Меню

Симисторная схема зарядного устройства

Симисторная схема зарядного устройства

Зарядное устройство автомобильных аккумуляторов с симисторным управлением

Автор: Владимир Гидлевский
Опубликовано 19.01.2012
Создано при помощи КотоРед.

Давно хотелось изготовить автоматическое ЗУ, т.к. автомобиль находится далеко от дома и невозможен постоянный контроль за зарядом. После многократного повторения подобных устройств пришлось отказаться от традиционного транзисторного управления током заряда, т.к. трудно добиться достаточной надежности ЗУ. В результате родилось данное устройство. Недостатки ступенчатого регулирования окупились отсутствием вентиляторов и громоздких радиаторов.

Максимальный ток заряда определяется мощностью трансформатора и собственно тиристорами + диодный мост. Алгоритм заряда можно при желании изменять самостоятельно (исходник имеется). После включения ЗУ и нажатия на кнопку «Разр» начинается разряд (ток определяется мощностью лампы фары). По достижении напряжения ниже 10,2в ЗУ переходит в режим заряда. Алгоритм заряда: 10 сек заряд максимальным током (15А), 20 сек разряд током 0,6А при включенном т.S3 MAX, 30 сек заряд номинальным током(6А), 20 сек разряд током 0,6А и так далее. По достижении АКБ напряжения 13,8в ЗУ переходит в режим дозаряда, что исключает интенсивное кипение и нагрев аккумулятора. Основной ток заряда уменьшается до 1,5-0,5А время максимального тока уменьшается до 2 сек, а ток разряда – до 0,1А. Когда АКБ зарядится до напряжения 14,8в ЗУ перейдет в режим хранения, если тумблер установить в положение «Дес/Ручн» то ЗУ не переходит в режим хранения и требуется отключение вручную. Если т. «Дес/Ручн» включить до включения устройства, то ЗУ перейдет в ручной режим и регулировка тока осуществляется ступенчато переключателем обмоток трансформатора. После установки т. «Дес/Ручн» в нижнее положение ЗУ переходит в автоматический режим. Если при включении ЗУ кнопку «Разр» удерживать нажатой, то устройство перейдет в режим тренировки АКБ (желтый светодиод)(3 разаразряд-заряд) и затем переход на хранение. В режиме хранения при снижении напряжения на АКБ ниже 12,6В включается ЗУ и дозарядится АКБ и т.д. циклично. Об окончании заряда свидетельствует загорание синего светодиода.

Все силовые элементы установлены на одном радиаторе и не нагреваются выше 50 градусов. Данное устройство не является «доктором», однако при постоянном использовании продлевает срок службы АКБ. При эксплуатации данного устройства наблюдалось восстановление емкости засульфатированной батареи (время разряда 5,5часов вместо 3,5часов до тренировки).

При налаживании устройства МК не устанавливается. Перемычками подаем 5в поочередно навыхода и проверяем работоспособность. Резисторами R17, R18 устанавливаем токи разряда 0.6Аи 0,1А соответственно. Особое внимание необходимо уделить настройке компаратораR25-на схеме в левом верхнем углу пересчет. При напряжении на АКБ 13.8в напряжение на делителе д.б. 1.97в. Некоторые трудности могут возникнуть из-за разброса параметров элементов делителя, поэтому нужно экспериментировать. При правильной настройке компаратора АКБ отключается вовремя и дозаряда не требует, при этом плотность электролита максимальна.

Реле типа TIANBO 15A, резистор R25 типа СП5. Трансформатор 250вт. Вторичная обмотка на ток до 15А, отводы начиная с 13в через каждые 0.7-1в, у меня получилось от каждого витка. На печатной плате реле К1 отсутствует (защита от пропадания сети) т.к. в оригинале реле питается от сети.Данное устройство повторялось неоднократно и работает не один год. Ранее ЗУ исполнялось на транзисторах, что ограничивало максимальный ток заряда.

Источник



Схемы простых мощных зарядных устройств для аккумуляторов.

Трансформаторные ЗУ для автомобильных аккумуляторов с высоким КПД: простейшие на гасящих конденсаторах, а также импульсные на тиристорах, симисторах и мощных полевых транзисторах.

