Меню

Схема зарядного устройства sparky br 12e ch

Схема зарядного устройства sparky br 12e ch

Схема у них всех почти одинаковая. Менять там придется почти все, что стоит по высоковольтной части. Наверняка собрана по одной из этих трех схем.

Похоже, но немного не то. Тут какой-то дроссель перед диодным мостом стоит и непонятная прямоугольная деталька — похожа на шунтирующий резистор в 1 кОм но в пластмассовом корпусе.
Пробую на бумаге схему нарисовать — но получается очень медленно.

Зарядное в любом случае нужно. Возможно я ошибаюсь.но мне кажется что проще восстановить сгоревшее чем собирать новое.

Добавлено (26.12.2017, 01:59)
———————————————
Сжёг.
Опять КЗ.
Напряжение выдаёт,но не регулируется.Нет обратной связи?
Что сгорает при КЗ, TL431?, оптрон?

Для Igoran из присланного на почту от Sergey:

Блок заточен под камеру наблюдения. Номинал 5в 1.5а. При работе с нагрузкой в виде роутера длинк с рейтингом 5в 1а, через неск минут «стрельнул». При этом перебоев в работе не было, роутер продолжил работать без признаков перезагрузки. При проверке выдавал 5.3в на холостом. При разборе выявлен взорвавшийся входящий ЭЛК 400в 68мкф. Второй такой же цел. Электролитом залило всю крышку, аж мокрая. О полном высыхании речь не идет, хотя мог, конечно деградировать. Контроллер Chip-Ra. CR6238T. Выпуск 2012г. Причины пока не искал. Ничего на выпаивал не проверял. Предыстория блока не известна, достался откудато давно, с какойто кучи барахла, камеры родной нет и не было.

Добрый день, у меня такой вопрос:

Есть пару обычных блоков питания 7.5 до 12 Вольт на выходе. Вот я проверяю напряжения и один из них упорно не хочет показывать напряжение, если тестер в режиме постоянного напряжения, если меняю на переменное напряжение, тестер показывает. Мне как понять, у этого блока уже «+» и «-«-а нет, раз он мне выдаёт напряжение только на переменный?

Добрый день! Прошу оказать посильную помощь.
Сгорела зарядка для шуруповерта модель JY-170-060 на 17 вольт (аккумулятор литиевый). Пересмотрел кучу схем на 2N60C, но похожей не нашел. Здесь в обвязке два SMD транзистора (с обозначениями М6 и J6 [этот точно пробит], соответственно 2SA812 и S9014). Оптрон EL817, усилитель LM358. Фото прилагаю (на нем 2N60C выпаян, сгорел). Может, кто-нибудь сможет помочь с определением номиналов сгоревших резисторов? Какие еще элементы надо проверить? Очень хочется восстановить, в особенности из-за двухцветного диода, который показывает окончание зарядки шурика.

$IMAGE2$
$IMAGE3$

$IMAGE5$

P.S. Уже купил другой зарядник, но что-то очкую его использовать (индикации зарядки нет, боюсь аккум испортить). Да и в чемоданчик не влазит .

подскажите электроный трансформатор TASCHIBRA 100-200W когда подключаю на выход галогенку 20 ват то при включений в сеть лампочка вспыхнула и тухнет в чем дело

Источник



Конструкция зарядного устройства от шуруповёрта

Схема, устройство, ремонт

Зарядное устройство

Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием.

Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы «Интерскол».

Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.

Схема зарядного устройства от шуруповёрта

Печатная плата зарядного устройства (CDQ-F06K1).

Печатная плата зарядного устройства

Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил здесь.

Трансформатор GS-1415 от зарядного устройства

Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.

Основа схемы управления – микросхема HCF4060BE, которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда – около 60 минут.

При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.

Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.

Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки «Пуск» микросхема U1 HCF4060BE обесточена – отключена от источника питания. При нажатии кнопки «Пуск» напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.

Далее пониженное и стабилизированное напряжение поступает на 16 вывод микросхемы U1. Микросхема начинает работать, а также открывается транзистор S9012, которым она управляет.

Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.

Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.

Что будет после того, когда контакты кнопки «Пуск» разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.

Сменный аккумулятор.

Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.

Сменный аккумулятор 14,4V

На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.

Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.

Никель-кадмиевый элемент (Ni-Cd)

Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD. Маркировка термовыключателя JJD-45 2A. Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.

