Меню

Сайт паяльник схемы зарядных устройств

Сайт паяльник схемы зарядных устройств

Зарядное устройство для аккумулятора – это необходимый девайс каждого автолюбителя. Но в силу высокой стоимости и частых поломок, позволить себе купить новое ЗУ может далеко не каждый. Но выход есть.

Если вы имеете определенные навыки и умеете держать в руках инструменты, в том числе и паяльник, то сделать зарядное устройство для автомобильного аккумулятора своими руками – не составит труда. Ниже более подробно изучим этот вопрос.

Немного полезной информации

Аккумулятором называется накопитель электрического заряда. Во время подачи на него электрического напряжения, происходит накопление энергии, что объясняется химическими изменениями внутри батареи. При подключении источника потребления можно наблюдать обратный процесс, который обусловлен обратным химическим изменением, создающим напряжение в области клеммов устройства. Через нагрузку происходит прохождение тока. То есть, чтобы получить напряжение от аккумуляторной батареи, следует сначала ее зарядить.

Сам процесс заряда батареи происходит по определенным правилам и зависит от вида аккумулятора. Из-за нарушения данных правил возможно уменьшение срока эксплуатации батареи, а также ее емкости.

Именно поэтому параметры для зарядного устройства к автомобильному аккумулятору должны подбираться строго индивидуально, для определенного носителя энергии.

Это возможно в случае со сложными зарядными устройствами, имеющими регулируемые параметры, а также приобретая отдельное ЗУ специально под определенную батарею. Но есть более универсальный и практичный вариант – сделать зарядное устройство своими руками.

Виды зарядных устройств для автомобильных аккумуляторов

В процессе заряда батареи происходит восстановление израсходованной в емкости энергии. С этой целью на клеммы аккумуляторной емкости происходит подача напряжения, которая слегка выше, нежели основные рабочие показатели аккумуляторной батареи. В зависимости от вида зарядного устройства, подаваться может:

  1. Постоянный ток. Средняя длительность такого заряда составляет около 10 часов и более, при этом на протяжении всего времени происходит подача фиксированного тока. Напряжение может изменяться в пределах от 13,8 до 14,4 В в самом начале зарядки, а в конце она может снизиться до отметки в 12,8 В. То есть это постепенный метод накопления емкости батареи, который в ходе эксплуатации держится дольше. Но среди минусов можно выделить необходимость в контроле над процессом, так как важно вовремя выключить ЗУ. В случае перезаряда возможно закипание электролита, что снизит функциональность батареи.
  2. Постоянное напряжение. При таком типе заряда устройство все время подает напряжение в 14,4 В, при этом происходит изменение значений от больших в начале зарядки, до меньших – в конце. Поэтому перезаряд невозможен, разве что в случае если вы оставите ЗУ на несколько дней. Достоинством является меньшее время для заряда (7-8 часов), и возможность оставить ЗУ без присмотра. Но при частом использовании данного метода возможно более быстрое выхождение батареи из строя, в процессе эксплуатации она будет быстрее разряжаться.

Поэтому, если нет необходимости в быстром заряде батареи, лучше отдать предпочтение первому варианту – с постоянным током. А в случае, когда нужно быстро восстановить работоспособность АБ подойдет постоянное напряжение, но не для многоразового пользования.

Если же задаетесь вопросом, какое лучше зарядное устройство сделать своими руками, то здесь однозначно стоит выбрать вариант с подачей постоянного тока. По схеме этот прибор достаточно прост, и состоит из доступных элементов.

Как узнать состояние батареи?

Необходимость в зарядке аккумулятора автомобиля зависит от уровня заряда. И метод проверки, именуемый в народе как «крутит/не крутит» является не самым удачным методом. Если же батарея «не крутит», например, перед выездом, то вы вообще не сможете завести машину, состояние «не крутит»– критическое и может предполагать крайне негативные последствия для самого аккумулятора.