Для начала давайте разомнёмся и забудем про такой параметр, как КПД. Предположим, что есть острое желание зарядить автомобильный АКБ, но нет возможности ввиду полного отсутствия зарядки. Также сделаем предположение, что в хозяйстве затерялись: лампа накаливания на 220 вольт, диодный мост с допустимым током, превышающим ток, при котором мы будем заряжать аккумулятор, либо, на худой конец, просто силовой (выпрямительный) диод с таким же допустимым током и максимальным обратным напряжением — не менее 300В.

Рис.1

Спаяв схему, приведённую на Рис.1 слева, и озадачившись соблюдением техники безопасности, а также полярности подключения ЗУ к АКБ, получаем вполне себе работоспособное устройство, обеспечивающее нормированный и постоянный ток заряда подопечного аккумулятора.
Поскольку 220 вольт — это действующее значение переменного напряжения сети, то силу тока, протекающую через АКБ можно рассчитать по простой формуле:
Iзар(А) = Pламп(Вт) / (220 — Uакб)(В) ≈ Pламп(Вт) / 220(В) .
Параллельное соединение двух ламп — удваивает зарядный ток, трёх — утраивает и т. д. до разумной бесконечности.
Схема, изображённая на Рис.1 справа, выдаёт ток, вдвое меньший по сравнению с предыдущей.
Большим преимуществом приведённых схем является возможность зарядки любых аккумуляторов, независимо от собственных значений их напряжений.

Ещё одна простая и бюджетная схема зарядного устройства для аккумулятора с рабочим напряжением 12 или 6 В и электрической ёмкостью от 10 до 120 А/ч представлена на Рис.2.

Зарядное устройство на гасящих конденсаторах

Рис.2

Устройство состоит из понижающего трансформатора Т1 и мощного выпрямителя, собранного на диодах VD2-VD5. Установка зарядного тока производится переключателями S2-S5, при помощи которых в цепь питания первичной обмотки трансформатора подключаются гасящие конденсаторы C1-C4.
Благодаря кратному «весу» каждого переключателя, различные комбинации позволяют ступенчато регулировать ток зарядки в пределах 1–15 А с шагом 1 А. Этого достаточно для выбора оптимального тока зарядки.

В конструкции можно использовать любой силовой трансформатор мощностью около 300 Вт, в том числе и самодельный. Он должен выдавать на вторичной обмотке напряжение 22–24 В при токе до 10–15 А. На месте VD2-VD5 подойдут любые выпрямительные диоды, выдерживающие прямой ток не менее 10 А и обратное напряжение не ниже 40 В. Подойдут Д214 или Д242. Их следует установить через изолирующие прокладки на радиатор с площадью рассеяния не менее 300 кв. см.

Конденсаторы С2-С5 обязательно должны быть неполярные бумажные с рабочим напряжением не ниже 300 В. Подойдут, к примеру, МБЧГ, КБГ-МН, МБГО, МБГП, МБМ, МБГЧ. Подобные конденсаторы, имеющие форму кубиков, широко использовались как фазосдвигающие для электромоторов бытовой техники. В качестве PU1 использован вольтметр постоянного тока типа М5−2 с пределом измерения 30 В. PA1 — амперметр того же типа с пределом измерения 30 А.

В данной схеме высокий показатель КПД достигнут за счёт применения в качестве токозадающих элементов конденсаторов, которые, как известно, имеют реактивную проводимость и не выделяют на себе тепловой мощности.
Далее будут приведены импульсные (ключевые) зарядные устройства, построенные по другому принципу, но также отличающиеся низким собственным энергопотреблением.

Одними из первых импульсных ЗУ, появившихся на рынке, были тиристорные устройства.
Вообще, тиристор — это прибор достаточно капризный и требующий для надёжной работы соблюдения определённого набора условий. Именно поэтому — большинство простейших схем, приведённых в различных источниках, грешат не очень стабильной работой и необходимостью подбора элементов.

Зарядное устройство на тиристоре

Из числа удачных простых разработок можно привести схему тиристорного зарядного устройства из книги уважаемого Т. Ходасевича «Зарядные устройства», многократно повторённую многочисленной радиолюбительской братвой и изображённую на Рис.3.