Датчик температуры

Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.

Алгоритм работы схемы довольно прост.

При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.

При нажатии кнопки «Пуск» электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.

После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.

Такой алгоритм работы примитивен и со временем приводит к так называемому «эффекту памяти» у аккумулятора. То есть ёмкость аккумулятора снижается.

Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован.

Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.

Зарядная характеристика Ni-Cd аккумуляторов

На графике показано, как во время заряда меняется температура элемента (temperature), напряжение на его выводах (voltage) и относительное давление (relative pressure).

Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -ΔV. На рисунке видно, что в конце зарядки элемента происходить уменьшение напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.

Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.

Читайте также:  Зарядные устройства для автомобильных аккумуляторов bl1204

Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за «эффекта памяти». При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.

Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством, например, таким, как Turnigy Accucell 6.

Возможные неполадки зарядного устройства.

Со временем из-за износа и влажности кнопка SK1 «Пуск» начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.

Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.

Зарядное устройство шуруповёрта Интерскол в разобранном виде

В моей практике был случай, когда стабилитрон пробило, мультиметром он «звонился» как кусок провода. После его замены зарядка стала исправно работать. Для замены подойдёт любой стабилитрон на напряжение стабилизации 12V и мощностью 1 Ватт. Проверить стабилитрон на «пробой» можно также, как и обычный диод. О проверке диодов я уже рассказывал.

Меняем пробитый стабилитрон

После ремонта нужно проверить работу устройства. Нажатием кнопки запускаем зарядку АКБ. Приблизительно через час зарядное устройство должно отключиться (засветится индикатор «Сеть» (зелёный). Вынимаем АКБ и делаем «контрольный» замер напряжения на её клеммах. АКБ должна быть заряженной.

Проверка зарядного устройства после ремонта

Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.

Схема достаточно примитивна и не вызывает проблем при диагностике неисправности и ремонте даже у начинающих радиолюбителей.

Источник

Изготовление устройства зарядного для шуруповёрта своими руками

При использовании шуруповёрта пользователи часто сталкиваются с повреждением зарядного устройства (ЗУ). В первую очередь это связано с нестабильностью параметров электрической сети, к которой подключается устройство заряда, а во вторую — с выходом из строя аккумуляторной батареи. Решается эта проблема двумя способами: покупкой нового зарядного устройства для шуруповёрта или его самостоятельным ремонтом.

Виды зарядных устройств

Популярность шуруповёрта вызвана тем, что он упрощает процесс закручивания или выкручивания различного крепёжного элемента. Характеризуясь мобильностью и небольшими размерами, он незаменим при сборке мебельных конструкций, разборке техники, кровельных и других строительных работах. Своей мобильностью инструмент обязан входящим в его конструкцию аккумуляторным батареям.

Достоинство применения аккумуляторов в возможности их неоднократного использования. Аккумуляторы, отдавая накопленную энергию устройству, периодически сами нуждаются в подзарядке. Для восстановления величины их ёмкости и служат зарядные устройства.

Зарядка аккумулятора шуруповёрта происходит двумя способами: встроенным или внешним зарядным прибором. Встроенное ЗУ позволяет заряжать батарею, не извлекая её из шуруповёрта. Схема восстановления ёмкости расположена непосредственно вместе с аккумулятором. В то время как выносное подразумевает их извлечение и установку в отдельное приспособление для заряда. Различают ЗУ по типу восстанавливаемых батарей. Применяемые аккумуляторы бывают:

  • никель-кадмиевые (NiCd);
  • никель-металл-гидридные (NiMH);
  • литий-ионные (LiIon).

Конечная стоимость шуруповёрта не в последнюю очередь зависит от типа используемых батарей и возможностей зарядного устройства. ЗУ выпускаются на 12 вольт, 14,4 вольта и 18 вольт. Кроме этого, ЗУ разделяются по возможностям и могут иметь:

  • индикацию;
  • быструю зарядку;
  • разный тип защиты.

Наиболее используемые ЗУ используют в работе медленный заряд, обусловленный малым током. Они не содержат в своей конструкции индикацию работы и не отключаются автоматически. Это более справедливо к встроенным приборам восстановления ёмкости. ЗУ, построенные на импульсных схемах, обеспечивают возможность ускоренного заряда. Они автоматически отключаются по достижению требуемой величины напряжения или в случае возникновения аварийной ситуации.