Самым эффективным и безопасным методом является измерение напряжение при помощи самого простого тестера. Так, при температуре воздуха приблизительно около 20 градусов, зависимость степени зарядки от напряжения на клеммах отключенного от нагрузки аккумулятора такова:

  • 12,6-12,7 – батарея полностью заряжена;
  • 12,3-12,4 – уровень заряда составляет около 75%;
  • 12,0-12,1 – приблизительно 50%;
  • 11,8-11,9 – 25%;
  • 11,6-11,7 – батарея находится в разряженном состоянии;
  • если же показатель находится ниже отметки в 11,6 В, то это означает глубокий разряд.

Все вышеперечисленные показатели измеряются в вольтах.

Показатель в 10,6 Вольт является критическим, и если уровень еще больше снизится, то аккумуляторная батарея, особенно которая давно обслуживалась, просто выйдет из строя.

Нужные параметры при зарядке постоянным током

Уже доказано, что производить заряд автомобильных свинцовых кислотных аккумуляторных батарей (в основном в автомобилях присутствуют именно такие) необходимо при помощи тока, не превышающего показателя в 10% от емкости всей батареи.

Так, в случае емкости АБ в 55 A/ч, максимальная подача тока заряда должна быть 5,5 А. По такому принципу высчитывается максимальный ток для любой батареи. Можно даже немного снизить подачу тока, но в таком случае процесс заряда будет идти немного медленнее. Накопление заряда будет происходить даже в случае, если ток заряда будет ближе к отметке 0,1 А. Но в таком случае для восстановления емкости необходимо будет очень много времени.

Минимальное время заряда АБ при уровне тока в 10% от заряда составляет 10 часов, но это в случае полного разряда батареи, которого допускать недопустимо. Поэтому на фактическое время до полного заряда влияет глубина разряда.

Чтобы произвести расчет примерного времени до полного заряда, следует выяснить разницу между максимальным зарядом (12,8 вольт) и вольтажом на данный момент. Если эту цифру умножить на 10, то можно получить приблизительно время в часах.

Схема зарядного устройства для автомобильного аккумулятора

Обычно с целью пополнения емкости электрического накопителя, необходима бытовая сеть в 220 вольт, преобразовывающаяся в пониженное напряжение с помощью преобразователя. Сделать ЗУ своими руками вполне возможно, скорее, это даже не вызовет никаких проблем. Для этого достаточно будет минимальных знаний в области электротехники и умение пользоваться паяльником, и другими инструментами.

Простые схемы

Самый простой и действенный метод заключается в использовании понижающего трансформатора. С его помощью снижается напряжение в 220 В до необходимых для заряда 13-15 вольт.

Найти трансформаторы такого типа можно в старых ламповых телевизорах или же в блоках питания для компьютера, которые продаются на блошиных рынках. Однако имеется нюанс – на выходе трансформатора переменное напряжение. Поэтому появляется необходимость в его выпрямлении.

Это можно сделать с помощью таких методов:

  • Одного выпрямляющего диода, установленного после трансформатора, при этом на выходе подобного зарядного устройства будет наблюдаться пульсирующий ток с сильными ударами, так как срезана только одна полуволна. Ниже представлена самая простая схема с одним диодом.
  • Второй метод – это использование диодного моста, благодаря которому отрицательная волна будет заворачиваться вверх. Зарядное устройство тоже будет обладать пульсирующим током, но биение уже будут менее выраженными. Чаще всего в домашних условиях реализовывают именно эту схему, хотя она является далеко не самым лучшим вариантом. Диодный мост можно собрать самостоятельно на любых выпрямляющих диодах. Или же можно не заморачиваться, и приобрести уже готовую сборку.
  • Третий вариант – это диодный мост со сглаживающим конденсатором (4000-5000 мкФ, 25 вольт). На выходе данной схемы мы получается постоянный ток, что очень даже подходит для изготовления зарядного устройства для автомобильного аккумулятора своими руками.

Все вышеперечисленные схемы имеют в своем составе также предохранители типа 1А и приборы для измерения. С их помощью возможно контролировать процесс заряда аккумуляторной батареи. Однако можно исключить их из данных схем, но в таком случае для периодических измерений и контроля над функциональностью прибора необходимо будет использовать мультиметр.