Рис.3

Вот что пишет автор:

Зарядное устройство позволяет заряжать авто аккумуляторные батареи током от 0 до 10 А, а также может служить регулируемым источником питания для мощного низковольтного паяльника, вулканизатора, переносной лампы.
Зарядный ток по форме близок к импульсному, который, как считается, содействует продлению срока службы батареи.
Устройство работоспособно при температуре окружающей среды от — 35 °С до + 35°С.

Читайте также:  Орион pw 260 зарядное устройство как заряжать

Зарядное устройство представляет собой тиристорный регулятор мощности с фазоимпульсным управлением, питаемый от обмотки II понижающего трансформатора Т1 через диодный мост VDI. VD4.
Узел управления тиристором выполнен на аналоге однопереходного транзистора VTI, VT2. Время, в течение которого конденсатор С2 заряжается до переключения однопереходного транзистора, можно регулировать переменным резистором R1. При крайнем правом по схеме положении его движка зарядный ток будет максимальным, и наоборот.
Диод VD5 защищает управляющую цепь тиристора VS1 от обратного напряжения, возникающего при включении тиристора.

Конденсатор С2 — К73-11, ёмкостью от 0,47 до 1 мкФ, или К73-16, К73-17, К42У-2, МБГП.
Транзистор КТ361А заменим на КТ361Б — КТ361Ё, КТ3107Л, КТ502В, КТ502Г, КТ501Ж — KT50IK, а КТ315Л — на КТ315Б + КТ315Д КТ312Б, КТ3102Л, КТ503В + КТ503Г, П307. Вместо КД105Б подойдут диоды КД105В, КД105Г или Д226 с любым буквенным индексом.
Переменный резистор R1 — СП-1, СПЗ-30а или СПО-1.
Амперметр РА1 — любой постоянного тока со шкалой на 10 А. Его можно сделать самостоятельно из любого миллиамперметра, подобрав шунт по образцовому амперметру.
Предохранитель F1 — плавкий, но удобно применять и сетевой автомат на 10 А либо автомобильный биметаллический на такой же ток. Диоды VD1. VP4 могут быть любыми на прямой ток 10 А и обратное напряжение не менее 50 В (серии Д242, Д243, Д245, КД203, КД210, КД213).
Диоды выпрямителя и тиристор устанавливают на теплоотводы, каждый полезной площадью возле 100 см*. Для улучшения теплового контакта устройств с теплоотводами желательно использовать теплопроводные пасты.
Вместо тиристора КУ202В подойдут КУ202Г — КУ202Е. Проверено на практике, что устройство нормально работает и с более мощными тиристорами Т-160, Т-250.
В приборе может быть использован готовый сетевой понижающий трансформатор необходимой мощности с напряжением вторичной обмотки от 18 до 22 В.
Если у трансформатора напряжение на вторичной обмотке более 18 В, резистор R5 следует заменить другим, большего сопротивления (к примеру, при 24. 26 В сопротивление резистора следует увеличить до 200 Ом).

Несмотря на популярность и работоспособность приведённый схемы, при функционировании устройства многие отмечают нехарактерное гудение трансформатора на частотах, отличных от 100 Гц. Связано это с отсутствием чётких и быстрых фронтов/спадов у сигналов, поступающих на управляющий вход тиристора при его включении/выключении, что в свою очередь создаёт условия для возникновения процессов генерации в нагрузке.

Несколько лучше и надёжнее работают импульсные зарядные устройства, в которых коммутирующий элемент выполнен на симметричном (двухполярном) аналоге тиристора — симисторе.
На Рис.4 приведена схема подобного устройства из вышеупомянутой книги Т. Ходасевича.

