Меню

Регулятор силы тока на зарядное устройство

Регулятор силы тока на зарядное устройство

  • Усилители мощности
  • Светодиоды
  • Блоки питания
  • Начинающим
  • Радиопередатчики
  • Разное
  • Ремонт
  • Шокеры
  • Компьютер
  • Микроконтроллеры
  • Разработки
  • Обзоры и тесты
  • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
    • Усилители мощности
    • Светодиоды
    • Блоки питания
    • Начинающим
    • Радиопередатчики
    • Разное
    • Ремонт
    • Шокеры
    • Компьютер
    • Микроконтроллеры
    • Разработки
    • Обзоры и тесты
    • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
  • Три схемы простых регуляторов тока

    В сети очень много схем регуляторов напряжения для самых разных целей, а вот с регуляторами тока дела обстоят иначе. И я хочу немного восполнить этот пробел, и представить вам три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так, как они универсальны и могут быть использованы во многих самодельных конструкциях.

    Регуляторы тока по идее не многим отличается от регуляторов напряжения. Прошу не путать регуляторы тока со стабилизаторами тока, в отличии от первых они поддерживают стабильный выходной ток не зависимо от напряжения на входе и выходной нагрузки.

    Стабилизатор тока — неотемлимая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого на нагрузку. В этой статье мы рассмотрим пару стабилизаторов и один регулятор общего применения.

    Во всех трех вариантах в качестве датчика тока использованы шунты, по сути низкоомные резисторы. Для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта. Нужное значение тока выставляют вручную, как правило вращением переменного резистора. Все три схемы работают в линейном режиме, а значит силовой транзистор при больших нагрузках будет сильно нагреваться.

    Стабилизаторы тока, шунты

    Первая схема отличается максимальной простотой и доступностью компонентов. Всего два транзистора, один из них управляющий, второй является силовым, по которому и протекает основной ток.

    Простой стабилизатор тока на транзисторах, схема

    Датчик тока представляет из себя низкоомный проволочный резистор. При подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение. Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт транзистор. Резистор R1, задает напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии. Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1 грубо говоря затухаеться или замыкается на массу питания через открытый переход маломощного транзистора, этим силовой транзистор будет закрываться, следовательно, ток протекающий по нему уменьшается вплоть до полного нуля.

    Простой стабилизатор тока на транзисторахПростой стабилизатор тока на транзисторах

    Резистор R1 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытия управляющего транзистора, а следовательно, управлять и силовым транзистором ограничивая ток протекающий по нему.

    Вторая схема построена на базе операционного усилителя. Ее неоднократно использовал в зарядных устройствах для автомобильного аккумулятора. В отличии от первого варианта — эта схема является стабилизатором тока.

    Простой стабилизатор тока на lm358, схема

    Как и в первой схеме тут также имеется датчик тока (шунт), операционный усилитель фиксирует падение напряжения на этом шунте, все по уже знакомой нам схеме. Операционный усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение. Операционный усилитель в свою очередь постарается сбалансировать напряжение на входах путем изменения выходного напряжения.

    Выход операционного усилителя управляет мощным полевым транзистором. То есть принцип работы мало чем отличается от первой схемы, за исключением того, что тут имеется источник опорного напряжения выполненный на стабилитроне.

    Простой стабилизатор тока на lm358Простой стабилизатор тока на lm358

    Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться.

    Последняя схема построена на базе популярной интегральной микросхеме стабилизатора LM317. Это линейный стабилизатор напряжения, но имеется возможность использовать микросхему в качестве стабилизатора тока.

    Стабилизатор тока на LM317

    Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

    Стабилизатор тока на LM317, шунтСтабилизатор тока на LM317, шунт

    Максимально допустимый ток для микросхемы LM317 1,5 ампера, увеличить его можно дополнительным силовым транзистором. В этом случае микросхема уже будет в качестве управляющей, поэтому нагреваться не будет, взамен будет нагреваться транзистор и от этого никуда не денешься.