Типы применяемых батарей

Никель-кадмиевые аккумуляторы не испытывают проблем при заряде в ускоренном режиме. Такие батарейки обладают высокой нагрузочной способностью, невысокой ценой и спокойно переносят работы при минусовой температуре. К недостаткам относят: эффект памяти, токсичность, большую скорость саморазряда. Поэтому перед тем, как заряжать такого типа аккумулятор, его необходимо полностью разрядить. Батарея имеет высокую степень саморазряда и быстро разряжается, даже если её не используют. В настоящее время практически не выпускаются из-за своей токсичности. Из всех типов обладают наименьшей ёмкостью.

Никель-металл-гидридные по всем параметрам превосходят NiCd. У них меньше величина саморазряда, меньше выражен эффект памяти. При одинаковых размерах они имеют большую ёмкость. В их составе нет токсичного материала, кадмия. В ценовой категории этот тип занимает среднее положение, поэтому наиболее распространённый тип ёмкостных элементов в шуруповёрте именно он.

Литий-ионные характеризуются высокой ёмкостью и низким значением саморазряда. Эти аккумуляторы плохо переносят перегрев и глубокий разряд. В первом случае они способны взорваться, а во втором уже не смогут восстановить свою ёмкость. Они также способны работать при отрицательных температурах и не имеют эффекта памяти. Использование ЗУ с микроконтроллером позволило защитить батарею от перезаряда, тем самым сделав этот тип наиболее привлекателен к применению. По цене они дороже, чем первые два типа.

Кроме этого, основной характеристикой аккумуляторных батарей, является их ёмкость. Чем выше этот показатель — тем дольше работает шуруповёрт. Единица измерения ёмкости — миллиампер в час (мА/ч). Конструкция батареи заключается в последовательном соединении элементов питания и помещение их в общий корпус. Для Li-Ion напряжение на одном элементе составляет 3,3 вольта, для NiCd и NiMH — 1,2 вольта.

Принцип работы ЗУ

При выходе из строя ЗУ есть смысл сначала попробовать его восстановить. Для проведения ремонта желательно иметь схему прибора заряда и мультиметр. Схемотехника многих приборов заряда построена на микросхеме HCF4060BE. Её схема включения формирует выдержку интервала времени заряда. Она включает в себя цепь кварцевого генератора и 14-разрядный двоичный счётчик, благодаря чему на ней легко реализовывается таймер.

Принцип работы схемы зарядника проще разобрать на реальном примере. Вот как выглядит она в шуруповёрте Интерскол:

Такая схема предназначена для заряда 14,4-вольтовых аккумуляторов. Она имеет светодиодную индикацию, показывающую подключение в сеть, горит светодиод LED2, и процесс заряда, горит LED1. В качестве счётчика используется микросхема U1 HCF4060BE или её аналоги: TC4060, CD4060. Выпрямитель собран на силовых диодах VD1-VD4 типа 1N5408. Транзистор PNP типа Q1 работает в ключевом режиме, к его выводам подключены управляющие контакты реле S3-12A. Работой ключа управляет контроллер U1.

При включении ЗУ переменное напряжение сети 220 вольт через предохранитель поступает на понижающий трансформатор, на выходе которого её значение составляет 18 вольт. Далее, проходя через диодный мост, выпрямляется и попадает на сглаживающий конденсатор C1 ёмкостью 330 мкФ. Величина напряжения на нём равна 24 вольта. Во время подсоединения батареи контактная группа реле находится в разомкнутом положении. Микросхема U1 запитывается через стабилитрон VD6 постоянным сигналом равным 12 вольт.

Когда кнопка «Пуск» SK1 нажата, на 16-й вывод контроллера U1 поступает стабилизированный сигнал через резистор R6. Ключ Q1 открывается и через него поступает ток на выводы реле. Контакты прибора S3-12A замыкаются и начинается процесс зарядки. Диод VD8, включённый параллельно транзистору, защищает его от скачка напряжения, вызванного отключением реле.

Источник

Схема зарядного устройства для шуруповерта. Электрическая схема зарядного устройства шуруповерта

Множество современных шуруповертов работают от аккумуляторной батареи. Емкость их в среднем составляет 12 мАч. Для того чтобы устройство всегда оставалось в рабочем состоянии, необходимо зарядное устройство. Однако по напряжению они довольно сильно отличаются.