И если в случае с контролем напряжения подобный вариант возможен (просто нужно будет приставлять щупы к клеммам), то вот проконтролировать ток будет достаточно сложно. В таком случае для измерения необходимо будет включать прибор в разрыв цепи. Это означает, что каждый раз для проверки тока потребуется выключать питание, после проводить проверку мультиметром в режиме измерения тока, а потом опять включать питание. Придется разбирать измерительную цепь в обратном направлении. В связи с этим необходимо заранее подумать о применении амперметра хотя бы на 10 А.

Читайте также:  12 вольт зарядное устройство что дает

Среди недостатков данных схем можно выделить отсутствие возможности регулировки параметров заряда. Поэтому выбирая элементную базу, отдавайте предпочтение таким вариантам, чтобы на выходе сила тока соответствовала тем самым 10% или немного меньше от емкости батареи. Напряжение должно наблюдаться в пределах от 13,2 до 14,4 вольт.

Но что делать в случае, когда ток больше необходимой отметки? Для этого в схему ЗУ следует добавить резистор, который размещают на плюсовом выходе диодного моста непосредственно перед амперметром. По месту необходимо подобрать сопротивление, основной ориентир – ток. При этом мощность резистора должна быть немного больше, так как на него будет рассеиваться лишний заряд, приблизительно 10-20 ВТ.

Еще один нюанс – скорее всего зарядное устройство для автомобильного аккумулятора, сделанное своими руками по вышеперечисленным схемам будет сильно нагреваться. Чтобы избежать перегорания, можно в схему добавить куллер, который должен располагаться после диодного моста.

Схемы с регулировкой

Недостатком всех данных схем является отсутствие возможности производить регулировку подачи тока. И единственный вариант изменить это – менять сопротивления. Можно поставить переменный подстроечный резистор, что является наиболее простым и эффективным вариантом. Однако более надежно будет произвести ручную регулировку тока в схеме с использованием двух транзисторов и подстроечным резистором.

Ниже предоставлена схема зарядного устройства для автомобильного аккумулятора своими руками, в которой имеется возможность производить ручную регулировку тока заряда.

Источник



Практические схемы универсальных зарядных устройств для аккумуляторов

Предлагаемые ниже схемы ЗУ были разработаны для зарядки литий-ионных аккумуляторов, но существует возможность зарядки и других типов аккумуляторов и составных батарей (с применением однотипных элементов, далее — АБ).

Все представленные схемы имеют следующие основные параметры:
• входное напряжение 15-24 В;
• ток заряда (регулируемый) до 4 А;
• выходное напряжение (регулируемое) 0,7 — 18 В (при Uвх=19В).

Все схемы были ориентированы на работу с блоками питания от ноутбуков либо на работу с другими БП с выходными напряжениями постоянного тока от 15 до 24 Вольт и построены на широко распространенных компонентах, которые присутствуют на платах старых компьютерных БП, БП прочих устройств, ноутбуков и пр.

Схема ЗУ № 1 (TL494)

ЗУ на схеме 1 является мощным генератором импульсов, работающим в диапазоне от десятков до пары тысяч герц (частота варьировалась при исследованиях), с регулируемой шириной импульсов.
Зарядка АБ производится импульсами тока, ограниченного обратной связью, образованной датчиком тока R10, включенным между общим проводом схемы и истоком ключа на полевом транзисторе VT2 (IRF3205), фильтром R9C2, выводом 1, являющимся «прямым» входом одного из усилителей ошибки микросхемы TL494.

На инверсный вход (вывод 2) этого же усилителя ошибки подается регулируемое посредством переменного резистора PR1, напряжение сравнения с встроенного в микросхему источника опорного напряжения (ИОН — вывод 14), меняющего разность потенциалов между входами усилителя ошибки.
Как только величина напряжения на R10 превысит значение напряжения (установленного переменным резистором PR1) на выводе 2 микросхемы TL494, зарядный импульс тока будет прерван и возобновлен вновь лишь при следующем такте импульсной последовательности, вырабатываемой генератором микросхемы.
Регулируя таким образом ширину импульсов на затворе транзистора VT2, управляем током зарядки АБ.

Транзистор VT1, включенный параллельно затвору мощного ключа, обеспечивает необходимую скорость разрядки затворной емкости последнего, предотвращая «плавное» запирание VT2. При этом амплитуда выходного напряжения при отсутствии АБ (или прочей нагрузки) практически равна входному напряжению питания.