    Стабилизатор тока на LM317Стабилизатор тока на LM317

    Источник

    

    Блок питания с регулировкой тока и напряжения своими руками

    Всем известно, что мощный регулируемый блок питания с регулировкой напряжения и тока самое популярное и востребованное электронное устройство, с изготовления которого начинают свой творческий путь начинающие радиолюбители. Схем очень много, какую выбрать и с чего начинать многие просто теряются. Одним нужен простой лабораторный блок питания с регулировкой напряжения и тока, другим мощное зарядное устройство для зарядки автомобильного аккумулятора, а я предлагаю вам собрать своими руками простой универсальный блок питания с регулировкой напряжения и тока, который можно использовать для выполнения любых задач, питания электронных самоделок и зарядки автомобильного аккумулятора. Все, что от вас потребуется это усидчивость, минимальные знания электроники и умение пользоваться паяльником. А если возникнут вопросы, задавайте их в комментариях, я вам обязательно помогу.

    Читайте также:  Совместимость зарядных устройств и аккумуляторов

    Хватит слов приступим к делу!

    На этом рисунке изображена схема блока питания с регулировкой напряжения и тока от 2.4В до 28В и силой тока до 30А.

    Схема блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

    Схема блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

    Важным элементом данной схемы является регулируемый стабилизатор напряжения микросхема TL431 или, как ее еще называют управляемый стабилитрон позволяющий плавно регулировать напряжение от 2.4 вольта до 28 вольт. Благодаря четырем силовым транзисторам, установленным на больших радиаторах, блок питания может выдержать ток до 30А. Также имеется регулировка тока и защита от переполюсовки, поэтому блок питания можно и даже нужно использовать, как зарядное устройство для автомобильного аккумулятора.

    Делитель напряжения, построенный на мощном 5 Вт резисторе R1 и переменном резисторе Р1 ограничивает ток на катоде и на управляющем электроде стабилитрона TL431. Вращением ручки переменного резистора Р1 задается выходное напряжение стабилитрона, стабилизатор напряжения TL431, автоматически стабилизирует напряжение заданное переменным резистором Р1. С микросхемы TL431 ток поступает на базу транзистора Т1. Транзистор выполняет роль ключа и управляет двумя мощными биполярными транзисторами Т2 и Т3 соединенных параллельно для увеличения выходной мощности. В выходной каскад транзисторов установлены уравнительные резисторы R2 и R3. Далее ток поступает на плюсовую клейму блока питания.

    Как работает регулировка тока?

    В данной схеме реализована функция ограничения тока на двух мощных полевых транзисторах Т4 и Т5 соединенных параллельно. Давайте рассмотрим, как это работает. С диодного моста ток поступает на стабилизатор напряжения L7812CV, напряжение снижается до 12В, это безопасное значение для затворов транзисторов. Далее ток поступает на делитель напряжения собранный на переменном резисторе Р2 и постоянном резисторе R4. С движка переменного резистора Р2 ток проходит через тока ограничительные резисторы R5 и R6 открывая затворы полевых транзисторов Т4 и Т5. Транзисторы проводят через себя определенное количество тока в зависимости от сопротивления переменного резистора Р2. В данной схеме ток регулируется при любом выходном напряжении.

    Также предусмотрена защита от переполюсовки, состоящая из двух светодиодов. Зеленый светодиод сигнализирует о правильном подключении автомобильного аккумулятора к выходу блоку питания, а красный светодиод, о ошибке подключения. Резисторы R7 и R8 ограничивают ток для светодиодов.

    А, вот и печатная плата!

    На этом рисунке изображена печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

    Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

    Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 30А

    Печатную плату вы можете изготовить с помощью лазерно утюжной технологии для продвинутых, а также навесным монтажом этот способ больше подходит для начинающих радиолюбителей и они о нем прекрасно знают. Для изготовления печатной платы вам понадобиться фольгированный стеклотекстолит размером 100х83 мм. Большинство деталей устанавливаются на печатной плате за исключением транзисторов Т2, Т3, Т4, Т5, а также стабилизатор напряжения L7812CV и резисторы R2, R3, Р1, Р2. Биполярные транзисторы Т2 и Т3 устанавливаются на отдельном радиаторе без изоляционных прокладок, потому, что коллекторы транзисторов все равно по схеме соединяются вместе. Полевые транзисторы Т4, Т5 надо тоже установить на отдельном радиаторе без изоляции.

