Меню

Сглаживание напряжение блока питания



Сглаживающие фильтры и стабилизаторы напряжения

Сглаживающие фильтры и стабилизаторы напряженияСглаживающие фильтры предназначены для уменьшения пульсаций выпрямленного напряжения. Сглаживание пульсаций оценивают коэффициентом сглаживания q.

Основными элементами сглаживающих фильтров являются конденсаторы, катушки индуктивности и транзисторы, сопротивление которых различно для постоянного и переменного токов.

В зависимости от типа фильтрующего элемента различают емкостные, индуктивные и электронные фильтры. По количеству фильтрующих звеньев фильтры делятся на однозвенные и многозвенные.

Емкостной фильтр представляет собой конденсатор большой емкости, который включается параллельно нагрузочному резистору Rн. Конденсатор обладает большим сопротивление постоянному току и малым сопротивлением переменному току. Рассмотрим работу фильтра на примере схемы однополупериодного выпрямителя (рис. 1, а).

Однофазный однополупериодный выпрямитель с емкостным фильтром

Рисунок 1 — Однофазный однополупериодный выпрямитель с емкостным фильтром: а) схема б) временные диаграммы работы

При протекании положительной полуволны во временном промежутке t0 – t1 (рис. 2.63, б) протекает ток нагрузки (ток диода) и ток заряда конденсатора. Конденсатор заряжается и в момент времени t1 напряжение на конденсаторе превышает спадающее напряжение вторичной обмотки – диод закрывается и во временной промежуток t1 – t2 ток в нагрузке обеспечивается разрядом конденсатора. Т.о. ток в нагрузке протекает постоянно, что значительно уменьшает пульсации выпрямленного напряжения.

Чем больше емкость конденсатора Сф, тем меньше пульсаций. Это определяется време-нем разряда конденсатора — постоянной времени разряда τ = СфRн. При τ > 10 коэффициент сглаживания определяется по формуле q = 2π fс m Сф Rн, где fс – частота сети, m – число полупериодов выпрямленного напряжения.

Емкостный фильтр целесообразно применять с высокоомным нагрузочным резистором RH при небольших мощностях нагрузки.

Индуктивный фильтр (дроссель) включается последовательно с Rн (рис. 3, а). Индуктивность обладает малым сопротивлением постоянному току и большим переменному. Сглаживание пульсаций основывается на явлении самоиндукции, которая изначально препятствует нарастанию тока, а затем поддерживает его при уменьшении (рис. 2, б).

Однофазный однополупериодный выпрямитель с индуктивным фильтром

Рисунок 2 — Однофазный однополупериодный выпрямитель с индуктивным фильтром: а) схема, б) временные диаграммы работы

Индуктивные фильтры применяют в выпрямителях средней и большой мощностей, т. е. в выпрямителях, работающих с большими токами нагрузки.

Коэффициент сглаживания определяется по формуле: q = 2π fс m Lф /Rн

Работа емкостного и индуктивного фильтра основана на том, что во время протекания тока, потребляемого из сети, конденсатор и катушка индуктивности запасают энергию, а когда тока от сети нет, либо он уменьшается, элементы отдают накопленную энергию, поддерживая ток (напряжение) в нагрузке.

Многозвенные фильтры используют сглаживающие свойства и конденсаторов и катушек индуктивности. В маломощных выпрямителях, у которых сопротивление нагрузочного резистора составляет несколько кОм, вместо дросселя Lф включают резистор Rф, что существенно уменьшает массу и габариты фильтра.

На рисунке 3 представлены типы многозвенных LC- и RC- фильтров.

Многозвенные фильтр

Рисунок 3 – Многозвенные фильтры: а) Г — образный LC, б) П- образный LC, в) RC — фильтр

Стабилизаторы предназначены для стабилизации постоянного напряжения (тока) на нагрузке при колебаниях сетевого напряжения и изменении потребляемого нагрузкой тока.

