Меню

Схема зарядное устройство с защитой от короткого замыкания

Схема зарядное устройство с защитой от короткого замыкания

Вариант 3

Содержание

  • 1 Вариант 1
  • 2 Вариант 2
  • 3 Вариант 3
  • 4 Итог

Многие самодельные блоки имеют такой недостаток, как отсутствие защиты от переполюсовки питания. Даже опытный человек может по невнимательности перепутать полярность питания. И есть большая вероятность что после этого зарядное устройство придет в негодность.

В этой статье будет рассмотрено 3 варианта защит от переполюсовки, которые работают безотказно и не требуют никакой наладки.

Вариант 1

Как сделать защиту от переполюсовки для блока питания

Это защита наиболее простая и отличается от аналогичных тем, что в ней не используются никакие транзисторы или микросхемы. Реле, диодная развязка – вот и все ее компоненты.

Реле, диодная развязка

Работает схема следующим образом. Минус в схеме общий, поэтому будет рассмотрена плюсовая цепь.

Если на вход не подключен аккумулятор, то реле находится в разомкнутом состоянии. При подключении аккумулятора плюс поступает через диод VD2 на обмотку реле, вследствие чего контакт реле замыкается, и основной ток заряда протекает на аккумулятор.

Работает схема

Работает схема

Одновременно загорается зеленый светодиодный индикатор, свидетельствуя о том, что подключение правильное.

Работает схема

И если теперь убрать аккумулятор, то на выходе схемы будет напряжение, поскольку ток от зарядного устройства будет продолжать поступать через диод VD2 на обмотку реле.

Работает схема

Если перепутать полярность подключения, то диод VD2 окажется заперт и на обмотку реле не поступит питание. Реле не сработает.

Работает схема

В этом случае загорится красный светодиод, который нарочно подключен неправильным образом. Он будет свидетельствовать о том, что нарушена полярность подключения аккумулятора.

Работает схема

Диод VD1 защищает цепь от самоиндукции, которая возникает при отключении реле.

Работает схема

В случае внедрения такой защиты в зарядное устройство автомобильного аккумулятора, стоит взять реле на 12 В. Допустимый ток реле зависит только от мощности зарядника. В среднем стоит использовать реле на 15-20 А.

Как сделать защиту от переполюсовки для блока питания

Вариант 2

Вариант 2

Эта схема до сих пор не имеет аналогов по многим параметрам. Она одновременно защищает и от переполюсовки питания, и от короткого замыкания.

Принцип работы этой схемы следующий. При нормальном режиме работы плюс от источника питания через светодиод и резистор R9 открывает полевой транзистор, и минус через открытый переход «полевика» поступает на выход схемы к аккумулятору.

Принцип работы

При переполюсовке или коротком замыкании ток в цепи резко возрастает, вследствие чего образуется падение напряжения на «полевике» и на шунте. Такое падение напряжение достаточно для срабатывания маломощного транзистора VT2. Открываясь, последний запирает полевой транзистор, замыкая затвор с массой. Одновременно загорается светодиод, поскольку питание для него обеспечивается открытым переходом транзистора VT2.

Принцип работы

Из-за высокой скорости реагирования эта схема гарантированно защитит зарядное устройство при любой проблеме на выходе.

Схема очень надежна в работе и способна оставаться в состоянии защиты бесконечно долгое время.

Вариант 3

Вариант 3

Вариант 3

Это особо простая схема, которую даже схемой трудно назвать, поскольку в ней использовано всего 2 компонента. Это мощный диод и предохранитель. Этот вариант вполне жизнеспособен и даже применяется в промышленных масштабах.

Питание с зарядного устройства через предохранитель поступает на аккумулятор. Предохранитель подбирается исходя из максимального тока зарядки. Например, если ток 10 А, то предохранитель нужен на 12-15 А.

Предохранитель

Диод подключен параллельно и закрыт при нормальной работе. Но если перепутать полярность, диод откроется и случится короткое замыкание.

А предохранитель – это слабое звено в этой схеме, который сгорит в тот же миг. Его после этого придется менять.

Предохранитель

Диод следует подбирать по даташиту исходя из того, что его максимальный кратковременный ток был в несколько раз больше тока сгорания предохранителя.

Диод

Такая схема не обеспечивает стопроцентную защиту, поскольку бывали случаи, когда зарядное устройство сгорало быстрее предохранителя.