Зарядное устройство на симисторе

Рис.4

Описываемое ниже простое зарядное устройство имеет широкие пределы регулирования зарядного тока — практически от 0 до 10А и может быть использовано для зарядки различных аккумуляторов на напряжение 12В.
В основу устройства положен симисторный регулятор с маломощным диодным мостом VD1-VD4 и резисторами R3 и R5. После подключения устройства к сети при плюсовом её полупериоде начинает заряжаться конденсатор С2 через резистор R3, диод VD1 и последовательно соединённые резисторы R1 и R2. При минусовом полупериоде — через те же R1 и R2, диод VD2 и резистор R5. В обоих случаях конденсатор заряжается до одного и того же напряжения, меняется лишь полярность его зарядки. Как только напряжение на конденсаторе достигнет порога зажигания неоновой лампы HL1, она зажигается и конденсатор быстро разряжается через лампу и управляющий электрод симистора VS1.При этом симистор открывается. В конце полупериода симистор закрывается. описанный процесс повторяется в каждом полупериоде сети.
Общеизвестно, что управление симистором посредством короткого импульса имеет тот недостаток, что при индуктивной или высокоомной активной нагрузке анодный ток прибора может не успеть достигнуть значения тока удержания за время действия управляющего импульса.
Одной из мер по устранению этого недостатка является включение параллельно нагрузке резистора. В описываемом зарядном устройстве такими резисторами являются резисторы R3 и R5, которые в зависимости от полярности полупериода сетевого напряжения поочерёдно подключаются параллельно первичной обмотке трансформатора.
Этой же цели служит и мощный резистор R6, являющийся нагрузкой выпрямителя VD5, VD6. Этот же резистор формирует импульсы разрядного тока, которые продлевают срок службы АКБ.

Вместо резистора R6 можно установить лампу накаливания на напряжение 12В мощностью 10Вт.
При изготовлении трансформатора задаются следующими параметрами: напряжением на вторичной обмотке 20В при токе 10А.

Несколько упростить описанное выше устройство можно применив в его высоковольтной части динистор (Рис.5).

Рис.5

Данную схему с диаграммами мы подробно рассмотрели на странице ссылка на страницу. Поэтому повторяться не буду, скажу лишь, что наличие снабберной цепи, показанной на схеме синим цветом — обязательно. В качестве нагрузки выступает первичная обмотка сетевого трансформатора.

В современных зарядных устройствах в качестве переключающего (регулирующего) элемента практически повсеместно используются мощные полевые транзисторы. Одно из подобных устройств было подробно описано в журнале Радио №5 2011г на странице 44.

Зарядное устройство на полевом транзисторе

Блок управления зарядным устройством представляет собой импульсный генератор, собранный на элементах DD1.1 и DD1.2 (см. схему на рис. 6) и позволяющий регулировать скважность импульсов, буферный усилитель — инвертор на элементах DD1.3 и DD1.4 и переключающий регулирующий элемент — полевой транзистор VT1.
При указанных на схеме номиналах элементов частота генератора — около 13 кГц. Так как сопротивление открытого канала транзистора VT1 очень мало (0,017 0м) и работает он в переключательном режиме, при токе зарядки до 5 А транзистор практически не нагревается — рассеиваемая тепловая мощность не превышает 0,55 Вт.
В качестве понижающего использован сетевой трансформатор габаритной мощностью 150 Вт с вторичной обмоткой, обеспечивающей постоянное напряжение 16. 17 В на конденсаторе С1 и зарядный ток до 6 А.
Выпрямительный мост собран на диодах Шоттки, VD1 — сдвоенный SBL4045PT, a VD2 и VD3 — одиночные 10TQ045.
Если вторичную обмотку сетевого трансформатора намотать с отводом от середины, число диодов в выпрямителе и тепловыделение от них можно уменьшить вдвое.
Чертёж платы представлен на Рис.7.

Зарядное устройство на полевом транзисторе

Описанный узел управления также можно использовать в осветительных и нагревательных приборах, для изменения частоты вращения коллекторных электродвигателей. При этом питающее напряжение устройств можно варьировать в широких пределах, определяемых максимально допустимыми параметрами для переключательного транзистора и, конечно же, выпрямителя. В частности, используемый в узле транзистор IRFZ46N имеет максимальную рассеиваемую мощность 107 Вт, максимальный ток через канал 53 А, максимальное напряжение сток—исток 55 В. Возможна его замена транзистором IRFZ44N.
Предлагаемое устройство позволяет регулировать мощность от нуля до максимального значения, а регулирующий транзистор не нуждается в эффективном отведении тепла при увеличении тока нагрузки до 5 А.