Читайте также:  Зарядное устройство avs bt6025

В наше время выпускаются модели на 12, 14 и 18 В. Также важно отметить, что производители применяют различные комплектующие элементы для зарядных устройств. Для того чтобы разобраться в этом вопросе, следует взглянуть на стандартную схему зарядного.

Схема зарядки

Стандартная электрическая схема зарядного устройства шуруповерта включает в себя микросхему трехканального типа. В данном случае транзисторов для модели на 12 В потребуется четыре. По емкости они могут довольно сильно отличаться. Для того чтобы устройство могло справляться с высокой тактовой частотой, на микросхеме крепятся конденсаторы. Они для зарядок используются как импульсного, так и переходного типа. В данном случае важно учитывать особенности конкретных аккумуляторных батарей.

Непосредственно тиристоры используются в устройствах для стабилизации тока. В некоторых моделях установлены тетроды открытого типа. По проводимости тока они отличаются между собой. Если рассматривать модификации на 18 В, то там часто имеются дипольные фильтры. Указанные элементы позволяют с легкость справляться с перегрузками в сети.

Модификации на 12В

На 12 В зарядное устройство для аккумуляторов шуруповерта (схема показана ниже) представляет собой набор транзисторов емкостью до 4.4 пФ. В данном случае проводимость в цепи обеспечивается на уровне 9 мк. Для того чтобы тактовая частота резко не повышалась, применяются конденсоры. Резисторы у моделей используются в основном полевые.

Если говорить про зарядки на тетродах, то там дополнительно имеется фазовый резистор. С электромагнитными колебаниями он справляется хорошо. Отрицательное сопротивление зарядками на 12 В выдерживается в 30 Ом. Используются они чаще всего для аккумуляторных батарей на 10 мАч. На сегодняшний день они активной применяются в моделях торговой марки «Макита».

Зарядные устройства на 14 В

Схема зарядного устройства для шуруповерта на 14 В транзисторов в себя включает пять штук. Непосредственно микросхема для преобразования тока подходит лишь четырехканального типа. Конденсаторы у моделей на 14 В используются импульсные. Если говорить про батареи с емкостью в 12 мАч, то там дополнительно устанавливаются тетроды. В данном случае диодов на микросхеме предусмотрено два. Если говорить про параметры зарядок, то проводимость тока в цепи, как правило, колеблется в районе 5 мк. В среднем емкость резистора в цепи не превышает 6.3 пФ.

Непосредственно нагрузки тока зарядки на 14 В способны выдерживать в 3.3 А. Триггеры в таких моделях устанавливаются довольно редко. Однако если рассматривать шуруповерты торговой марки «Бош», то там они используются часто. В свою очередь у моделей «Макита» они заменяются волновыми резисторами. С целью стабилизации напряжения они подходят хорошо. Однако частотность зарядки может изменяться сильно.

Схемы моделей на 18 В

На 18 В схема зарядного устройства для шуруповерта предполагает использование транзисторов только переходного типа. Конденсаторов на микросхеме имеется три. Непосредственно тетрод устанавливается с диодным мостом. Для стабилизации предельной частоты в устройстве применяется сеточный триггер. Если говорить про параметры зарядки на 18 В, то следует упомянут о том, что проводимость тока колеблется в районе 5.4 мк.

Если рассматривать зарядки для шуруповертов компании «Бош», то данный показатель может быть выше. В некоторых случаях для улучшения проводимости сигнала применяются хроматические резисторы. В данном случае емкость конденсаторов не должна превышать 15 пФ. Если рассматривать зарядные устройства торговой марки «Интерскол», то в них трансиверы используются с повышенной проводимостью. В данном случае параметр максимальной токовой нагрузки может доходить до 6 А. В конце следует упомянуть об устройствах компании «Макита». Многие из аккумуляторных моделей оснащаются качественными дипольными транзисторами. С повышенным отрицательным сопротивлением они справляются хорошо. Однако проблемы в некоторых случаях возникают с магнитными колебаниями.

Зарядные устройства «Интрескол»

Стандартное зарядное устройство шуруповерта «Интерскол» (схема показана ниже) включает в себя двуканальную микросхему. Конденсаторы подбираются для нее все с емкостью в 3 пФ. В данном случае транзисторы у моделей на 14 В используются импульсного типа. Если рассматривать модификации на 18 В, то там можно встретить переменные аналоги. Проводимость у данных устройств способна доходить до 6 мк. В данном случае батареи используются в среднем на 12 мАч.