Стабилизаторы подразделяются на стабилизаторы напряжения и тока, а также на параметрические и компенсационные. Стабильность выходного напряжения оценивают коэффициентом стабилизации Кст.

Параметрический стабилизатор основан на использовании элемента с нелинейной характеристикой — полупроводникового стабилитрона. Напряжение на стабилитроне почти постоянно при значительном изменении обратного тока через прибор.

Схема параметрического стабилизатора приведена на рисунке 4. Входное напряжение UBX распределяется между ограничивающим резистором Rогр и параллельно включенными стабилитроном VD и резистором нагрузки Rн.

Параметрический стабилизатор

Рисунок 4 – Параметрический стабилизатор

При увеличении входного напряжения ток через стабилитрон увеличится, значит, увеличится ток через ограничивающий резистор, и на нём будет происходить большее падение напряжения, а напряжение нагрузки останется неизменным.

Параметрический стабилизатор имеет Кст порядка 20 — 50. Недостатками такого типа стабилизаторов являются малые токи стабилизации и низкий КПД.

Параметрические стабилизаторы применяют в качестве вспомогательных опорных источников напряжения, а также когда ток нагрузки невелик — не более сотен миллиампер.

Компенсационный стабилизатор использует в качестве ограничивающего резистора переменное сопротивление транзистора. С ростом входного напряжения возрастает и сопротивление транзистора, соответственно с уменьшением напряжения уменьшается сопротивление. При этом напряжение на нагрузке остается неизменным.

Схема стабилизатора на транзисторах представлена на рисунке 5. Принцип регулирования выходного напряжения URн основан на изменении проводимости регулирующего транзистора VT1.

Схема компенсационного стабилизатора напряжения

Рисунок 5 – Схема компенсационного стабилизатора напряжения

На транзисторе VT2 собрана схема сравнения напряжений и усилитель постоянного тока. В цепь его базы включена измерительная цепь R3, R4, R5, в цепь эмиттера — источник опорного напряжения R1VD.

Например, при увеличении входного напряжения, выходное также возрастёт, что приведёт к росту напряжения на базе транзистора VT2, в тоже время потенциал эмиттера VT2 останется прежним. Это приведёт к увеличению тока базы, а значит и тока коллектора транзистора VT2 – потенциал базы транзистора VT1 уменьшится, транзистор подзакроется и на нём будет происходить большее падение напряжения, а выходное напряжение останется неизменным.

На сегодняшний день стабилизаторы выпускают в виде интегральных схем. Типовая схема включения интегрального стабилизатора изображена на рисунке 6.

Типовая схема включения интегрального стабилизатора напряжения

Рисунок 6 – Типовая схема включения интегрального стабилизатора напряжения

Обозначение выводов микросхемы стабилизатора: «IN» – вход, «OUT» – выход, «GND» -общий (корпус). Если стабилизатор регулируемый, то имеется вывод «ADJ» — регулировка.

Выбор стабилизатора производится исходя из значения выходного напряжения, максимального тока нагрузки и диапазона изменения входного напряжения.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Расчет сглаживающего фильтра БП за 5 минут

При построении качественного блока питания важно правильно рассчитать фильтр подавления пульсаций на выходе диодного выпрямителя.

Читайте также:  Push pull блок питания

Для самодельного простого лабораторного блока питания, можно особо не думать, и поставить на выходе выпрямителя электролитический конденсатор емкостью в 1000мкФ, выбрав лишь правильный номинал максимального напряжения , с запасом, по выходному напряжению вашего трансформатора.

Для большинства лабораторных БП 25 Вольт будет достаточно.

Простые схемы на микроконтроллерах, стандартной логике потребляют малый ток, и когда задача состоит в том чтобы помигать светодиодом, или запустить маломощный моторчик проблем не будет. В нашей схеме выше, при известных входных и выходных напряжениях не учитывается ток, потребляемый нагрузкой.

Ниже представлена относительно мощного промышленного блока питания для радиоаппаратуры:

Схема его почти ничем не отличается от показанной выше.