В результате длительной или неправильной эксплуатации автомобильных аккумуляторов пластины их могут сульфатироваться, что приводит к их деградации и последующему выходу из строя. Известен способ восстановления таких батарей методом заряда их «ассиметричным» током. При этом соотношение зарядного и разрядного тока выбирается 10:1 (оптимальный режим). Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных.

Читайте также:  Принципиальная электрическая схема пуско зарядного устройства дубна

Зарядное устройство и восстановление аккумулятора

На Рис.8 приведено простое зарядное устройство, рассчитанное на использование вышеописанного способа. Схема обеспечивает импульсный зарядный ток до 10 А (используется для ускоренного заряда). Для восстановления и тренировки аккумуляторов лучше устанавливать импульсный зарядный ток 5 А. При этом ток разряда будет 0,5 А. Разрядный ток определяется величиной номинала резистора R4.
Схема выполнена так, что заряд аккумулятора производится импульсами тока в течение одной половины периода сетевого напряжения, когда напряжение на выходе схемы превысит напряжение на аккумуляторе. В течение второго полупериода диоды VD1, VD2 закрыты и аккумулятор разряжается через нагрузочное сопротивление R4.
Значение зарядного тока устанавливается регулятором R2 по амперметру. Учитывая, что при зарядке батареи часть тока протекает и через резистор R4 (10%), то показания амперметра РА1 должны соответствовать 1,8 А (для импульсного зарядного тока 5 А), так как амперметр показывает усредненное значение тока за период времени, а заряд производится в течение половины периода.
В схеме предусмотрена защита аккумулятора от неконтролируемого разряда в случае случайного исчезновения сетевого напряжения. В этом случае реле К1 своими контактами разомкнет цепь подключения аккумулятора. Реле К1 применено типа РПУ-0 с рабочим напряжением обмотки 24 В или на меньшее напряжение, но при этом последовательно с обмоткой включается ограничительный резистор.

Для устройства можно использовать трансформатор мощностью не менее 150 Вт с напряжением во вторичной обмотке 22. 25 В.
Измерительный прибор РА1 подойдет со шкалой 0. 5 А (0. 3 А), например М42100. Транзистор VT1 устанавливаются на радиатор площадью не менее 200 кв. см, в качестве которого удобно использовать металлический корпус конструкции зарядного устройства.

Источник

—>Радиоклон —>

Схема 100% рабочая.

И так, принесли мне на ремонт самодельное ЗУ с диагнозом — не заряжает. Работать оно перестало после падения с высоты. В принципе ничего серьёзного, припаял все оторвавшиеся провода и заменил симистор (он работал, но у него был треснувший корпус).

Вот его схема срисованная мной:

В этом ЗУ мне показалось интересными две вещи:

— первая — это то, что вместо обычно используемого тиристора, здесь был установлен симистор (симметричный тиристор).

— вторая — это введение ещё одного транзистора для уменьшения нагрузки на регулируемом резисторе.

Теперь по очереди.

Обычно практически у всех зарядных устройствах собранных по схемах подобных этой схеме, в качестве регулирующего элемента используется тиристор. В этом ЗУ был установлен симистор. Сначала я подумал, что кто-то уже пытался ремонтировать данное устройство и впихнул туда то, что было под рукой. Я сначала установил тиристор BT152-600R. После того, как зарядил этим ЗУ один АКБ, стало всё же интересно, почему там был установлен симистор. После прочтения нескольких форумов и материалов по тиристорам, симисторам и их управлению ( например этот ), решил поставить в это ЗУ вместо тиристора симистор BTB24-600 (такой и был установлен до меня). Оказывается, в этой схеме можно использовать и тиристор и симистор. Если использовать симистор, то он будет работать в режиме тиристора то есть, пропускать ток только в одном направлении.

В первом варианте этой схемы , были некие нюансы с сильным нагревом резистора в цепи переменного резистора. В этом варианте схемы, используется дополнительный транзистор, который снимает нагрузку с «проблемного» резистора.