Схема для модели «Макита»

Схема зарядного устройства шуруповерта «Макита» имеет микросхему трехканального типа. Всего транзисторов в цепи предусмотрено три. Если говорить про шуруповерты на 18 В, то в данном случае конденсаторы устанавливаются с емкостью 4.5 пФ. Проводимость обеспечивается в районе 6 мк.

Все это позволяет снять нагрузку с транзисторов. Непосредственно тетроды применяются открытого типа. Если говорить про модификации на 14 В, то зарядки выпускаются со специальными триггерами. Данные элементы позволяют отлично справляться с повышенной частотностью устройства. При этом скачки в сети им не страшны.

Устройства для зарядки шуруповертов «Бош»

Стандартная схема зарядного устройства шуруповерта «Бош» включает в себя микросхему трехканального типа. В данном случае транзисторы имеются импульсного типа. Однако если говорить про шуруповерты на 12 В, то там установлены переходные аналоги. В среднем пропускная способность у них имеется на уровне 4 мк. Конденсаторы в устройствах применяются с хорошей проводимостью. Диодов у зарядок представленного бренда имеется два.

Триггеры в устройствах используются только на 12 В. Если говорить про систему защиты, то трансиверы применяются лишь открытого типа. В среднем токовую нагрузку они способны переносить в 6 А. В данном случае отрицательное сопротивление в цепи не превышает 33 Ом. Если отдельно говорить про модификации на 14 В, то выпускаются они под батареи на 15 мАч. Триггеры не используются. При этом конденсаторов в схеме имеется три.

Схема для модели «Скил»

Схема зарядного устройства шуруповерта Skil включает в себя трехканальную микросхему. В данном случае модели на рынке представлены на 12 и 14 В. Если рассматривать первый вариант, то транзисторы в цепи используются импульсного типа. Приводимость тока у них равняется не более 5 мк. В данном случае триггеры во всех конфигурациях используются. В свою очередь тиристоры применяются только для зарядок на 14 В.

Конденсаторы у моделей на 12 В устанавливаются с варикапом. В данном случае больших перегрузок они не способны выдержать. При этом транзисторы перегреваются довольно быстро. Непосредственно диодов в зарядке на 12 В имеется три.

Применение регулятора LM7805

Схема зарядного устройства для шуруповерта с регулятором LM7805 включает в себя только двухканальные микросхемы. Конденсаторы используются на ней с емкостью от 3 до 10 пФ. Встретить регуляторы данного типа чаще всего можно у моделей торговой марки «Бош». Непосредственно для зарядок на 12 В они не подходят. В данном случае параметр отрицательного сопротивления в цепи доходит до 30 Ом.

Если говорить про транзисторы, то они у моделей применяются импульсного типа. Триггеры для регуляторов использоваться могут. Диодов в цепи предусмотрено три. Если говорить про модификации на 14 В, то тетроды для них подходят лишь волнового типа.

Использование транзисторов BC847

Схема зарядного устройства для шуруповерта на транзисторах BC847 является довольно простой. Используются указанные элементы чаще всего компанией «Макита». Подходят они для аккумуляторов на 12 мАч. В данном случае микросхемы используются трехканального типа. Конденсаторы применяются с двоенными диодами.

Непосредственно триггеры используются открытого типа, а проводимость тока у них находится на уровне 5.5 мк. Всего транзисторов для зарядки в 12 В потребуется три. Один из них устанавливается у конденсаторов. Остальные в данном случае находятся за опорными диодами. Если говорить про напряжение, то зарядки на 12 В перегрузки с данным транзисторами способны переносить в 5 А.

Читайте также:  Схема зарядного устройства navier btc 111b

Устройство на транзисторах IRLML2230

Схемы зарядки с транзисторами данного типа встречаются довольно часто. Компания «Интрескол» использует их в модификациях на 14 и 18 В. В данном случае микросхемы применяются только трехканального типа. Непосредственно емкость указанных транзисторов равняется 2 пФ.

Перегрузки тока от сети они переносят хорошо. В данном случае показатель проводимости в зарядках не превышает 4 А. Если говорить про другие компоненты, то конденсаторы устанавливаются импульсного типа. В данном случае их потребуется три. Если говорить про модели на 14 В, то в них тиристоры для стабилизации напряжения имеются.

