Меню

Схема зарядного устройства master watt



Схема зарядного устройства master watt

10 ноябрь 2017
Я постарался вставить в заголовок этой статьи все плюсы данной схемы, которою мы будем рассматривать и естественно у меня это не совсем получилось. Так что давайте теперь рассмотрим все достоинства по порядку.
Главным достоинством зарядного устройство является то, что оно полностью автоматическое. Схема контролирует и стабилизирует нужный ток зарядки аккумулятора, контролирует напряжение аккумуляторной батареи и как оно достигнет нужного уровня – убавит ток до нуля.

Какие аккумуляторные батареи можно заряжать?

Практически все: литий-ионные, никель-кадмиевые, свинцовые и другие. Масштабы применения ограничиваются только током заряда и напряжением.
Для всех бытовых нужд этого будет достаточно. К примеру, если у вас сломался встроенный контроллер заряда, то можно его заменить этой схемой. Аккумуляторные шуруповерты, пылесосы, фонари и другие устройства возможно заряжать этим автоматическим зарядным устройством, даже автомобильные и мотоциклетные батареи.

Где ещё можно применить схему?

Помимо зарядного устройства можно применить данную схему как контроллер зарядки для альтернативных источников энергии, таких как солнечная батарея.
Также схему можно использовать как регулируемый источник питания для лабораторных целей с защитой короткого замыкания.

Основные достоинства:

  • — Простота: схема содержит всего 4 довольно распространённых компонента.
  • — Полная автономность: контроль тока и напряжения.
  • — Микросхемы LM317 имеют встроенную защиту от короткого замыкания и перегрева.
  • — Небольшие габариты конечного устройства.
  • — Большой диапазон рабочего напряжения 1,2-37 В.

Недостатки:

  • — Ток зарядки до 1,5 А. Это скорей всего не недостаток, а характеристика, но я определю данный параметр сюда.
  • — При токе больше 0,5 А требует установки на радиатор. Также следует учитывать разницу между входным и выходным напряжением. Чем эта разница будет больше, тем сильнее будут греться микросхемы.

Схема автоматического зарядного устройства

На схеме не показан источник питания, а только блок регулировки. Источником питания может служить трансформатор с выпрямительным мостом, блок питания от ноутбука (19 В), блок питания от телефона (5 В). Все зависит от того какие цели вы преследуете.
Схему можно поделать на две части, каждая из них функционирует отдельно. На первой LM317 собран стабилизатор тока. Резистор для стабилизации рассчитывается просто: «1,25 / 1 = 1,25 Ом», где 1,25 – константа которая всегда одна для всех и «1» — это нужный вам ток стабилизации. Рассчитываем, затем выбираем ближайший из линейки резистор. Чем выше ток, тем больше мощность резистора нужно брать. Для тока от 1 А – минимум 5 Вт.
Вторая половина — это стабилизатор напряжения. Тут все просто, переменным резистором выставляете напряжение заряженного аккумулятора. К примеру, у автомобильных батарей оно где-то равно 14,2-14,4. Для настройки подключаем на вход нагрузочный резистор 1 кОм и измеряем мультиметром напряжение. Выставляем подстрочным резистором нужное напряжение и все. Как только батарея зарядится и напряжение достигнет выставленного – микросхема уменьшит ток до нуля, и зарядка прекратиться.
Я лично использовал такое устройство для зарядки литий-ионных аккумуляторов. Ни для кого не секрет, что их нужно заряжать правильно и если допустить ошибку, то они могут даже взорваться. Это ЗУ справляется со всеми задачами.