При активной нагрузке выходное напряжение будет определяться током через нагрузку (её сопротивлением), что позволит использовать эту схему в качестве драйвера тока.

При заряде АБ напряжение на выходе ключа (а, значит, и на самой АБ) в течении времени будет стремиться в росте к величине, определяемой входным напряжением (теоретически) и этого, конечно, допустить нельзя, зная, что величина напряжения заряжаемого литиевого аккумулятора должна быть ограничена на уровне 4,1 В (4,2 В). Поэтому в ЗУ применена схема порогового устройства, представляющего из себя триггер Шмитта (здесь и далее — ТШ) на ОУ КР140УД608 (IC1) или на любом другом ОУ.

При достижении необходимого значения напряжения на АБ, при котором потенциалы на прямом и инверсном входах (выводы 3, 2 — соответственно) IC1 сравняются, на выходе ОУ появится высокий логический уровень (практически равный входному напряжению), заставив зажечься светодиод индикации окончания зарядки HL2 и светодиод оптрона VH1 который откроет собственный транзистор, блокирующий подачу импульсов на выход U1. Ключ на VT2 закроется, заряд АБ прекратится.

По окончании заряда АБ он начнет разряжаться через встроенный в VT2 обратный диод, который окажется прямовключенным по отношению к АБ и ток разряда составит приблизительно 15-25 мА с учетом разряда кроме того через элементы схемы ТШ. Если это обстоятельство кому-то покажется критичным, в разрыв между стоком и отрицательным выводом АБ следует поставить мощный диод (лучше с малым прямым падением напряжения).

Гистерезис ТШ в этом варианте ЗУ выбран таким, что заряд вновь начнется при понижении величины напряжения на АБ до 3,9 В.

Это ЗУ можно использовать и для заряда последовательно соединенных литиевых (и не только) АБ. Достаточно откалибровать с помощью переменного резистора PR3 необходимый порог срабатывания.
Так, например, ЗУ, собранный по схеме 1, функционирует с трехсекционной последовательной АБ от ноутбука, состоящей из сдвоенных элементов, которая была смонтирована взамен никель-кадмиевой АБ шуруповерта.
БП от ноутбука (19В/4,7А) подключен к ЗУ, собранному в штатном корпусе ЗУ шуруповерта взамен оригинальной схемы. Зарядный ток «новой» АБ составляет 2 А. При этом транзистор VT2, работая без радиатора нагревается до температуры 40-42 С в максимуме.
ЗУ отключается, естественно, при достижении напряжения на АБ=12,3В.

Гистерезис ТШ при изменении порога срабатывания остается прежним в ПРОЦЕНТНОМ отношении. Т.е., если при напряжении отключения 4,1 В, повторное включение ЗУ происходило при снижении напряжения 3,9 В, то в данном случае повторное включение ЗУ происходит при снижении напряжения на АБ до 11,7 В. Но при необходимости глубину гистерезиса можно изменить.

Калибровка порога и гистерезиса зарядного устройства

Калибровка происходит при использовании внешнего регулятора напряжения (лабораторного БП).
Выставляется верхний порог срабатывания ТШ.
1. Отсоединяем верхний вывод PR3 от схемы ЗУ.
2. Подключаем «минус» лабораторного БП (далее везде ЛБП) к минусовой клемме для АБ (самой АБ в схеме во время настройки быть не должно), «плюс» ЛБП — к плюсовой клемме для АБ.
3. Включаем ЗУ и ЛБП и выставляем необходимое напряжение (12,3 В, например).
4. Если горит индикация окончания заряда, вращаем движок PR3 вниз (по схеме) до гашения индикации (HL2).
5. Медленно вращаем движок PR3 вверх (по схеме) до зажигания индикации.
6. Медленно снижаем уровень напряжения на выходе ЛБП и отслеживаем значение, при котором индикация вновь погаснет.
7. Проверяем уровень срабатывания верхнего порога еще раз. Хорошо. Можно настроить гистерезис, если не устроил уровень напряжения, включающий ЗУ.
8. Если гистерезис слишком глубок (включение ЗУ происходит при слишком низком уровне напряжения — ниже, например, уровня разряда АБ, выкручиваем движок PR4 влево (по схеме) или наоборот, — при недостаточной глубине гистерезиса, — вправо (по схеме). При изменении глубины гистерезиса уровень порога может сместиться на пару десятых долей вольта.
9. Сделайте контрольный прогон, поднимая и опуская уровень напряжения на выходе ЛБП.