Источник

Схемы зарядных устройств для шуруповерта на 12 и 18 вольт

Срок службы механической части аккумуляторного шуруповерта намного превышает период эксплуатации батареи и зарядного устройства. В случае с выходом из строя АКБ особой альтернативы нет. Аккумулятор подлежит замене, попытки восстановления далеко не всегда заканчиваются удачно и длительного эффекта не дают. Вышедшее из строя (или утерянное) зарядное устройство можно заменить самодельным блоком.

Принцип работы зарядного устройства

Зарядное устройство предназначено для пополнения энергией аккумуляторной батареи (или единичного элемента). Происходит это посредством пропускания постоянного (или импульсного однополярного) тока через АКБ. В гальваническом элементе (батарейке) химическая реакция, в результате которой возникает ЭДС, происходит самопроизвольно. В аккумуляторе эта реакция является возобновляемой и инициируется прохождением тока. Электрическая энергия превращается в химическую, а затем снова в электрическую.

Чтобы заставить процесс протекать, ток должен идти по направлению из источника к аккумулятору. Для этого выходное напряжение источника должно превышать напряжение на заряжаемом элементе, а ток заряда должен ограничиваться:

  • на уровне 0,1-0,2С (номинальной емкости аккумулятора) – самый благоприятный режим для АКБ, но занимает много времени;
  • в пределах от 0,2С до 0,35С – заряд происходит примерно в два раза быстрее, режим считается приемлемым;
  • заряд током около 1С позволяет очень быстро пополнить запас энергии, но плохо влияет на срок службы АКБ – элемент может перегреться или выйти из строя даже в процессе зарядки.

Для NiCd и NiMH аккумуляторов в профессиональных зарядных устройствах применяется реверсивный режим – длительный импульс заряда чередуется с коротким импульсом разряда. Так снимается вредный «эффект памяти», снижающий фактическую емкость АКБ.

Кроме формирования постоянного тока и потребного напряжения, зарядное устройство должно позволять контролировать эти параметры с помощью встроенных вольтметра и амперметра, и иметь возможность их регулировки. Еще лучше поддерживать эти характеристики автоматически, формируя наиболее благоприятный режим заряда аккумулятора.

Виды электрических схем ЗУ

Сделать зарядное устройство для шуруповерта можно самостоятельно. Для этого понадобится схема, набор электронных компонентов, паяльник с расходными материалами и определенные навыки и квалификация.

Перед выбором схемы надо учесть несколько моментов:

  • импульсное зарядное устройство легче, компактнее, у него выше КПД, но оно сложнее в сборке и наладке;
  • если режим зарядки и контроль ее завершения будет поддерживаться автоматически, то для NiCd, NiMH и Li-ion аккумуляторов алгоритм будет различаться – для первых двух типов зарядка производится стабилизированным током, литий-ионный заряжается по двухступенчатой (в некоторых случаях – трехступенчатой) схеме.

Схемы зарядных устройств для шуруповерта на 12 и 18 вольт

Номинальный ток ЗУ определяется мощностью элементов силовой цепи (трансформаторов, диодов, транзисторов), и их надо подбирать в соответствии с необходимостью.

На 12 вольт

Схема простого зарядного устройства на 12 вольт, в котором параметры зарядки надо поддерживать вручную, не требует высокой квалификации для сборки и не нуждается в наладке.

Схемы зарядных устройств для шуруповерта на 12 и 18 вольт

Ток устанавливается потенциометром, параметры контролируются по амперметру и вольтметру. Трансформатор можно подобрать готовый, с напряжением на вторичной обмотке 12-15 вольт – например, ТПП-48 или ТПП-201-208. Параметры других элементов, от которых не зависит максимальный ток, указаны на схеме. Остальные выбираются в зависимости от потребного выходного тока.

Элемент Требуемый ток Тип
VD1-VD4 До 1 А 1N4001 (1N400X)
1А и выше 1N5400 (1N540X)
VT1 До 1 А КТ815
1А и выше КТ829

По мере снижения зарядного тока его надо подстраивать до выбранного значения. Если производится зарядка током до 0,2С, процесс может занять до 16 часов, поэтому ручное поддержание параметров крайне неудобно.

Зарядные устройства с автоматическим поддержанием параметров и алгоритмами, соответствующими типу аккумулятора, часто строят на микроконтроллерах. Схемы и прошивки можно найти в сети.