В сегодняшней статье я рассматриваю расчет сглаживающего фильтра в блоке питания, который можно будет использовать для питания сложных устройств таких как радиоприемники и радиостанции.

Допустим, мы имеем мощный трансформатор 220/24 В на номинальный ток 14 ампер и соответствующий этому , проходящему току диодный мост (сборку) , выбранный , с запасом. От такого блока питания можно запитать мощную нагрузку!

Правильность работы технически сложных устройств, потребителей энергии этого БП , будет сильно зависеть от качества фильтрации пульсаций переменного напряжения.

Рассчитать номинал сглаживающего конденсатора очень просто, определившись с требуемым коэффициентом пульсаций. Выберем его равным 8%.

Определим, что нагрузка будет потреблять максимальный ток 12 Ампер, тогда емкость конденсатора фильтра для двуполупериодного выпрямителя определим по формуле:

С1= Iн / (6.28* Uн*F*Кп) — , где

(номинальный ток нагрузки)

(номинальное выходное напряжение БП)

F (частота промышленной сети в герцах) 50Гц

Кп (коэффициент пульсаций )

Подставляем значения в формулу, и получаем:

С1=19000 мкФ , т.е. потребуется параллельно подключить 4 конденсатора емкостью 4700 мкФ х 50В.

На что повлияет малая емкость конденсатора фильтра на практике?

Напряжение «просело» потому, что примененный фильтр не рассчитывался под большой ток, хотя, трансформатор и диодный мост получить такую мощность позволяют.

При работе радиостанции в режиме приема, так как потребляемый в этом режиме ток очень мал, дефект проявляться не будет (см. первую осциллограмму).

Но в режиме передачи (см. вторую осциллограмму) , потребляемый ток радиостанцией резко возрастает, и следовательно подсаживается напряжение на выходе БП , что повлияет на максимальную выходную мощность передатчика.

В особо запущенных случаях, когда фильтр неисправен, радиостанция будет выключаться.

Источник

Сглаживающие фильтры

Сглаживающие RС-фильтры

Фильтры используются для сглаживания пульсаций выпрямленного напряжения. Простейшим фильтром является конденсатор большой емкости, подключаемый к выходу выпрямителя. Обычно в качестве такового используют оксидные (электролитические) конденсаторы емкостью от нескольких десятков до нескольких тысяч микрофарад.
Однако степень сглаживания пульсаций выпрямленного напряжения емкостным фильтром при больших токах нагрузки оказывается недостаточной.
Для повышения уровня сглаживания пульсаций выпрямленного напряжения к выходу выпрямителя подключают более сложные фильтры, в состав которых помимо конденсаторов входят резисторы, дроссели, электронные лампы или транзисторы. Чтобы определить, какой фильтр лучше, вводят специальный параметр — коэффициент сглаживания. Он рассчитывается как отношение коэффициента пульсаций на выходе фильтра (Крвых) к коэффициенту пульсаций на его входе (Крвх):
Кс = Крвых/Крвх
Наиболее простым является Г-образный реостатно-емкостный фильтр, состоящий из резистора R1 и конденсатора Сф1

filtr1.jpg

На рисунке показан также конденсатор С1, включенный на выходе выпрямителя. О назначении этого конденсатора сказано в предыдущем параграфе.
Резистор R1 и конденсатор Сф1 образуют делитель напряжения пульсаций, возникающих на выходе выпрямителя (конденсатора С1). Во сколько раз сопротивление конденсатора Сф1 меньше сопротивления резистора R1 току пульсаций, во столько же раз напряжение пульсаций на конденсаторе Сф1 будет меньше, чем напряжение пульсаций на конденсаторе С1.
Уменьшить напряжение пульсаций на нагрузке при заданной емкости конденсатора Сф1 можно путем увеличения сопротивления резистора R1. Но поскольку через R1 протекает постоянная составляющая выпрямленного тока, на резисторе теряется часть выпрямленного напряжения, и напряжение на нагрузке (на конденсаторе Сф1) оказывается меньше, чем напряжение на выходе выпрямителя (на конденсаторе С1).
Если коэффициент сглаживания однозвенного RС-фильтра недостаточен, т. е. амплитуда пульсаций в выпрямленном напряжении слишком велика, применяют двухзвенный RС -фильтр. В таком фильтре общий коэффициент сглаживания равен произведению коэффициентов сглаживания отдельных звеньев R1CФ1 и R2CФ2.