Читайте также:  Составные части зарядного устройства для телефона

Настройка токового режима еще проще.
1. Отключаем пороговое устройство любыми доступными (но безопасными) способами: например, «посадив» движок PR3 на общий провод устройства или «закорачивая» светодиод оптрона.
2. Вместо АБ подключаем к выходу ЗУ нагрузку в виде 12-вольтовой лампочки (например, я использовал для настройки пару 12V ламп на 20 Вт).
3. Амперметр включаем в разрыв любого из проводов питания на входе ЗУ.
4. Устанавливаем на минимум движок PR1 (максимально влево по схеме).
5. Включаем ЗУ. Плавно вращаем ручку регулировки PR1 в сторону роста тока до получения необходимого значения.
Можете попробовать поменять сопротивление нагрузки в сторону меньших значений ее сопротивления, присоединив параллельно, скажем, ещё одну такую же лампу или даже «закоротить» выход ЗУ. Ток при этом не должен измениться значительно.

В процессе испытаний устройства выяснилось, что частоты в диапазоне 100-700 Гц оказались оптимальными для этой схемы при условии использования IRF3205, IRF3710 (минимальный нагрев). Так как TL494 используется неполно в этой схеме, свободный усилитель ошибки микросхемы можно использовать, например, для работы с датчиком температуры.

Следует иметь в виду и то, что при неправильной компоновке даже правильно собранное импульсное устройство будет работать некорректно. Поэтому не следует пренебрегать опытом сборки силовых импульсных устройств, описанном в литературе неоднократно, а именно: все одноименные «силовые» соединения следует располагать на кратчайшем расстоянии относительно друг друга (в идеале — в одной точке). Так, например, точки соединения такие, как коллектор VT1, выводы резисторов R6, R10 (точки соединения с общим проводом схемы), вывод 7 U1 — следует объединить практически в одной точке либо посредством прямого короткого и широкого проводника (шины). То же касается и стока VT2, вывод которого следует «повесить» непосредственно на клемму «-» АБ. Выводы IC1 также должны находиться в непосредственной «электрической» близости к клеммам АБ.

Схема ЗУ № 2 (TL494)

Схема 2 не сильно отличается от схемы 1, но если предыдущая версия ЗУ была придумана для работы с АБ шуруповерта, то ЗУ на схеме 2 задумывалось, как универсальное, малогабаритное (без лишних элементов настройки), рассчитанное для работы как с составными, последовательно включенными элементами числом до 3-х, так и с одиночными.

Как видно, для быстрой смены токового режима и работы с разным количеством последовательно соединенных элементов, введены фиксированные настройки с подстроечными резисторами PR1-PR3 (установка тока), PR5-PR7 (установка порога окончания зарядки для разного количества элементов) и переключателей SA1 (выбор тока зарядки) и SA2 (выбор количества заряжаемых элементов АБ).
Переключатели имеют по два направления, где вторые их секции переключают светодиоды индикации выбора режима.

Ещё одно отличие от предыдущего устройства — использование второго усилителя ошибки TL494 в качестве порогового элемента (включенного по схеме ТШ), определяющего окончание зарядки АБ.

Ну, и, конечно, в качестве ключа использован транзистор р-проводимости, что упростило полное использование TL494 без применения дополнительных компонентов.

Методика настройки порогов окончания зарядки и токовых режимов такая же, как и для настройки предыдущей версии ЗУ. Разумеется, для разного количества элементов, порог срабатывания будет меняться кратно.

При испытании этой схемы был замечен более сильный нагрев ключа на транзисторе VT2 (при макетировании использую транзисторы без радиатора). По этой причине следует использовать другой транзистор (которого у меня просто не оказалось) соответствующей проводимости, но с лучшими токовыми параметрами и меньшим сопротивлением открытого канала, либо удвоить количество указанных в схеме транзисторов, включив их параллельно с раздельными затворными резисторами.