Ремонтируя данное ЗУ я решил добавить от себя подсветку шкалы амперметра. Для подсветки использовал два SMD светодиода спаянных последовательно и запитанных через резистор 1,5 кОм аналогично светодиоду LED1.

Амперметр изначально был приклеен к корпусу ЗУ, но я его немного «утопил» внутрь зарядки. Это было сделано с помощью двух стоек для плат. Так как защитного стекла на амперметре не было то данная манипуляция позволила немного лучше его защитить. А также, это позволило без затруднений установить подсветку амперметра.

Ну и несколько фото. Может кто узнает своё творение.

Через некоторое время ко мне попало зарядное устройство того же автора: та же схема, корпус сделан аналогично этому, аналогичные амперметры и самодельные шунты, одинаковый способ сборки, клемы для подлючения проводов, печатные платы. У меня появилась огромная просьба к автору этого зарядного устройства (если конечно он прочитает эту статью) — НЕ КРЕПИТЕ ПЕЧАТНУЮ ПЛАТУ К КОРПУСУ ЗАКЛЁПКАМИ. Больше времени тратится на то чтобы снять плату, чем на сам ремонт.

Источник

Симисторная схема зарядного устройства

Зарядное устройство автомобильных аккумуляторов с симисторным управлением

Автор: Владимир Гидлевский
Опубликовано 19.01.2012
Создано при помощи КотоРед.

Давно хотелось изготовить автоматическое ЗУ, т.к. автомобиль находится далеко от дома и невозможен постоянный контроль за зарядом. После многократного повторения подобных устройств пришлось отказаться от традиционного транзисторного управления током заряда, т.к. трудно добиться достаточной надежности ЗУ. В результате родилось данное устройство. Недостатки ступенчатого регулирования окупились отсутствием вентиляторов и громоздких радиаторов.

Максимальный ток заряда определяется мощностью трансформатора и собственно тиристорами + диодный мост. Алгоритм заряда можно при желании изменять самостоятельно (исходник имеется). После включения ЗУ и нажатия на кнопку «Разр» начинается разряд (ток определяется мощностью лампы фары). По достижении напряжения ниже 10,2в ЗУ переходит в режим заряда. Алгоритм заряда: 10 сек заряд максимальным током (15А), 20 сек разряд током 0,6А при включенном т.S3 MAX, 30 сек заряд номинальным током(6А), 20 сек разряд током 0,6А и так далее. По достижении АКБ напряжения 13,8в ЗУ переходит в режим дозаряда, что исключает интенсивное кипение и нагрев аккумулятора. Основной ток заряда уменьшается до 1,5-0,5А время максимального тока уменьшается до 2 сек, а ток разряда – до 0,1А. Когда АКБ зарядится до напряжения 14,8в ЗУ перейдет в режим хранения, если тумблер установить в положение «Дес/Ручн» то ЗУ не переходит в режим хранения и требуется отключение вручную. Если т. «Дес/Ручн» включить до включения устройства, то ЗУ перейдет в ручной режим и регулировка тока осуществляется ступенчато переключателем обмоток трансформатора. После установки т. «Дес/Ручн» в нижнее положение ЗУ переходит в автоматический режим. Если при включении ЗУ кнопку «Разр» удерживать нажатой, то устройство перейдет в режим тренировки АКБ (желтый светодиод)(3 разаразряд-заряд) и затем переход на хранение. В режиме хранения при снижении напряжения на АКБ ниже 12,6В включается ЗУ и дозарядится АКБ и т.д. циклично. Об окончании заряда свидетельствует загорание синего светодиода.

Все силовые элементы установлены на одном радиаторе и не нагреваются выше 50 градусов. Данное устройство не является «доктором», однако при постоянном использовании продлевает срок службы АКБ. При эксплуатации данного устройства наблюдалось восстановление емкости засульфатированной батареи (время разряда 5,5часов вместо 3,5часов до тренировки).