Источник

Простое автоматическое зарядное устройство

Схема простого автоматического зарядного устройства автомобильного аккумулятора

Список необходимых деталей:

  • R1 = 4,7 кОм;
  • Р1 = 10K подстроечный;
  • T1 = BC547B, КТ815, КТ817;
  • Реле = 12В, 400 Ом, (можно автомобильное, например: 90.3747);
  • TR1 = напряжение вторичной обмотки 13,5-14,5 В, ток 1/10 от емкости АКБ (например: АКБ 60А/ч — ток 6А);
  • Диодный мост D1-D4 = на ток равный номинальному току трансформатора = не менее 6А (например Д242, КД213, КД2997, КД2999 …), установленные на радиаторе;
  • Диоды D1(параллельно реле), D5,6 = 1N4007, КД105, КД522…;
  • C1 = 100uF/25V.
  • R2, R3 — 3 кОм
  • HL1 — АЛ307Г
  • HL2 — АЛ307Б

В схеме отсутствует индикатор зарядки, контроля тока (амперметр) и ограничение зарядного тока. При желании можно поставить на выход амперметр в разрыв любого из проводов. Светодиоды (HL1 и HL2) с ограничительными сопротивлениями (R2 и R3 — 1 кОм) или лампочки параллельно С1 «сеть», а к свободному контакту RL1 «конец заряда».

Изменённая схема

Ток, равный 1/10 от ёмкости АКБ подбирается количеством витков вторичной обмотки трансформатора. При намотке вторички трансформатора необходимо сделать несколько отводков для подбора оптимального варианта зарядного тока.

Заряд автомобильного (12-ти вольтового) аккумулятора считается законченным, когда напряжение на его клеммах достигнет 14,4 вольт.

Порог отключения (14,4 вольт) устанавливается подстроечным резистором Р1 при подключенном и полностью заряженном аккумуляторе.

Читайте также:  Как пользоваться зарядным устройством для аккумулятора бархат

При зарядке разряженного аккумулятора напряжение на нём будет около 13В, в процессе зарядки ток будет падать, а напряжение возрастать. Когда напряжение на аккумуляторе достигнет 14,4 вольт, транзистор Т1 отключит реле RL1 цепь заряда будет разорвана и АКБ отключится от зарядного напряжения с диодов D1-4.

При снижении напряжения до 11,4 вольт, зарядка снова возобновляется, такой гистерезис обеспечивают диоды D5-6 в эмиттере транзистора. Порог срабатывания схемы становится 10 + 1,4 = 11,4 вольт, которые могут быть рассмотрены как для автоматического перезапуска процесса зарядки.

Такое самодельное простое автоматическое автомобильное зарядное устройство поможет Вам проконтролировать процесс зарядки, не проследить окончание зарядки и не перезарядить свой аккумулятор!

Использованы материалы сайта:homemade-circuits.com

Другой вариант схемы зарядного устройства для 12-ти вольтового автомобильного аккумулятора с автоматическим отключением по окончании зарядки

Схема немного сложнее предыдущей, но с более чётким срабатыванием.

Источник

Практические схемы универсальных зарядных устройств для аккумуляторов

Предлагаемые ниже схемы ЗУ были разработаны для зарядки литий-ионных аккумуляторов, но существует возможность зарядки и других типов аккумуляторов и составных батарей (с применением однотипных элементов, далее — АБ).

Все представленные схемы имеют следующие основные параметры:
• входное напряжение 15-24 В;
• ток заряда (регулируемый) до 4 А;
• выходное напряжение (регулируемое) 0,7 — 18 В (при Uвх=19В).

Все схемы были ориентированы на работу с блоками питания от ноутбуков либо на работу с другими БП с выходными напряжениями постоянного тока от 15 до 24 Вольт и построены на широко распространенных компонентах, которые присутствуют на платах старых компьютерных БП, БП прочих устройств, ноутбуков и пр.

Схема ЗУ № 1 (TL494)

ЗУ на схеме 1 является мощным генератором импульсов, работающим в диапазоне от десятков до пары тысяч герц (частота варьировалась при исследованиях), с регулируемой шириной импульсов.
Зарядка АБ производится импульсами тока, ограниченного обратной связью, образованной датчиком тока R10, включенным между общим проводом схемы и истоком ключа на полевом транзисторе VT2 (IRF3205), фильтром R9C2, выводом 1, являющимся «прямым» входом одного из усилителей ошибки микросхемы TL494.