Использование указанных транзисторов (в «одиночном» варианте) не критично в большинстве случаев, но в данном случае размещение компонентов устройства планируется в малогабаритном корпусе с использованием радиаторов малого размера или вовсе без радиаторов.

Схема ЗУ № 3 (TL494)

В ЗУ на схеме 3 добавлено автоматическое отключение АБ от ЗУ с переключением на нагрузку. Это удобно для проверки и исследования неизвестных АБ. Гистерезис ТШ для работы с разрядом АБ следует увеличить до нижнего порога (на включение ЗУ), равного полному разряду АБ (2,8-3,0 В).

Источник

Мощное, автоматическое, зарядное устройство для авто

Сегодня расскажу, как из подручного хлама собрать мощное, зарядное устройство для автомобиля. Основные требования к нему были следующие, сверхвысокая надежность, чтобы без проблем работало при минусовых температурах,

не боялась коротких замыканий, переполюсовки питания и самое важное — оно должно быть автоматическим, и отключаться при полной зарядке аккумулятора. Я думаю и так понятно, что там должна быть еще и крутилка, которая регулирует ток заряда.

Из дополнительных критерий, при необходимости должно помогать аккумулятору во время пуска двигателя, то есть почти что пуско-зарядное, одним словом нужна зарядка со всеми удобствами, чтобы никогда не ломалась, короче зарядка для мужика в гараж.

Я сразу определился, что зарядку буду делать на основе старого, доброго железного трансформатора, который гораздо надежнее всех этих ваших импульсных штуковин.

Дабы не нарушать традиции, схемы управления будет не менее надежной, на тиристорах.

В этой статье мы соберем схему, изучим её работу и проверим в деле, а вот в следующей подумаем о корпусе, монтаже в целом, определимся с выбором трансформатора, одним словом получим законченный прибор.

Когда-то, такие зарядные устройства выпускались серийно, сейчас их позабыли и причина не в том, что они плохие, просто это не совсем выгодно с экономической точки зрения, весь мир давно перешел на импульсную технику.

Для сравнения вот железный сетевой трансформатор где-то на 200 ватт,

Источник

Как сделать зарядное устройство для аккумулятора автомобиля своими руками

Зарядное устройство для аккумулятора – это необходимый девайс каждого автолюбителя. Но в силу высокой стоимости и частых поломок, позволить себе купить новое ЗУ может далеко не каждый. Но выход есть.

Если вы имеете определенные навыки и умеете держать в руках инструменты, в том числе и паяльник, то сделать зарядное устройство для автомобильного аккумулятора своими руками – не составит труда. Ниже более подробно изучим этот вопрос.

Немного полезной информации

Аккумулятором называется накопитель электрического заряда. Во время подачи на него электрического напряжения, происходит накопление энергии, что объясняется химическими изменениями внутри батареи. При подключении источника потребления можно наблюдать обратный процесс, который обусловлен обратным химическим изменением, создающим напряжение в области клеммов устройства. Через нагрузку происходит прохождение тока. То есть, чтобы получить напряжение от аккумуляторной батареи, следует сначала ее зарядить.

Сам процесс заряда батареи происходит по определенным правилам и зависит от вида аккумулятора. Из-за нарушения данных правил возможно уменьшение срока эксплуатации батареи, а также ее емкости.

Именно поэтому параметры для зарядного устройства к автомобильному аккумулятору должны подбираться строго индивидуально, для определенного носителя энергии.

Это возможно в случае со сложными зарядными устройствами, имеющими регулируемые параметры, а также приобретая отдельное ЗУ специально под определенную батарею. Но есть более универсальный и практичный вариант – сделать зарядное устройство своими руками.