Сглаживающие LC-фильтры

Для увеличения КПД и уменьшения потерь выпрямленного напряжения на элементах фильтра широко применяются индуктивно-емкостные (LC) фильтры. На рисунке изображен однозвенный Г-образный LC-фильтр, состоящий из дросселя Др1 и конденсатора Сф1.

filtr2.jpg

Этот фильтр отличается от однозвенного RС -фильтра тем, что резистор R1 заменен дросселем Др1. Дроссель обладает большим сопротивлением переменному току и малым сопротивлением постоянному току. В результате напряжение пульсаций, имеющихся на выходе выпрямителя, перераспределяется на делителе Др1Сф1 таким образом, что основная его часть падает на дросселе и несущественная — на конденсаторе Сф1. В то же время из-за малого сопротивления дросселя постоянному току напряжение на выходе фильтра будет мало отличаться от напряжения на выходе выпрямителя, т. е. КПД LC-фильтра оказывается выше, чем КПД RС -фильтра.
Для увеличения коэффициента сглаживания можно последовательно с одним звеном LC-фильтра включить точно такое же второе звено.
Уменьшить напряжение пульсаций на выходе однозвенного LC-фильтра можно также, если параллельно дросселю Др1 включить бумажный конденсатор С2, который вместе с индуктивностью дросселя Др1 образует параллельный колебательный контур. Сопротивление контура на резонансной частоте значительно выше сопротивления дросселя. Поэтому, если емкость конденсатора С2 выбрать такой, чтобы резонансная частота контура С2Др1 равнялась частоте пульсаций (50 Гц при однополупериодном выпрямлении или 100 Гц при двухполупериодном выпрямлении), большая часть напряжения пульсаций выделится в этом контуре и незначительная пойдет в нагрузку.

Читайте также:  Блок питания для светодиодной led ленты 150w

Сглаживающие транзисторные фильтры

Для сглаживания пульсаций выпрямленного напряжения в несколько единиц или десятков вольт широко применяются фильтры с транзисторами. Одна из схем такого фильтра показана на рисунке.

filtr3.jpg

Для пояснения принципа работы этой схемы напомним, что если напряжение базы транзистора (в данном случае на резисторе R2) увеличивается по отношению к напряжению эмиттера, то ток, протекающий через транзистор, уменьшается. Уменьшение тока равносильно увеличению сопротивления транзистора. Если на вход фильтра поступает постоянное напряжение, то напряжение между эмиттером и базой также будет постоянным, и, значит, постоянным будет напряжение на выходе фильтра. При наличии пульсаций в выпрямленном напряжении (на зажимах 1—1) на резисторе R1 создается также пульсирующее напряжение. При увеличении напряжения на входе фильтра повышается и напряжение на резисторе R1. Это приращение напряжения через конденсатор С2 подается на базу. Напряжение базы возрастает, что приводит к увеличению сопротивления транзистора. Возрастание сопротивления транзистора вызывает уменьшение изменения тока в цепи. И наоборот, при уменьшении напряжения на входе фильтра снижается и напряжение на резисторе R1. Это уменьшение напряжения передается на базу транзистора и снижает его сопротивление. Таким образом, данная схема как бы следит за всеми быстрыми изменениями напряжения на ее входе и регулирует сопротивление транзистора проходящему через него току так, что выходное напряжение фильтра изменяется значительно меньше, чем напряжение на его входе.
Недостатком данной схемы является то, что часть напряжения бесполезно тратится на резисторе R1, вследствие чего напряжение на выходе фильтра оказывается меньшим, чем на входе. Поэтому чаще применяют другую схему транзисторного фильтра. Сглаживание пульсаций в ней происходит за счет различий в сопротивлениях транзистора для постоянного и переменного (пульсирующего) токов: сопротивление транзистора переменному току в тысячу и даже десятки тысяч раз больше, чем постоянному току. Вследствие этого постоянная составляющая напряжения передается через такой фильтр почти без ослабления, в то время как переменная составляющая (пульсации) чуть ли не вся выделяется на транзисторе и на выход фильтра едва поступает.