С точки зрения КПД, первая схема лучше других. Но с точки зрения универсальности и скорости реагирования, лучший вариант – это схема 2. Ну а третий вариант часто применяется в промышленных масштабах. Такой вариант защиты можно увидеть, к примеру, на любой автомагнитоле.

Читайте также:  Плата зарядного устройства на 12в

автомагнитоле

Все схемы, кроме последней, имеют функцию самовосстановления, то есть работа восстановится, как только будет убрано короткое замыкание или изменится полярность подключения аккумулятора.

Как сделать защиту от переполюсовки для блока питания

Автор: Эдуард Орлов –

Источник



Защита от КЗ для блока питания своими руками

Иногда при наладке самодельных электронных устройств получается короткое замыкание, из за которого может выйти из строя блок питания. Поэтому у блока питания должна быть надежная защита от короткого замыкания, способная в нужный момент быстро отключить замкнувшую нагрузку и уберечь блок питания от поломки.

На этом рисунке изображена схема простого устройства предназначенного для надежной защиты блока питания от короткого замыкания.

Принцип работы релейной защиты довольно простой. При подаче напряжения на схему в режиме ожидания загорается красный светодиод. После нажатии кнопки S1 ток поступает на обмотку реле, контакты переключаются и блокируют обмотку реле, таким образом схема переходит в рабочий режим, об этом сигнализирует загоревшийся зеленый светодиод, ток поступает на нагрузку. При возникновении короткого замыкания пропадает напряжение на обмотке реле, контакты его размыкаются, нагрузка автоматически отключается, загорается красный светодиод сигнализируя о срабатывании релейной защиты.

Схема предназначена для работы с постоянным выходным напряжением от 8 до 15 вольт, поэтому будет отлично работать с зарядным устройством из компьютерного блока питания, а также с любыми другими трансформаторными или импульсными блоками питания имеющими выходное напряжение в указанном диапазоне.

Данную схему можно считать универсальной, потому что её легко переделать под любое напряжение, достаточно всего лишь заменить реле под нужное вам напряжение, ну и конечно при необходимости подобрать резисторы R1 и R2 под установленные в схему светодиоды.

Источник

Зарядное устройство с защитой от короткого замыкания в нагрузке

Зарядное устройство для автомобильных аккумуляторных батарей

Предлагаемое вниманию читателей зарядное устройство не имеет каких-либо специфических особенностей и построено по давно зарекомендовавшей себя схеме. Ввиду того, что большинство автолюбителей любит «высекать искру» из зарядного устройства, а это ведет к выходу из строя некоторых его элементов, и было предложено установить защиту от короткого замыкания.

Принцип работы зарядного устройства

При включении аппарата тумблером SA1 на фазоимпульсный генератор VT1, VT2 подается напряжение, ограниченное стабилитроном VD5. С выхода генератора импульсы управления поступают на управляющий электрод тиристора VS2. Переменный резистор R6 служит для плавной установки уровня зарядного тока. Если произошло короткое замыкание или неправильно подключены полюса аккумулятора, происходит увеличение напряжения на резисторе R12. Затем открывается стабилитрон VD8 и тиристор VS1. Тиристор шунтирует конденсатор С1, определяющий частоту импульсов генератора. Прекращается подача импульсов управления на тиристор VS2. Зарядный ток прекращается. Для контроля зарядного тока используется микроамперметр Р1 в режиме вольтметра. Он измеряет падение напряжения на резисторе R12, который служит в качестве датчика тока для схемы защиты от КЗ. Падение напряжения на этом резисторе прямопропорционально значению протекающего через него тока. Микроамперметр в этой схеме измерения тока надежно защищен резистором R13 и даже при зашкаливании не выйдет из строя.

Схему управления с защитой монтируют на плате любым видом монтажа (кто что предпочитает). При правильном монтаже и исправных деталях устройство работоспособно сразу после включения.

Принципиальная схема зарядного устройства

Конструкция
Зарядное устройство собирается в любом удобном по размеру корпусе. Корпус должен иметь достаточное количество вентиляционных отверстий для охлаждения устройства во время длительной работы. На лицевой панели размещаются прибор Р1, резистор R6, тумблер SA1, предохранители FU1 и FU2, сигнальная лампа HL1. Выходные гнезда-зажимы (клеммы) устанавливаются по желанию конструктора. На концы проводов припаивают зажимы типа «крокодил» соответствующих размеров для подключения к полюсам аккумулятора. Зажимы должны быть разного цвета во избежание возможных ошибок при подключении. На лицевую панель возле каждого элемента наносится соответствующая надпись.