На инверсный вход (вывод 2) этого же усилителя ошибки подается регулируемое посредством переменного резистора PR1, напряжение сравнения с встроенного в микросхему источника опорного напряжения (ИОН — вывод 14), меняющего разность потенциалов между входами усилителя ошибки.
Как только величина напряжения на R10 превысит значение напряжения (установленного переменным резистором PR1) на выводе 2 микросхемы TL494, зарядный импульс тока будет прерван и возобновлен вновь лишь при следующем такте импульсной последовательности, вырабатываемой генератором микросхемы.
Регулируя таким образом ширину импульсов на затворе транзистора VT2, управляем током зарядки АБ.

Транзистор VT1, включенный параллельно затвору мощного ключа, обеспечивает необходимую скорость разрядки затворной емкости последнего, предотвращая «плавное» запирание VT2. При этом амплитуда выходного напряжения при отсутствии АБ (или прочей нагрузки) практически равна входному напряжению питания.

При активной нагрузке выходное напряжение будет определяться током через нагрузку (её сопротивлением), что позволит использовать эту схему в качестве драйвера тока.

При заряде АБ напряжение на выходе ключа (а, значит, и на самой АБ) в течении времени будет стремиться в росте к величине, определяемой входным напряжением (теоретически) и этого, конечно, допустить нельзя, зная, что величина напряжения заряжаемого литиевого аккумулятора должна быть ограничена на уровне 4,1 В (4,2 В). Поэтому в ЗУ применена схема порогового устройства, представляющего из себя триггер Шмитта (здесь и далее — ТШ) на ОУ КР140УД608 (IC1) или на любом другом ОУ.

При достижении необходимого значения напряжения на АБ, при котором потенциалы на прямом и инверсном входах (выводы 3, 2 — соответственно) IC1 сравняются, на выходе ОУ появится высокий логический уровень (практически равный входному напряжению), заставив зажечься светодиод индикации окончания зарядки HL2 и светодиод оптрона VH1 который откроет собственный транзистор, блокирующий подачу импульсов на выход U1. Ключ на VT2 закроется, заряд АБ прекратится.

По окончании заряда АБ он начнет разряжаться через встроенный в VT2 обратный диод, который окажется прямовключенным по отношению к АБ и ток разряда составит приблизительно 15-25 мА с учетом разряда кроме того через элементы схемы ТШ. Если это обстоятельство кому-то покажется критичным, в разрыв между стоком и отрицательным выводом АБ следует поставить мощный диод (лучше с малым прямым падением напряжения).

Гистерезис ТШ в этом варианте ЗУ выбран таким, что заряд вновь начнется при понижении величины напряжения на АБ до 3,9 В.

Читайте также:  Зарядное устройство для кэнон 650д

Это ЗУ можно использовать и для заряда последовательно соединенных литиевых (и не только) АБ. Достаточно откалибровать с помощью переменного резистора PR3 необходимый порог срабатывания.
Так, например, ЗУ, собранный по схеме 1, функционирует с трехсекционной последовательной АБ от ноутбука, состоящей из сдвоенных элементов, которая была смонтирована взамен никель-кадмиевой АБ шуруповерта.
БП от ноутбука (19В/4,7А) подключен к ЗУ, собранному в штатном корпусе ЗУ шуруповерта взамен оригинальной схемы. Зарядный ток «новой» АБ составляет 2 А. При этом транзистор VT2, работая без радиатора нагревается до температуры 40-42 С в максимуме.
ЗУ отключается, естественно, при достижении напряжения на АБ=12,3В.

Гистерезис ТШ при изменении порога срабатывания остается прежним в ПРОЦЕНТНОМ отношении. Т.е., если при напряжении отключения 4,1 В, повторное включение ЗУ происходило при снижении напряжения 3,9 В, то в данном случае повторное включение ЗУ происходит при снижении напряжения на АБ до 11,7 В. Но при необходимости глубину гистерезиса можно изменить.

