом сроке эксплуатации – до 25 лет.
  4. KeePower Medium. Полностью автоматическое устройство. Достаточно просто подключить аппарат к АКБ и установить требуемую программу. Батарея будет заряжаться медленно, быстро либо со средним темпом.

Как видно, импульсные зарядные устройства всё больше распространяются на рынке. Очевидно, что со временем, когда конкуренция будет более сильной, цена на изделия упадёт. А если вы не хотите ждать, можно попробовать собрать импульсное зарядное устройство своими руками. Это наверняка окажется дешевле.

Источник