Используемые детали особого дефицита не представляют. В качестве силового трансформатора используется ТС-180 от старого черно-белого телевизора. Трансформатор аккуратно разбирают и сматывают все вторичные обмотки. Затем наматывают на каждую половину проводом диаметром 1,4. 1,5 мм в любой изоляции по 34 витка. Трансформатор собирают. Обмотки включают последовательно и проверяют вольтметром переменного тока. Напряжение должно быть в пределах 20. 22 В.

Читайте также:  Зарядное устройство vooc что это

Детали
Конденсаторы: С1 — МБМ, К73П-3, К73-17; С2, СЗ — К50-12, К50-35 и др.
Резисторы (кроме R12) типа МЛТ-0,25. R1 — МЛТ-2,0, R2 — МЛТ-1,0, R6 — СП1, СП2, СП2-1 и др. Резистор R12 представляет собой отрезок нихромового провода диаметром 0,8. 1,5 мм.

Сигнальная лампа HL1 -МН6,ЗхО,26. Прибор Р1 — микроамперметр на ток не более 300 мА.

Диоды моста VD1 . VD4 — Д242, Д243, КД213 и др. диоды закрепляются на радиаторах из алюминия или дюралевого сплава. Площадь одной стороны не менее 49 см2 (размер 7×7 см) для одного диода при токе 10 А. Диоды VD6, VD7 — Д220, Д223 и другие кремниевые с 11обр не менее 50 В. Стабилитроны VD5 — типов Д814Б, В, Г, Д (не критично), VD8 — КС133, 139, 147, 151,156 (не критично).Тиристор VS1 — типа КУ201 с любой буквой. Тиристор VS2 типа КУ202 от буквы Б и дальше, Т25 и др. Тиристор установлен на радиаторе площадью одной стороны 100 см2 (размер 10×10 см). Транзисторы VT1 — КТ361, КТ209 и т.п., VT2 — КТ315, КТ201 и т.п.

Резистор R13 в цепях микроамперметра подбирают в зависимости от типа использованной головки. Вместо него временно впаивают переменный резистор сопротивлением 33 кОм и устанавливают стрелку прибора на конечную отметку шкалы при токе 10 А. Затем измеряют (предварительно отпаяв один провод)сопротивление и вместо него впаивают постоянный резистор. В случае применения прибора магнитоэлектрической системы шкала будет линейной.

Источник

Тиристорное импульсное зарядное устройство 10А на КУ202

Тиристорное импульсное зарядное устройство 10А на КУ202

Здравствуйте. Сегодня буду рассказывать о давно используемой мной схемой тиристорного фазоимпульсного регулятора мощности, которое я буду использовать как зарядное устройство для свинцовых аккумуляторных батарей

Я уже как то писал о зарядке на тиристоре. Это зарядное на много лучше. Начну описание зарядного на тиристоре ку202 с преимуществ:
— Зарядное легко выдерживает ток до 10А(зависит от тиристора, в данном случае КУ202)
— Ток заряда импульсный, что по мнению многих радиолюбителей, поможет со сроком службы АКБ
— Схема состоит из легкодоступных деталей, можно собрать чуть ли не из хлама
Схема зарядного легко повторима и ее сможет собрать даже новичок, ли ж бы паять умел
— И последнее преимущество,что к этой схеме не требуется никаких примочек. Схема уже снабжена всем необходимо, что бы рукожопые не сожгли ни аккумулятор, ни схему. В схеме зарядного есть защита от короткого замыкания, защита от переполюсовки, а так же ограничитель напряжения зарядки. Ограничение напряжения зарядки дает возможность не следить за окончанием зарядки, а оставлять зарядку без контроля на долгое время, схема сама все отключит

Схема тиристорного зарядного устройства на КУ202

Рассмотрим схему зарядного устройства. Слева на транзисторах Q2Q3 собранна схема тиристорного фазоимпульсного регулятора мощности, о том что это такое в интернете полно информации. Регулировка фазы открытия и соответственно тока зарядки регулируется переменным резистором R4. Транзисторы Q2Q3 это аналог однопереходного транзистора, который можно заменить на КТ117 для облегчения схемы. Силовой тиристор использую КУ202,он у нас доступен и достаточно мощный, что бы заряжать автомобильные аккумуляторы достаточным током. Кстати ток зарядки выставляется на 1\10 от емкости.

