Меню

Простой балансир для li ion аккумуляторов своими руками

Балансир для зарядки литиевых аккумуляторов

Скорей всего я бы не стал писать эту статью, если бы не одно обстоятельство. Несколько дней назад удалось придумать, как сделать очень хороший балансир на микросхеме TL431. Те, кто понимают, о чём речь, наверняка скажут – эка невидаль, да этих балансиров на TL431 – пруд пруди. Не спорю – эти микросхемы для этих целей используются очень давно. Но, из-за свойственных им недостатков, целесообразность их применения всегда вызывала много вопросов. Нет ни малейшего желания приводить примеры уже существующих схем этих балансиров, и подробно рассматривать их недостатки. Наверное, будет лучше, если я уделю больше времени, тому, что удалось сделать мне. Не покидают опасения, что что-то подобное уже было сделано до меня. Но проводить глобальные исследования, нет, ни желания, ни времени, и если вдруг выяснится, что подобный балансир уже существует, то мне останется, лишь попросить прощения за свою неосведомлённость.

Прежде, чем описывать собственно балансир, необходимо вкратце пояснить его назначение.

Суть вот в чём – литиевые аккумуляторы, чаще всего, используются в виде последовательного соединённых отдельных секций. Это необходимо, чтобы получить необходимое выходное напряжение. Количество составляющих аккумулятор секций, колеблется в очень широких пределах – от нескольких единиц, до нескольких десятков. Есть два основных способа зарядки таких аккумуляторов. Последовательный способ, когда зарядка осуществляется от одного источника питания, с напряжением, равным полному напряжению аккумулятора. И параллельный способ, когда осуществляется независимая зарядка каждой секции от специального зарядного устройства, состоящего из большого количества гальванически не связанных друг с другом источников напряжения, и индивидуальных, для каждой секции, устройств контроля.

Наибольшее распространение, ввиду большей простоты, получил последовательный способ зарядки. Балансир, о котором идёт речь в статье, не используется в параллельных системах зарядки, поэтому параллельные системы зарядки в рамках данной статьи рассматриваться не будут.

При последовательном способе зарядки, одно из главных требований, которое необходимо обеспечить, следующее – напряжение ни на одной секции заряжаемого литиевого аккумулятора, при зарядке, не должно превысить определённой величины (величина этого порога зависит от типа литиевого элемента). Обеспечить выполнение этого требования, при последовательной зарядке, не приняв специальных мер, невозможно…Причина очевидна – отдельные секции аккумулятора не идентичны, поэтому достижение максимально допустимого напряжения на каждой из секций при зарядке, происходит в разное время. Складывается ситуация, когда мы обязаны зарядку прекратить, так как напряжение на части секций уже достигло максимально допустимого порога. В то же время, часть секций остаются недозаряженными. Это плохо главным образом потому, что в итоге снижается общая ёмкость аккумулятора, так нам придётся прекратить разряд аккумулятора в тот момент, когда напряжение на самой «слабой» (недозаряженной) секции, достигнет своего минимально допустимого порога.

Чтобы не допустить повышение напряжения при зарядке, выше определённого порога, и служит балансир. Его задача достаточно проста – следить за напряжением на отдельной секции, и, как только напряжение на ней при зарядке достигнет определенной величины, дать команду на включение силового ключа, который подключит параллельно заряжаемой секции балластный резистор. При этом, если остаточный ток зарядки (а он, ближе к концу зарядки, уже достаточно мал, из-за малой разницы потенциалов между напряжением на заряжаемом аккумуляторе и напряжением на выходе зарядного устройства) будет меньше (или равен) тока протекающего через балластный резистор, то повышение напряжения на заряжаемой секции – прекратиться. При этом зарядка остальных секций, напряжение на которых ещё не достигло максимально допустимых значений – продолжиться. Закончится процесс заряда тем, что сработают балансиры всех секций аккумулятора. Напряжение на всех секциях будет одинаковым, и равным тому порогу, на которые настроены балансиры. Ток зарядки будет равен нулю, так как напряжение на аккумуляторе и напряжение на выходе зарядного устройства будут равны (нет разности потенциалов – нет тока зарядки). Будет протекать лишь ток через балластные резисторы. Его величина определяется величиной последовательно соединённых балластных резисторов и напряжением на выходе зарядного устройства.

Саму функцию контроля напряжения, легко смог бы выполнить любой компаратор, снабжённый опорным напряжением…Но компаратора у нас нет (точнее – он есть, но использовать его нам не удобно и не выгодно). У нас есть TL431. Но компаратор из неё, честно сказать – никакой. Сравнивать напряжение с опорным она умеет очень хорошо, но вот выдать чёткую, однозначную команду на силовой ключ, она не может. Вместо этого, при подходе к порогу, она плавно начинает загонять силовой ключ в активный (полуоткрытый) режим, ключ начинает сильно греться, и, в итоге, мы имеем не балансир, а полное дерьмо.

Вот именно эту проблему, которая не позволяла полноценно использовать TL431, удалось решить на днях. Ларчик просто открывался (но открывать его пришлось более двух лет) – надо было превратить TL431, в триггер Шмитта. Что и было сделано. Получился идеальный балансир — точный, термостабильный, достаточно простой, с чёткой командой на силовой ключ. И хотя этот балансир на TL431 немного сложнее сделанного ранее балансира на микросхеме KIA70XX, но зато и TL431, найти гораздо легче, и работает она точнее.