    На этом рисунке изображены два радиатора с установленными транзисторами. Между собой радиаторы скреплены двумя лентами двухстороннего автомобильного скотча выполняющего роль электро изоляции. Сверху к радиаторам прикручена винтами пластиковая скрепляющая пластина, придающая жесткость конструкции. К ней будет крепиться дополнительная пластина с печатной платой и вентилятор.

    Радиатор с транзисторами

    Поскольку уравнительные резисторы R2 и R3 довольно большого размера для их предусмотрена специальная печатная плата, которая изображена на этом рисунке. Размер печатной платы 85х40 мм.

    Печатная плата блока резисторов

    Печатная плата блока резисторов

    Стабилизатор напряжения L7812CV надо закрепить на отдельный радиатор от компьютерного блока питания, потому, что в процессе работы он сильно нагревается. На этой картинке он находится в самом низу на радиаторе от компьютерного блока питания. С правой стороны вы увидите плату с уравнительными резисторами R2 и R3. Транзистор Т1 установлен на маленький радиатор. Переменные резисторы Р1 и Р2 тоже вынесены на верхнюю панель. Диодная сборка установлена на отдельном радиаторе, при большой нагрузке она очень сильно греется.

    Читайте также:  Индикаторы зарядного устройства автомат

    Блок питания с регулировкой тока и напряжения

    Для охлаждения радиаторов к установленному в блоке питания стабилизатору напряжения L7812CV я подключил вентилятор размером 120х120 мм, он отлично справляется со своей задачей.

    Блок питания с регулировкой тока и напряжения

    Если вы хотите подключить вентилятор от дополнительной обмотки трансформатора, тогда вам надо поставить дополнительный стабилизатор напряжения по этой схеме.

    Схема подключения вентилятора

    Схема подключения вентилятора

    Как подключить Китайский вольтметр амперметр?

    При подключении Китайских электронных вольтметров амперметров возникает очень много различных проблем, то показания скачут, то завышает, то занижает, кому то бракованный прислали, вообщем качество Китайских приборов оставляет желать лучшего. Китайцы продают на АлиЭкспресс две модели чудо приборов. Первая модель имеет два тонких провода красный и черный, три толстых, красный, черный и синий. У второй модели три тонких провода, красный, черный, желтый и два толстых, красный и черный. Чтобы это Китайское чудо правильно работало и не искажало показания, надо знать простое правило, питание у прибора должно быть отдельное потому, что у прибора нет гальванической развязки и поэтому питание на Китайский вольтметр амперметр обязательно надо брать с дополнительной обмотки трансформатора или дополнительного источника питания, для этих целей идеально подойдет зарядка от телефона.

    А лучше всего сделать выбор в сторону Китайских стрелочных аналоговых приборов класса точности 2.5. Поставить отдельно вольтметр и амперметр будет намного проще и точнее. Выбор остается за вами.

    На этом рисунке изображена схема подключения Китайского вольтметра амперметра.

    Схема подключения китайского вольтметра амперметра к регулируемому блоку питания

    Схема подключения китайского вольтметра амперметра к блоку питания

    Испытания блока питания

    Пришло время испытать блок питания в деле. У микросхемы TL431 есть такая особенность, нижний порог напряжения 2.4 вольта, поэтому в блоке питания напряжение регулируется от 2.4 вольта до 27.4 вольта. Без нагрузки я выставил напряжение 12.5 вольт и подключил галогеновую лампу Н4. Напряжение под нагрузкой упало до 12.3 вольта, просадка составила всего 0.2 вольта при силе тока 4.88 ампера. Это очень хороший результат. Микросхема TL431 прекрасно стабилизирует напряжение. Как работает ограничение тока смотрите в видеоролике.

    Блок питания с регулировкой тока и напряжения

    Как заряжать автомобильный аккумулятор?

    Ну и самое интересное, это использование блока питания в качестве зарядного устройства для автомобильного аккумулятора. При выключенном блоке питания подключаем аккумулятор. Если горит зеленый светодиод, значит все подключено правильно. Что будет если поменять клеймы местами? А, ничего… Просто загорится красный светодиод, означающий ошибку в подключении.

    Зарядное устройство для автомобильного аккумулятора

    Далее отключаем минусовую клейму, включаем блок питания и выставляем на блоке 14.5 вольт. Подключаем минусовую клейму к аккумулятору. И ручкой регулировки тока выставляем в начале зарядки ток не более 6 ампер для 60 амперного аккумулятора. К концу зарядки ток упадет до 0.1 ампера, а напряжение поднимется до 14.5 вольт. Это будет говорить о том, что аккумулятор полностью заряжен.