Виды зарядных устройств для автомобильных аккумуляторов

В процессе заряда батареи происходит восстановление израсходованной в емкости энергии. С этой целью на клеммы аккумуляторной емкости происходит подача напряжения, которая слегка выше, нежели основные рабочие показатели аккумуляторной батареи. В зависимости от вида зарядного устройства, подаваться может:

  1. Постоянный ток. Средняя длительность такого заряда составляет около 10 часов и более, при этом на протяжении всего времени происходит подача фиксированного тока. Напряжение может изменяться в пределах от 13,8 до 14,4 В в самом начале зарядки, а в конце она может снизиться до отметки в 12,8 В. То есть это постепенный метод накопления емкости батареи, который в ходе эксплуатации держится дольше. Но среди минусов можно выделить необходимость в контроле над процессом, так как важно вовремя выключить ЗУ. В случае перезаряда возможно закипание электролита, что снизит функциональность батареи.
  2. Постоянное напряжение. При таком типе заряда устройство все время подает напряжение в 14,4 В, при этом происходит изменение значений от больших в начале зарядки, до меньших – в конце. Поэтому перезаряд невозможен, разве что в случае если вы оставите ЗУ на несколько дней. Достоинством является меньшее время для заряда (7-8 часов), и возможность оставить ЗУ без присмотра. Но при частом использовании данного метода возможно более быстрое выхождение батареи из строя, в процессе эксплуатации она будет быстрее разряжаться.
Читайте также:  Сетевое зарядное устройство для телефона для быстрой зарядки

Поэтому, если нет необходимости в быстром заряде батареи, лучше отдать предпочтение первому варианту – с постоянным током. А в случае, когда нужно быстро восстановить работоспособность АБ подойдет постоянное напряжение, но не для многоразового пользования.

Если же задаетесь вопросом, какое лучше зарядное устройство сделать своими руками, то здесь однозначно стоит выбрать вариант с подачей постоянного тока. По схеме этот прибор достаточно прост, и состоит из доступных элементов.

Как узнать состояние батареи?

Необходимость в зарядке аккумулятора автомобиля зависит от уровня заряда. И метод проверки, именуемый в народе как «крутит/не крутит» является не самым удачным методом. Если же батарея «не крутит», например, перед выездом, то вы вообще не сможете завести машину, состояние «не крутит»– критическое и может предполагать крайне негативные последствия для самого аккумулятора.

Самым эффективным и безопасным методом является измерение напряжение при помощи самого простого тестера. Так, при температуре воздуха приблизительно около 20 градусов, зависимость степени зарядки от напряжения на клеммах отключенного от нагрузки аккумулятора такова:

  • 12,6-12,7 – батарея полностью заряжена;
  • 12,3-12,4 – уровень заряда составляет около 75%;
  • 12,0-12,1 – приблизительно 50%;
  • 11,8-11,9 – 25%;
  • 11,6-11,7 – батарея находится в разряженном состоянии;
  • если же показатель находится ниже отметки в 11,6 В, то это означает глубокий разряд.

Все вышеперечисленные показатели измеряются в вольтах.

Показатель в 10,6 Вольт является критическим, и если уровень еще больше снизится, то аккумуляторная батарея, особенно которая давно обслуживалась, просто выйдет из строя.

Нужные параметры при зарядке постоянным током

Уже доказано, что производить заряд автомобильных свинцовых кислотных аккумуляторных батарей (в основном в автомобилях присутствуют именно такие) необходимо при помощи тока, не превышающего показателя в 10% от емкости всей батареи.

Так, в случае емкости АБ в 55 A/ч, максимальная подача тока заряда должна быть 5,5 А. По такому принципу высчитывается максимальный ток для любой батареи. Можно даже немного снизить подачу тока, но в таком случае процесс заряда будет идти немного медленнее. Накопление заряда будет происходить даже в случае, если ток заряда будет ближе к отметке 0,1 А. Но в таком случае для восстановления емкости необходимо будет очень много времени.

Минимальное время заряда АБ при уровне тока в 10% от заряда составляет 10 часов, но это в случае полного разряда батареи, которого допускать недопустимо. Поэтому на фактическое время до полного заряда влияет глубина разряда.

Чтобы произвести расчет примерного времени до полного заряда, следует выяснить разницу между максимальным зарядом (12,8 вольт) и вольтажом на данный момент. Если эту цифру умножить на 10, то можно получить приблизительно время в часах.