Правая часть схема это защита аккумулятора. На транзисторе Q1Q4 собранны защита от перенапряжение, защита от КЗ и защита от переполюсовки. Включается схема только когда на выход зарядки подключен АКБ. Через делитель R3R6 идет ток, открывая транзистор Q1 и запитывает фазоимпульсный регулятор тока.
Защита от переполюсовки работает так. Когда клемы не правильно подключены, ток идущий через тот же делитель запирает транзистор, соответственно ток на регулятор мощности не идет.
Отсекатель зарядки работает достаточно просто, когда напряжение окончания зарядки достигает 14.4В, напряжение на делителе R8R11 становиться достаточным для пробоя стабилитрона, транзистор Q4 открывается, закрывая собой Q1
И самое главное в схеме, это трансформатор. Питается схема от трансформатора с напряжением 18-25В. В моем случае на время испытаний питал зарядное от Регулируемого источника переменного тока.
Печатная плата тиристорного зарядного устройства для автомобильных аккумуляторов

Читайте также:  Зарядное устройство от глобы

Скачать печатную плату
На выходе на плате установлены два светодиода для индикации подключения АКБ. Зеленый сигнализирует правильно подключенный аккумулятор, красный- полярность нарушена или переполюсовка. Так же на выход не плохо поставить предохранитель, ну на всякий случай
Теперь об испытания. Схема спаянна и собранна, диодный мост и тиристор установлены на радиаторы, выходные провода припаяны.

Источник

Защита от переполюсовки зарядного устройства

Дата: 23.10.2015 // 0 Комментариев

Схема защиты зарядного устройства

Защита от переполюсовки зарядного устройства вещь очень полезная, а иногда и необходимая. Случайно неправильно подключенная автомобильная АКБ может напрочь угробить зарядное или АКБ. Для защиты от «дурака» на практике применяют основные три вида защиты: схемы на тиристоре, простая защита с помощью реле и схема от переполюсовки на полевом транзисторе.

Защита от переполюсовки зарядного устройства на реле или тиристоре имеют свои недостатки. Схемы на тиристоре довольно практичные и простые, но имеют потери напряжения на самом тиристоре около 2В, а в некоторых автомобильных зарядных при использовании такой схемы уже нечем будет заряжать АКБ. Защита от переполюсовки на реле имеет инертность, что тоже не всегда хорошо, а полностью разряженная батарея может не запустить реле. При сборке зарядного устройства из блока питания компьютера рационально применять схему на полевике.

Схема защиты зарядного устройства

Рассмотрим поближе схему защиты от переполюсовки на полевом транзисторе. Потери напряжения на полевом транзисторе минимальные, а время срабатывания не более 1мкСек.

Схема защиты зарядного устройства

Работает схема вот таким образом. При правильном подключении полевой транзистор открыт, и весь ток поступает на выход схемы. При коротком замыкании, перегрузке, или переполюсовке падение напряжения на шунте и полевом транзисторе достаточно, что бы сработал маломощный биполярный транзистор. Когда транзистор сработал, он замыкает затвор полевого транзистора на землю, закрывая его полностью.

Через открытый переход маломощного транзистора поступает питание на светодиод. Параллельно светодиоду можно подключить бузер с генератором для звуковой индикации.

При срабатывании защиты полевой транзистор не греется, схема в таком состоянии может находиться довольно долго, пока не устранится короткое замыкание. От сопротивления шунта зависит ток срабатывания защиты.

Защита от переполюсовки зарядного устройства своими руками

Вот таким вот получился блок защиты от переполюсовки зарядного устройства.

Схема защиты зарядного устройства

Используемый полевой транзистор — IRFZ44N (можно заменить любым аналогом). Маломощный транзистор BC239C (или другой n-p-n аналог). Диод — 1N4007.

Шунт использовался от старого китайского мультиметра, защита при таком шунте срабатывает при токе 10А.

Схема защиты зарядного устройства

Тест с почти максимальной нагрузкой.

Защита от переполюсовки зарядного устройства

Имитация короткого замыкания.

Защита от переполюсовки зарядного устройства

Как видим эта защита зарядного устройства спасает не только от переполюсовки, но и от короткого замыкания или перегрузки. При использовании данной схемы в трансформаторных зарядных устройствах необходимо исключить скачки напряжение и как можно лучше его сгладить.

Демонстрация работы защиты.

Кому интересен вариант печатки защиты от переполюсовки на полевике, плату в формате lay может скачать в конце статьи. В качестве шунтов в ней используются два резистора по 0,1 Ом; 5 Вт (при таких значениях защита срабатывает при токе 11-12 А). При желании можно самостоятельно дополнить плату бузером с генератором или оставить, как есть.

Источник