    Для любителей «чем проще, тем лучше,» предлагаю собрать упрощенную схему блока питания на 15А

    Данная схема регулируемого блока питания с регулировкой напряжения и тока рассчитана на максимальный ток до 15А. В ней отсутствуют дополнительные силовые транзисторы и уравнительные резисторы, что немного упрощает схему и делает её более бюджетной по сравнению со схемой на 30А.

    Схема блока питания с регулировкой тока и напряжения 2.4. 28В 15А

    Схема блока питания с регулировкой тока и напряжения 2.4…28В 15А

    Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В. Размер платы 100х60 мм.

    Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 15А

    Печатная плата блока питания с регулировкой тока и напряжения от 2.4В до 28В 15А

    Радиодетали для сборки

    Регулируемый блок питания с регулировкой тока и напряжения 30А

    • Регулируемый стабилитрон (микросхема) TL431
    • Диодный мост на 50А KBPC5010
    • Конденсаторы С1, С2 4700 мкФ 50В
    • Резисторы R1 1 кОм 5Вт, R2, R3 0.1 Ом 20 Вт, R4 100 Ом, R5, R6 47 Ом, R7, R8 2.7 кОм 0.25Вт, Р1 5 кОм, Р2 1 кОм.
    • Радиатор 100х63х33 мм 2шт, радиатор KG-487-17 (HS 077-30) 1шт, радиатор от компьютерного блока питания 1шт
    • Стабилизатор напряжения L7812CV
    • Транзисторы Т1 TIP41C, КТ805, КТ819, Т2, Т3 TIP35C, КТ 867А, Т4, Т5 IRFP250, IRFP260
    • Светодиоды LED1, LED2 на 3В зеленый и красный

    Регулируемый блок питания с регулировкой тока и напряжения 15А

    • Регулируемый стабилитрон (микросхема) TL431
    • Диодный мост на 25А KBPC2510
    • Конденсаторы С1, С2 4700 мкФ 50В
    • Резисторы R1 1 кОм 5Вт, R2 100 Ом, R3 47 Ом, R4, R5 2.7 кОм 0.25Вт, Р1 5 кОм, Р2 1 кОм.
    • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 1шт, радиатор от компьютерного блока питания 1шт
    • Стабилизатор напряжения L7812CV
    • Транзисторы Т1 TIP41C, КТ805, КТ819, Т2 TIP35C, КТ 867А, Т3 IRFP250, IRFP260
    • Светодиоды LED1, LED2 на 3В зеленый и красный

    Чем заменить микросхему TL431?

    Аналогом микросхемы TL431 является регулируемый стабилитрон КА431, из советских КР142ЕН19А, К1156ЕР5Х

    Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

    Рекомендую посмотреть видеоролик о том, как сделать блок питания с регулировкой тока и напряжения своими руками

    Читайте также:  Зарядные устройства для планшетов своими руками

    Источник

    Импульсный регулятор зарядного тока

    Практически у каждого автовладельца и не только есть так называемый выпрямитель. Об этом чрезвычайно полезном устройстве мы часто вспоминаем зимой, а также когда сталкиваемся с необходимостью заряжать различные аккумуляторы. Это связано с изменением зарядного тока, и, к сожалению, не каждый выпрямитель имеет возможность плавно регулировать ток. Что делать, если мы хотим зарядить небольшой аккумулятор, а у нас есть только выпрямитель? Зарядка через лампочку — это лишь полумеры. В этом случае можно использовать представленную схему регулятора зарядного тока.

    Регулятор зарядного тока работает в импульсном режиме, что значительно снижает потери мощности. Меньшие потери мощности означают меньшие габариты устройства и регулируемый ток до 3А. Максимальный ток 2,5. 3А был выбран после анализа емкости имеющихся гелевых аккумуляторов. Принципиальная схема представлена на рисунке.