Схема зарядного устройства для автомобильного аккумулятора

Обычно с целью пополнения емкости электрического накопителя, необходима бытовая сеть в 220 вольт, преобразовывающаяся в пониженное напряжение с помощью преобразователя. Сделать ЗУ своими руками вполне возможно, скорее, это даже не вызовет никаких проблем. Для этого достаточно будет минимальных знаний в области электротехники и умение пользоваться паяльником, и другими инструментами.

Простые схемы

Самый простой и действенный метод заключается в использовании понижающего трансформатора. С его помощью снижается напряжение в 220 В до необходимых для заряда 13-15 вольт.

Найти трансформаторы такого типа можно в старых ламповых телевизорах или же в блоках питания для компьютера, которые продаются на блошиных рынках. Однако имеется нюанс – на выходе трансформатора переменное напряжение. Поэтому появляется необходимость в его выпрямлении.

Это можно сделать с помощью таких методов:

  • Одного выпрямляющего диода, установленного после трансформатора, при этом на выходе подобного зарядного устройства будет наблюдаться пульсирующий ток с сильными ударами, так как срезана только одна полуволна. Ниже представлена самая простая схема с одним диодом.
  • Второй метод – это использование диодного моста, благодаря которому отрицательная волна будет заворачиваться вверх. Зарядное устройство тоже будет обладать пульсирующим током, но биение уже будут менее выраженными. Чаще всего в домашних условиях реализовывают именно эту схему, хотя она является далеко не самым лучшим вариантом. Диодный мост можно собрать самостоятельно на любых выпрямляющих диодах. Или же можно не заморачиваться, и приобрести уже готовую сборку.
  • Третий вариант – это диодный мост со сглаживающим конденсатором (4000-5000 мкФ, 25 вольт). На выходе данной схемы мы получается постоянный ток, что очень даже подходит для изготовления зарядного устройства для автомобильного аккумулятора своими руками.

Все вышеперечисленные схемы имеют в своем составе также предохранители типа 1А и приборы для измерения. С их помощью возможно контролировать процесс заряда аккумуляторной батареи. Однако можно исключить их из данных схем, но в таком случае для периодических измерений и контроля над функциональностью прибора необходимо будет использовать мультиметр.

И если в случае с контролем напряжения подобный вариант возможен (просто нужно будет приставлять щупы к клеммам), то вот проконтролировать ток будет достаточно сложно. В таком случае для измерения необходимо будет включать прибор в разрыв цепи. Это означает, что каждый раз для проверки тока потребуется выключать питание, после проводить проверку мультиметром в режиме измерения тока, а потом опять включать питание. Придется разбирать измерительную цепь в обратном направлении. В связи с этим необходимо заранее подумать о применении амперметра хотя бы на 10 А.

Среди недостатков данных схем можно выделить отсутствие возможности регулировки параметров заряда. Поэтому выбирая элементную базу, отдавайте предпочтение таким вариантам, чтобы на выходе сила тока соответствовала тем самым 10% или немного меньше от емкости батареи. Напряжение должно наблюдаться в пределах от 13,2 до 14,4 вольт.

Но что делать в случае, когда ток больше необходимой отметки? Для этого в схему ЗУ следует добавить резистор, который размещают на плюсовом выходе диодного моста непосредственно перед амперметром. По месту необходимо подобрать сопротивление, основной ориентир – ток. При этом мощность резистора должна быть немного больше, так как на него будет рассеиваться лишний заряд, приблизительно 10-20 ВТ.

Еще один нюанс – скорее всего зарядное устройство для автомобильного аккумулятора, сделанное своими руками по вышеперечисленным схемам будет сильно нагреваться. Чтобы избежать перегорания, можно в схему добавить куллер, который должен располагаться после диодного моста.

Схемы с регулировкой

Недостатком всех данных схем является отсутствие возможности производить регулировку подачи тока. И единственный вариант изменить это – менять сопротивления. Можно поставить переменный подстроечный резистор, что является наиболее простым и эффективным вариантом. Однако более надежно будет произвести ручную регулировку тока в схеме с использованием двух транзисторов и подстроечным резистором.

Ниже предоставлена схема зарядного устройства для автомобильного аккумулятора своими руками, в которой имеется возможность производить ручную регулировку тока заряда.

Источник