Калибровка порога и гистерезиса зарядного устройства

Калибровка происходит при использовании внешнего регулятора напряжения (лабораторного БП).
Выставляется верхний порог срабатывания ТШ.
1. Отсоединяем верхний вывод PR3 от схемы ЗУ.
2. Подключаем «минус» лабораторного БП (далее везде ЛБП) к минусовой клемме для АБ (самой АБ в схеме во время настройки быть не должно), «плюс» ЛБП — к плюсовой клемме для АБ.
3. Включаем ЗУ и ЛБП и выставляем необходимое напряжение (12,3 В, например).
4. Если горит индикация окончания заряда, вращаем движок PR3 вниз (по схеме) до гашения индикации (HL2).
5. Медленно вращаем движок PR3 вверх (по схеме) до зажигания индикации.
6. Медленно снижаем уровень напряжения на выходе ЛБП и отслеживаем значение, при котором индикация вновь погаснет.
7. Проверяем уровень срабатывания верхнего порога еще раз. Хорошо. Можно настроить гистерезис, если не устроил уровень напряжения, включающий ЗУ.
8. Если гистерезис слишком глубок (включение ЗУ происходит при слишком низком уровне напряжения — ниже, например, уровня разряда АБ, выкручиваем движок PR4 влево (по схеме) или наоборот, — при недостаточной глубине гистерезиса, — вправо (по схеме). При изменении глубины гистерезиса уровень порога может сместиться на пару десятых долей вольта.
9. Сделайте контрольный прогон, поднимая и опуская уровень напряжения на выходе ЛБП.

Настройка токового режима еще проще.
1. Отключаем пороговое устройство любыми доступными (но безопасными) способами: например, «посадив» движок PR3 на общий провод устройства или «закорачивая» светодиод оптрона.
2. Вместо АБ подключаем к выходу ЗУ нагрузку в виде 12-вольтовой лампочки (например, я использовал для настройки пару 12V ламп на 20 Вт).
3. Амперметр включаем в разрыв любого из проводов питания на входе ЗУ.
4. Устанавливаем на минимум движок PR1 (максимально влево по схеме).
5. Включаем ЗУ. Плавно вращаем ручку регулировки PR1 в сторону роста тока до получения необходимого значения.
Можете попробовать поменять сопротивление нагрузки в сторону меньших значений ее сопротивления, присоединив параллельно, скажем, ещё одну такую же лампу или даже «закоротить» выход ЗУ. Ток при этом не должен измениться значительно.

В процессе испытаний устройства выяснилось, что частоты в диапазоне 100-700 Гц оказались оптимальными для этой схемы при условии использования IRF3205, IRF3710 (минимальный нагрев). Так как TL494 используется неполно в этой схеме, свободный усилитель ошибки микросхемы можно использовать, например, для работы с датчиком температуры.

Следует иметь в виду и то, что при неправильной компоновке даже правильно собранное импульсное устройство будет работать некорректно. Поэтому не следует пренебрегать опытом сборки силовых импульсных устройств, описанном в литературе неоднократно, а именно: все одноименные «силовые» соединения следует располагать на кратчайшем расстоянии относительно друг друга (в идеале — в одной точке). Так, например, точки соединения такие, как коллектор VT1, выводы резисторов R6, R10 (точки соединения с общим проводом схемы), вывод 7 U1 — следует объединить практически в одной точке либо посредством прямого короткого и широкого проводника (шины). То же касается и стока VT2, вывод которого следует «повесить» непосредственно на клемму «-» АБ. Выводы IC1 также должны находиться в непосредственной «электрической» близости к клеммам АБ.

Схема ЗУ № 2 (TL494)

Схема 2 не сильно отличается от схемы 1, но если предыдущая версия ЗУ была придумана для работы с АБ шуруповерта, то ЗУ на схеме 2 задумывалось, как универсальное, малогабаритное (без лишних элементов настройки), рассчитанное для работы как с составными, последовательно включенными элементами числом до 3-х, так и с одиночными.

Читайте также:  Аккумуляторные зарядные устройства россия

Как видно, для быстрой смены токового режима и работы с разным количеством последовательно соединенных элементов, введены фиксированные настройки с подстроечными резисторами PR1-PR3 (установка тока), PR5-PR7 (установка порога окончания зарядки для разного количества элементов) и переключателей SA1 (выбор тока зарядки) и SA2 (выбор количества заряжаемых элементов АБ).
Переключатели имеют по два направления, где вторые их секции переключают светодиоды индикации выбора режима.

Ещё одно отличие от предыдущего устройства — использование второго усилителя ошибки TL494 в качестве порогового элемента (включенного по схеме ТШ), определяющего окончание зарядки АБ.