Схемы зарядных устройств для шуруповерта на 12 и 18 вольт

Также зарядные устройства строят на специализированных микросхемах. В качестве примера приведена схема зарядного устройства на MAX713 для никель-кадмиевых аккумуляторов. Очевидно, что схема достаточно сложна, но она универсальна (для различных напряжений), имеет режим тренировочного цикла и обеспечивает оптимальный режим зарядки, а также своевременное ее завершение. Это приводит к увеличению срока службы батарей.

Схемы зарядных устройств для шуруповерта на 12 и 18 вольт

На 18 вольт

Принципиально схемы зарядных устройств для шуруповертов на 18 вольт не отличаются от 12-вольтовых. В большинстве случаев они приводятся к нужному номиналу настройкой параметров или (как в приведенной выше импульсной схеме) переустановкой перемычек. В схеме простого зарядного устройства достаточно применить трансформатор с большим выходным напряжением. Так, ТПП-209 имеет обмотку с напряжением 20 вольт. При его использовании можно заряжать 18-вольтовые аккумуляторы.

Основы по самостоятельному изготовлению

Независимо от предпочитаемого зарядного устройства, электронные компоненты надо расположить на плате и соединить согласно схеме. Самый простой способ – применить кусочек макетной платы (беспаечную применять категорически не рекомендуется – она не сможет обеспечить надежный контакт в течение длительного времени).

Важно! В зарядном устройстве циркулируют достаточно большие токи. Все соединения (особенно в силовых цепях) должны выполняться только пайкой. Скрутки недопустимы, они приведут к локальному перегреву или даже возгоранию. Разъемные соединения также надо минимизировать.

Единственный минус макетной платы – низкая эстетическая составляющая. Если это не устраивает будущего владельца, можно изготовить печатную плату в домашних условиях. Неплохие результаты дает метод ЛУТ (лазерно-утюжная технология). Ее суть в том, что рисунок платы распечатывается на лазерном принтере на специальной (или просто глянцевой журнальной) бумаге.

Схемы зарядных устройств для шуруповерта на 12 и 18 вольт

Потом рисунок переводится с помощью утюга на медное покрытие заготовки из фольгированного материала и травится.

Схемы зарядных устройств для шуруповерта на 12 и 18 вольт

Более сложный способ – с фоторезистом (жидким или пленочным). Для его реализации потребуется ультрафиолетовая лампа. Зато возможности этого метода намного выше.

Схемы зарядных устройств для шуруповерта на 12 и 18 вольт

Вытравить плату можно в классическом растворе хлорного железа. Более доступна и удобна другая смесь:

  • 100 мл аптечной перекиси водорода;
  • 30 грамм порошка лимонной кислоты;
  • 2-3 чайные ложки поваренной соли.

После травления любым способом плата промывается в большом количестве проточной воды, покрытие рисунка смывается растворителем. Плата сушится, в ней сверлятся отверстия, и после облуживания она готова к монтажу.

Схемы зарядных устройств для шуруповерта на 12 и 18 вольт

Рисунок платы можно разработать в бесплатной программе. Например, легко осваивается Sprint LayOut. При достижении определенной квалификации можно освоить более сложные программы для разработки печатных плат, но их придется приобрести или воспользоваться бесплатными версиями с урезанными возможностями (их достаточно, чтобы закрыть 90% потребностей домашнего мастера). При разработке платы надо предусматривать возможность установки мощных транзисторов и диодов на радиаторы. Для этого должно быть предусмотрено место на плате, либо элементы располагают на краю – чтобы привинтить их на внешние теплоотводы.

Рекомендуем к просмотру: Зарядное для шуруповерта из того, что было в доме.

Если схема позволяет крепить силовые элементы непосредственно на радиатор, то транзисторы или диоды надо сажать на теплопроводящую пасту. Если не позволяет – через изолирующие слюдяные или упругие прокладки. По окончании сборки надо изготовить корпус для устройства или сделать его самостоятельно. На передней панели располагают органы управления и индикации. Для подключения аккумуляторов можно смонтировать посадочное место с контактами от вышедшего из строя ЗУ.

Устройство для зарядки аккумуляторов шуруповерта несложно собрать самостоятельно. Схему (и, соответственно, уровень автоматизации) надо выбирать под собственную квалификацию.

Источник