    Микросхема U1A представляет собой генератор с частотой около 8 кГц. На этой частоте работает все устройство. Эта частота не слишком высока, и было бы хорошо ее увеличить, чтобы ограничить размеры дросселя, но, к сожалению, микросхемы LM358 довольно медленные, и дальнейшее увеличение частоты приводит к искажению формы сигнала. Пилообразный сигнал далее через конденсатор С4 поступает на неинвертирующий вход микросхемы U1В, работающей в качестве компаратора.

    Диод D3 сдвигает форму сигнала в сторону положительного напряжения. Без этого диода пилообразный сигнал был бы симметричным относительно земли. Форма сигнала на неинвертирующем входе компаратора U1B показана на рисунке.

    Транзистор BC327, его назначение — регулировка уровней. К сожалению, несмотря на свои преимущества, микросхема LM358 не может выводить полное напряжение питания. Выходное напряжение будет примерно на 2В ниже, и это может привести к неконтролируемому открытию полевого МОП-транзистора при определенных условиях. Вторая задача ускорить закрытие полевого МОП-транзистора.

    Элементы L1 и C6 являются типовыми элементами импульсных схем и предназначены для аккумулирования энергии и фильтрации выходного напряжения. Ну и следует упомянуть микросхему U2B, это источник тока для индикатора. В зависимости от установленного микроамперметра значение R10 следует подбирать так, чтобы показания соответствовали фактическому значению тока. Например, для индикатора, которому требуется полное отклонение 100 мкА, работающего в диапазоне 10 мкА, — этот резистор составляет 10 кОм.

    Как вариант схема может быть собрана на печатной плате, представленной на рисунке.

    Сборка классическая, используемый дроссель должен иметь соответствующий рабочий ток. В случае проблем с поиском соответствующий дросселя, можно использовать с более низким током (например, 1,5А), уменьшая диапазон регулирования тока, например, путем корректировки элементов в цепи усилителя U2A. Транзистор следует установить на радиатор.

    После сборки переходим к настройке и проверки. Нам понадобится блок питания, желательно с ограничением по току, временно заменяющий выпрямитель. Подключите питание (около 15 — 16В) и нагрузку (резистор 100 Ом / 2 Вт). Затем проверяем диапазон регулировки по току. Для этого включаем амперметр и заменяем нагрузочный резистор на лампочку 12В / 40 . 45Вт, поворотом потенциометра Р1 проверяем диапазон регулирования.

    Диапазон от 0,3 А до 2,5 А можно считать в норме. В представленной модели использовался дроссель с максимальным током 1,5А, поэтому диапазон регулирования тока ограничивался 1,5 — 1,7А, используемый радиатор подбирался со значительным запасом и в процессе эксплуатации не нагревался. Также рекомендуется защитить схему предохранителем на 5А.

    Источник

    Регулятор тока зарядного устройства

    Зарядные устройства

    Иногда собирая самодельное зарядное устройство для автомобильного аккумулятора, мы не задумываемся о такой важной функции, как ограничитель тока. Зачем нужен токовый ограничитель ? Это своего рода регулятор, который позволяет уменьшить или увеличить ток заряда аккумулятора, при этом напряжение зарядки остается прежним.

    Такой функцией снабжены все дорогие зарядные устройства, но на рынке немало зарядников, которые задают ток заряда автоматическим образом, но это не есть хорошо, поскольку человеческие мозги лучше любого контроллера и выставить нужны ток заряда аккумулятора вручную более желательно.

    Регулятор тока зарядного устройства, схема фото

    Схема довольно проста, силовой частью является транзистор KT837, им управляет транзистор средней мощности КТ814. Максимальный отдаваемый ток такого ограничителя составляет до 2-х Ампер, но разумеется это не предел для схемы. Только заменой резистора 1Ом и силового транзистора КТ837 можно снять до 7-10 Ампер.

    Для этого резистор нужно будет заменить на 0,1-0,33Ом с мощностью не менее 20 Ватт, можно и на 10, но перегрев идет очень сильный. Транзистор можно заменить на КТ818ГМ или импортный аналог. Транзистор обязательно устанавливают на теплоотвод, возможно будет нужда в принудительном охлаждении.
    Резистор R2 для регулировки выходного тока желательно использовать на 1 ватт.

    Стабилитрон можно заменить на импортный, желательно с мощностью в 1 ватт. Устройством можно дополнить любой самодельный блок питания, который не имеет ограничителя по току.

    Источник