Выбор конденсаторов сглаживающих фильтров

Как уже отмечалось, чем больше емкость конденсатора, тем он лучше сглаживает пульсации выпрямленного напряжения, поэтому в фильтрах применяют электролитические конденсаторы, обладающие при малых габаритах и весе большой емкостью. Емкость конденсатора фильтра может составлять десятки, сотни и даже тысячи микрофарад (мкФ). Чем больший ток потребляет нагрузка, тем большую емкость должны иметь конденсаторы фильтра. Для получения значительной емкости вместо одного конденсатора можно применять несколько параллельно включенных.
Другим важным параметром, по которому выбираются конденсаторы фильтра, является его рабочее напряжение, которое не должно быть меньше, чем выпрямленное напряжение. Если, например, выпрямленное напряжение составляет 30 В, а для его фильтрации используется электролитический конденсатор с рабочим напряжением 25 В, может произойти пробой конденсатора, в результате чего, его сопротивление упадет почти до нуля и последует короткое замыкание выходной цепи выпрямителя, которое вызовет резкое увеличение тока, протекающего через диоды и вторичную обмотку трансформатора.
При увеличении тока возможны выход из строя выпрямительных диодов или перегорание вторичной (или даже первичной) обмотки трансформатора.

Источник

ElectronicsBlog

Обучающие статьи по электронике

Выпрямители. Часть 2. Сглаживающие фильтры

Всем доброго времени суток. Сегодня продолжение темы про выпрямители и поговорим мы о сглаживающих фильтрах выпрямителей. Сглаживающие фильтры включаются между выпрямителем и нагрузкой для уменьшения переменных составляющих (пульсаций) выпрямленного напряжения. Эти фильтры выполняются из индуктивных элементов – дросселей и из ёмкостных элементов – конденсаторов. Простейший сглаживающий фильтр может состоять только из одного элемента, например дросселя или конденсатора. В малогабаритной аппаратуре сравнительно малой мощности индуктивные элементы фильтра могут быть заменены активными (резисторами).

Сглаживающие фильтры, прежде всего, характеризуются коэффициентом сглаживания q, представляющим собой отношение коэффициентов пульсаций на входе S и выходе S0H фильтра:

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Индуктивный сглаживающий фильтр

Применяется в маломощных выпрямителях, но может входить в состав сложных многозвенных фильтров. Параметры дросселя следует выбирать так, чтобы активное сопротивление обмотки rдр было много меньше сопротивления нагрузки (rдр > Rн). В этом случае почти вся постоянная составляющая напряжения будет приложена к нагрузке, а переменная составляющая – к дросселю.

L1_filtr

По заданному коэффициенту сглаживания q можно рассчитать необходимую индуктивность сглаживающего фильтра

Индуктивный фильтр прост, дешев, имеет малые потери мощности; коэффициент сглаживания фильтра растёт с увеличением индуктивности дросселя, числа фаз питающего напряжения и с уменьшением сопротивления нагрузки. Поэтому индуктивные фильтры обычно применяются совместно с многофазными мощными выпрямителями. При отключении нагрузки или скачкообразном изменении ее сопротивления возможно возникновение перенапряжений; в этом случае параллельно обмотке дросселя необходимо включать защитные устройства, например разрядники. В маломощных однофазных выпрямителях индуктивный фильтр может являться звеном более сложного фильтра.