При налаживании устройства МК не устанавливается. Перемычками подаем 5в поочередно навыхода и проверяем работоспособность. Резисторами R17, R18 устанавливаем токи разряда 0.6Аи 0,1А соответственно. Особое внимание необходимо уделить настройке компаратораR25-на схеме в левом верхнем углу пересчет. При напряжении на АКБ 13.8в напряжение на делителе д.б. 1.97в. Некоторые трудности могут возникнуть из-за разброса параметров элементов делителя, поэтому нужно экспериментировать. При правильной настройке компаратора АКБ отключается вовремя и дозаряда не требует, при этом плотность электролита максимальна.

Читайте также:  Сколько времени заряжать автомобильный аккумулятор 60ач зарядным устройством

Реле типа TIANBO 15A, резистор R25 типа СП5. Трансформатор 250вт. Вторичная обмотка на ток до 15А, отводы начиная с 13в через каждые 0.7-1в, у меня получилось от каждого витка. На печатной плате реле К1 отсутствует (защита от пропадания сети) т.к. в оригинале реле питается от сети.Данное устройство повторялось неоднократно и работает не один год. Ранее ЗУ исполнялось на транзисторах, что ограничивало максимальный ток заряда.

Источник

Особенности и управление зарядным устройством с регулировкой по первичной обмотке трансформатора

В обычных условиях автомобильный аккумулятор заряжается при движении автомобиля. Но если машина долго стоит в гараже, то аккумуляторная батарея разряжается.

Для ее зарядки нужна зарядка для аккумуляторов с регулировкой зарядного тока. Один из вариантов этих приборов — зарядное устройство с регулировкой по первичной обмотке трансформатора.

Управление трансформатором по первичной обмотке

Скорость заряда аккумулятора зависит от тока, протекающего через него, но слишком быстрый заряд приводит к перегреву аппарата и выходу его из строя. Поэтому для зарядки аккумуляторных батарей используются устройства с регулировкой выходных параметров.

Особенности регуляторов для первички трансформаторов

Ток зарядки батареи составляет 10% ее емкости. Это значит, что аккумулятор с емкостью 60Ач заряжается током не более 6А. Напряжение заряда при работе автомобиля 14,5В. Учитывая необходимый запас, зарядное устройства должно быть способно выдать 10А при напряжении 16В.

Запас напряжения необходим для регулировки и ограничения зарядного тока.

В разных моделях аппаратов она производится разными способами:

  • Добавочными сопротивлениями. Включаются после диодного моста. Самая простая конструкция, но имеющая самые большие размеры.
  • Транзисторами. Высокая точность регулировки, но самая сложная схема, требующая хорошего охлаждения силовых транзисторов.
  • Тиристорное управление. Простые схемы. Регулировка осуществляется тиристорным ключем в цепи первичной обмотки или тиристорами, установленными вместо диодов в выпрямительный мост.

Схема и назначение тиристорного регулятора напряжения для трансформатора

Ток, протекающий при зарядке через аккумуляторную батарею, определяется внутренним сопротивлением аккумулятора, его ЭДС и напряжением на выходе зарядного устройства. Для его изменения, кроме других способов, можно регулировать напряжение на первичной обмотке. Самый удобный способ — использование тиристорного регулятора.

Модели для зарядки аккумуляторов

Зарядные устройства делятся на три группы:

  • Пусковые. Предназначены для запуска двигателя при разряженном аккумуляторе. Использовать для зарядки батареи не рекомендуется — недостаточное напряжение и отсутствие регулировок.
  • Зарядные. Предназначены для заряда аккумуляторов. Имеют ручную или автоматическую регулировку.
  • Пуско-зарядные. Могут выполнять обе функции.

Принцип действия тиристорного регулятора

Тиристор имеет два состояния — открытый, в котором он пропускает электрический ток и закрытый. Открывается этот элемент при протекании тока через управляющий электрод и остается открытым, пока через тиристор идет ток.
Переменное напряжение в сети имеет синусоидальную форму. Тиристор, включенный в цепи нагрузки, открывается в определенный момент полуволны. Это называется «угол открытия». В результате этого через электроприбор ток протекает не все время, а только после перехода элемента в открытое состояние. Это меняет действующее значение напряжения на нагрузке.