Ну, и, конечно, в качестве ключа использован транзистор р-проводимости, что упростило полное использование TL494 без применения дополнительных компонентов.

Методика настройки порогов окончания зарядки и токовых режимов такая же, как и для настройки предыдущей версии ЗУ. Разумеется, для разного количества элементов, порог срабатывания будет меняться кратно.

При испытании этой схемы был замечен более сильный нагрев ключа на транзисторе VT2 (при макетировании использую транзисторы без радиатора). По этой причине следует использовать другой транзистор (которого у меня просто не оказалось) соответствующей проводимости, но с лучшими токовыми параметрами и меньшим сопротивлением открытого канала, либо удвоить количество указанных в схеме транзисторов, включив их параллельно с раздельными затворными резисторами.

Использование указанных транзисторов (в «одиночном» варианте) не критично в большинстве случаев, но в данном случае размещение компонентов устройства планируется в малогабаритном корпусе с использованием радиаторов малого размера или вовсе без радиаторов.

Схема ЗУ № 3 (TL494)

В ЗУ на схеме 3 добавлено автоматическое отключение АБ от ЗУ с переключением на нагрузку. Это удобно для проверки и исследования неизвестных АБ. Гистерезис ТШ для работы с разрядом АБ следует увеличить до нижнего порога (на включение ЗУ), равного полному разряду АБ (2,8-3,0 В).

Источник

Схема зарядного устройства master watt

9zip.ru Радиотехника, электроника и схемы своими руками Зарядное устройство на UC3842/UC3843 с регулировкой напряжения и тока

Описываемое здесь зарядное устройство предназначено для зарядки свинцово-кислотных аккумуляторов. Имеются две регулировки: напряжения и тока. Когда срабатывает одна из этих регулировок, загорается соответствующий светодиод, что очень удобно. Схема и печатная плата взяты на форуме радиокота:

Устройство собрано на распространённой микросхеме UC3842/UC3843. Её применение в блоках питания мы уже описывали здесь. В данной схеме регулировка происходит по 1 выводу. Силовая часть — типовая, микросхема питается от отдельной обмотки на обратном ходе.

Схема зарядного устройства на UC3842

нажми для увеличения
Регулировка напряжения и тока выполнена по схеме от форумчанина FolksDoich. На TL431 собран источник опорного напряжения. На половинках ОУ LM358 выполнены регулировки напряжения и тока. Если в качестве VD6 и VD7 использовать светодиоды, то они будут индицировать своим свечением текущую регулировку, что может быть полезно. Например, если светится светодиод VD7, то происходит ограничение по току. То же самое с VD6, но по напряжению.

Данная схема рассчитана на зарядку аккумулятора током до 6 ампер, поэтому на выходе предлагается запараллелить четыре электролитических конденсатора, т.к. один при высоком токе проработает недолго. Разумеется, все они должны быть LOW ESR.

Как можно улучшить эту схему? Если по ней собирать не зарядное устройство, а блок питания, регулируемый в некоторых пределах, то можно произвести уже привычные улучшения, описанные в предыдущей статье. В частности, можно питать микросхему UC3842/UC3843 на прямом ходе, а для питания ОУ и PC817 использовать отдельную обмотку трансформатора. Всё это оправдано лишь в том случае, если требуется расширить диапазон регулировки напряжения.

Помимо светодиодов, схему можно дополнить амперметром и вольтметром, как стрелочными, так и цифровым прибором, показывающим значение напряжения и тока, а, возможно, ещё и подсчитывающим мощность нагрузки и управляющим вентилятором охлаждения.

При правильном выборе силового полевого транзистора, его нагрев должен быть незначительным. Следует упомянуть, что на схеме забыли нарисовать конденсатор на 2,2 нФ между горячей и холодной частями.

Плата зарядного

Печатная плата: charger_12v_6a.lay6

Существует и ещё одна разновидность данной схемы в таком виде:

Схема зарядного устройства на UC3843

нажми для увеличения
Печатные платы от FolksDoich для устройств разной мощности, вторая плата — до 10 ампер. Микросхема UC384x располагается на отдельной небольшой платке, устанавливаемой на основную вертикально.

Источник