Eмкостной сглаживающий фильтр

Емкостной сглаживающий фильтр состоит из конденсатора Сф, подключённого параллельно сопротивлению нагрузки Rн. Принцип действия заключается в накоплении электрической энергии конденсатором фильтра и последующей отдачи этой энергии в нагрузку. Заряд и разряд конденсатора фильтра происходит с частотой пульсаций fп выпрямленного напряжения.

C1_filtr

Для расчёта ёмкости конденсатора сглаживающего фильтра можно воспользоваться следующей формулой

, где

результируещее значение ёмкости выражено в микрофарадах,
SOH – коэффициент пульсаций в процентах, %;
RH – сопротивление нагрузки в омах, Ом;
fc – частота сети в герцах, Гц;
m – число используемых при выпрямлении полупериодов за период напряжения сети,m = 1 – для однополупериодных, m = 2 – для двухполупериодных.

Емкостной фильтр целесообразней всего применять совместно с однофазными и маломощными схемами выпрямления.

Сглаживающий LC фильтр

Сглаживание пульсаций выпрямленного напряжения будет более эффективным, если в совместить два предыдущих фильтра: индуктивный и емкостной фильтры. Данные типы сглаживающих фильтров называют LC фильтрами

Читайте также:  Блок питания powercool отзывы

LC_filtr

Простейший Г-образный индуктивно-емкостный фильтр рассчитывают такким образом, чтобы параметры элементов подходили под следующие условия

Коэффициент сглаживания Г-образного фильтра связан с произведением индуктивности и емкости следующим образом:

Сглаживающие RC фильтры

В схемах выпрямления малой мощности дроссель фильтра может быть заменён резистором RФ. Такие типы фильтров называют RC фильтрами

RC_filtr

Расчёт сглаживающего RC фильтра должен вестись с учётом следующих условий

Коэффициент сглаживания фильтра

Сопротивление резистора RФ обычно задаются в пределах RФ = (0,15…0,5)RH; КПД резистивно-емкостного фильтра сравнительно мал и обычно составляет 0,6…0,8, причем при ηф = 0,8 RФ = 0,25RH. Емкость Cф (в микрофарадах), обеспечивает требуемый коэффициент сглаживания q при частоте сети fC = 50 Гц, находят из выражения

Преимущества резистивно-емкостных фильтров: малые габариты, масса и стоимость; недостаток – низкий КПД.

Многозвенные сглаживающие фильтры

Если с помощью индуктивно-емкостного фильтра необходимо обеспечить коэффициент сглаживания пульсаций более 40…50, то вместо однозвенного фильтра целесообразнее использовать двухзвенный сглаживающий фильтр.

P_LC_filtr

Фильтры с тремя и более звеньями на практике применяются редко. В общем случае коэффициент сглаживания многозвенного фильтра равен произведению коэффициентов сглаживания отдельных звеньев: q = q’q’’q’’’ …

2P_LC_filtr

Сглаживающие индуктивно-емкостные фильтры достаточно просты и эффективны в выпрямительных устройствах средней и большой мощностей. Однако масса и габариты таких фильтров весьма значительны, коэффициент сглаживания снижается с ростом тока нагрузки, фильтры малоэффективны при появлении медленных изменений сетевого напряжения. Индуктивные элементы фильтра являются источниками магнитных полей рассеяния, а совместно с паразитными емкостными элементами создают колебательные контуры, способствующие появлению переходных процессов.

Транзисторный сглаживающий фильтр

Транзисторные фильтры по сравнению с индуктивно-емкостными сглаживающими фильтрами имеют меньшие габариты, массу и более высокий коэффициент сглаживания пульсаций.

Фильтры могут быть выполнены по схемам с последовательным или параллельным включением силового транзистора по отношению к сопротивлению нагрузки, а также с включением нагрузки RH в цепь коллектора или эмиттера транзистора. Недостатком фильтров с нагрузкой в цепи коллектора является большое изменение выходного напряжения при изменении сопротивления нагрузки. Поэтому чаще используют фильтры, в которых сопротивление нагрузки включено в цепь эмиттера силового транзистора.