Важно! Вольтметр измеряет действующее значение. Для надежной работы допустимое напряжение тиристоров должно соответствовать максимальному напряжению, которое больше в 1,4 раз. Для бытовой сети это 308В.

Разновидности и технические характеристики тиристорного регулятора

Из-за того, что тиристор пропускает через себя напряжение только одной полярности, его нелзя использовать для управления трансформатором без дополнительных элементов:

    Включить тиристор в диодный мост из 4 диодов на вывода «+» и «-«. Вывода «

» подключаются в разрыв цепи вместо выключателя или последовательно с ним. Диодный мост выпрямляет напряжение и на тиристор подается питание только одной полярности.

  • Использовать два тиристора, включенные встречно-параллельно и для управления через переменный резистор соединяются управляющие вывода. Каждый из элементов открывается при своей полярности, а оба вместе управляют напряжением на нагрузке.
  • Открытие тиристора происходит при прохождении тока больше определенной величины и есть два способа управления углом открывания:

    • Переменным сопротивлением, включенным между анодом и управляющим электродом. В течении первой половины полуволны напряжение и ток управления растут и при достижении его определенной величины, зависящей от марки элемента. Недостаток этой схемы в ограниченном диапазоне регулировки 110-220В, но этого достаточно для управления трансформатором зарядного устройства.
    • Управление импульсами, которые подает отдельная схема на управляющий электрод в определенный момент полуволны синусоиды.
      Допустимый ток и напряжение тиристорного регулятора зависят в первую очередь от установленных тиристоров. Самые распространенные — тиристоры серии КУ 202, но в некоторых случаях допускается применение других элементов:
    • КУ 202Н — 400В, 30А. Крепятся на резьбе М6. При регулировке первичной обмотки, ток которой менее 1А, используются без радиаторов.
    • КУ 201л — 300В, 30А, крепление- резьба М6. Допускается использовать в первичной обмотке.
    • КУ 201а — 25В, 30А, крепление — резьба М6. Можно использовать только с радиаторами при регулировке после трансформатора.
    • КУ 101г — 80В, 1А. Похож на транзистор. В силовых цепях зарядных устройствах не используются, только в схемах управления.
    • КУ 104а — 6В, 3А. Так же в силовых цепях не применяются.

    Что представляет собой симистор

    У тиристора есть недостаток, усложняющий его применение в сети переменного тока — он пропускает через себя только одну полуволну и на выходе вместо переменного напряжения получается постоянное пульсирующее. Поэтому эти приборы используются парами или вместе с диодным мостом. От этого недостатка свободен симистор.

    Симистор внешне похож на тиристор. Также, как и тиристор, он открывается импульсом тока, протекающего через управляющий электрод, но этот прибор пропускает через себя обе полуволны и способен работать в сети переменного тока.

    Принципиальная схема симисторного регулятора тока для активной и индуктивной нагрузки
    Устройство симисторного регулятора аналогично тиристорному. Отличие в том, что симистор управляет обоими полярностями и поэтому нет необходимости использовать диодный мост или встречно-параллельное включение элементов.

    Кроме того, для симистора не имеет значение полярность управляющего напряжения, что позволяет упростить схему импульсного управления.

    Совет! Для регулировки симистором можно использовать диммер от лампы накаливания. Для этого он включается между анодом и управляющим электродом силового симистора.

    Другие простые варианты регулировки напряжения в первичке

    Кроме тиристорных и симисторных регуляторов есть другие способы управления зарядным током в первичной обмотке трансформатора:

    • Переключением выводов первичной обмотки. Недостаток в том, что эти вывода необходимо делать при намотке катушек.
    • Подключением зарядного аппарата после ЛАТРА (лабораторного автотрансформатора). Его мощность должна быть не менее 160Вт.
    • Переменным сопротивлением, подключаемым последовательно с трансформатором. Его параметры приблизительно 50-100Ом, мощностью 50Вт и зависят от конкретного зарядного.

    Несмотря на появление современных зарядных устройств, аппараты с обычными трансформаторами есть у многих владельцев автомобилей, и регулировка аппарата по первичной обмотке позволяет обойтись без мощных тиристоров или добавочных сопротивлений.

    Источник