Фильтр с последовательным транзистором

Транзисторный сглаживающий фильтр с последовательным включением транзистора и нагрузкой в цепи эмиттера эквивалентен П-образному LC фильтру. Принцип действия его основан на том, что коллекторный и эмиттерный токи транзистора в режиме усиления практически не зависит от напряжения коллектор-эмиттер. Если выбрать рабочую точку транзистора на горизонтальном участке выходной вольт-амперной характеристики, то его сопротивление для переменного тока будет значительно большим, чем для постоянного тока.

posled_A

Транзисторный фильтр

В схеме базовый ток транзистора VT задается резистором Rб. Конденсатор Сб достаточно большой емкости устраняет напряжение пульсаций на переходе эмиттер-база. Поэтому переменная составляющая напряжения пульсаций прикладывается к переходу база-коллектор и выделяется на транзисторе VT. В коллекторном и эмиттерном токе переменная составляющая практически отсутствует, поэтому пульсации в нагрузке RH также очень малы.

Коэффициент сглаживания транзисторного фильтра тем больше, чем больше коэффициент передачи тока транзистора VT и чем больше значение отношений

то есть чем меньше напряжение пульсаций на переходе эмиттер-база силового транзистора.

posled_B

Составной транзистор

Для более успешного выполнения этих соотношений конденсатор Сб может быть заменён одно- или двухзвенным RC сглаживающим фильтром, а для увеличения коэффициента передачи тока транзистор VT можно выполнить составным

posled_C

Транзисторный фильтр со стабилитроном

Еще эффективней работает транзисторный фильтр, у которого в цепь базы транзистора включен стабилитрон

Коэффициент полезного действия транзисторного фильтра будет тем больше, чем меньше падание постоянного напряжения на силовом транзисторе. Однако амплитуда переменной составляющей напряжения на транзисторе не должна превышать значение постоянного напряжения на нём, иначе фильтр потеряет свою работоспособность.

Фильтр с параллельным транзистором

posled_D

Фильтр с балластным резистором и параллельным включением транзистора

posled_E

Фильтр с балластным резистором и последовательным включением транзистора

Транзисторные фильтры с балластным резистором Rбл и параллельным включением транзистора относительно нагрузки, в отличие от схем с последовательным включением, применяется при сравнительно небольшом выпрямленном напряжении (десятки вольт). Режим работы транзистора VT – минимальное значение тока IK.min – устанавливается соответствующим выбором сопротивлений R1 и R2. Переменная составляющая напряжения в этой схеме прикладывается к переходу эмиттер-база транзистора VT, усиливается и выделяется на балластном резисторе Rбл. Эта составляющая оказывается в противофазе с переменной составляющей напряжения, выделяющейся на Rбл при непосредственном протекании тока нагрузки. Выбором Rбл и IK.min можно добиться их полной компенсации. Амплитуда переменной составляющей тока транзистора VT должна быть меньше протекающего постоянного тока IK.min, иначе схема будет неработоспособна. Ток IK.min, не должен быть очень малым, так как иначе потребуется увеличение сопротивления Rбл, что приведёт к снижению КПД фильтра. Слишком большой ток также нецелесообразен, так как увеличивается мощность потерь на транзисторе и снижается КПД.

Коэффициент сглаживания параллельного транзисторного фильтра будет тем больше, чем больше сопротивление Rбл, емкость конденсаторов С1 и С2, крутизна вольт-амперной характеристики транзистора. Недостатком транзисторного фильтра с параллельным включением транзистора является значительное изменение среднего значения коллекторного тока транзистора, при изменении среднего значения выпрямленного напряжения, поступающего на вход фильтра. Это приводит к снижению КПД фильтра.

Следует помнить, что транзисторные фильтры не обеспечивают стабилизацию постоянной составляющей выпрямленного напряжения, а при изменении тока нагрузки, температуры окружающей среды и воздействия других дестабилизирующих факторов вносят дополнительную нестабильность выпрямленного напряжения.

Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.

Источник