Ниже — две принципиальные схемы балансиров, рассчитанные для контроля порогов LiFePO4 и Li-ion аккумуляторов.

Превратить TL431 в триггер Шмитта, удалось добавив в схему p-n-p транзистор Т1 и резистор R5. Работает это так — делителем R3,R4 определяется порог контролируемого напряжения. В момент, когда напряжение на управляющем электроде достигает 2,5 Вольта, TL431 – открывается, открывается при этом и транзистор Т1. При этом потенциал коллектора повышается, и часть этого напряжения через резистор R5 поступает в цепь управляющего электрода TL431. При этом TL431 лавинообразно входит в насыщение. Схема приобретает ярко выраженный гистерезис – включение происходит при 3,6 Вольт, а выключение — при 3,55 Вольт. При этом в затворе силового ключа формируется управляющий импульс с очень крутыми фронтами, и попадание силового ключа в активный режим – исключено. В реальной схеме, при токе через балансировочный резистор равном 0,365 Ампер, падение напряжения на переходе сток-исток силового ключа составляет всего 5-6 мВ. При этом сам ключ, всегда остаётся холодным. Что, собственно, и требовалось. Эту схему можно легко настроить для контроля любого напряжения (делителем R3,R4). Величина максимального тока балансировки определяется резистором R7 и напряжением на секции аккумулятора.

Читайте также:  Напряжение разряда аккумулятора для автомобиля

Коротко про точность. В реально собранном балансире на пять секций для аккумулятора LiFePO4, напряжения при балансировке уложились в диапазон 3,6-3.7 Вольт (максимально допустимое напряжение для LiFePO4 составляет 3,75 Вольт). Резисторы при сборке использовались обычные (не прецизионные). На мой взгляд – очень хороший результат. Считаю, что добиваться большей точности при балансировке, никакого особого практического смысла – нет. Но для многих – это скорее вопрос религии, нежели физики. И они вправе, и имеют возможность добиваться большей точности.

Рисунок ниже – плата отдельного балансира, и, для примера, плата балансира на шесть секций. Очевидно, что клонируя плату отдельного балансира, можно легко сделать плату балансира на любое количество секций и любых пропорций.

Вот таким зарядно-балансировочным устройством я теперь пользуюсь. Я использую блок питания, описанный в статье про инвертор с адаптивным ограничением тока. Но можно использовать и любой другой стабилизированный блок питания, доработав его шунтом.

Схема зарядно-балансировочного устройства

Балансир выполнен в виде отдельной платы. Он подключается к балансировочному разъему аккумулятора во время зарядки.

Пара слов про комплектующие. TL431 и p-n-p биполярный транзистор (подойдёт практически любой) в корпусах SOT23, можно найти на материнских платах компьютеров. Там же, можно найти и силовые ключи с «цифровыми» уровнями. Я использовал CHM61A3PAPT (или можно — FDD8447L) в корпусах TO-252A — подходят идеально, хотя характеристики очень избыточны (на токи до 1А , можно найти и что-нибудь по-проще).

В современных устройствах контроля за литиевыми батареями, описанные выше функции возложены на микроконтроллер.Но это гораздо более сложные для повторения устройства, и их применение оправдано далеко не всегда. Думаю — совсем не плохо, когда есть выбор.

Так выглядит балансир «живьём». За качество изготовления, вновь прошу прощения — из-за экономии времени, вновь рисовал плату обычным перманентным фломастером.

Источник



Платы балансировки литиевого аккумулятора: назначение и схема плат защиты li ion аккумуляторов

При последовательном подключении батарей наблюдается разброс параметров изделий, что не позволяет поддерживать требуемое выходное напряжение. Проблема возникает из-за неравномерной зарядки элементов. Для устранения дефекта используется плата балансировки литиевых аккумуляторов, обеспечивающая равномерный заряд изделий и предотвращающая перезаряд элементов аккумуляторной банки.

плата балансировки литиевых аккумуляторов

Балансировочная плата для литиевых аккумуляторов

При соединении нескольких источников постоянного тока в общую банку по последовательной методике обеспечивается суммирование напряжений. При этом емкость аккумулятора будет определяться элементом с минимальным значением параметра.

Для зарядки устройства используется две методики – последовательная и параллельная. При первом способе осуществляется подача питания от единого источника, напряжение соответствует значению параметра на полностью заряженном аккумуляторе.

Параллельный метод предусматривает независимую зарядку каждого изделия, входящего в аккумуляторную банку. В конструкцию зарядного блока входят не связанные между собой источники питания. Для контроля параметров электрического тока применяются индивидуальные устройства. Зарядные блоки подобной конструкции встречаются редко, для восполнения емкости литиевых аккумуляторов применяется последовательная схема зарядки.

При совместной зарядке необходимо не допустить повышения напряжения на клеммах элементов, составляющих аккумуляторную банку, выше допустимого предела (зависит от модели батареи).

Из-за различных характеристик элементов пороговое значение достигается в разное время.

Пользователь вынужден прекратить зарядку после фиксации допустимого напряжения на первом источнике, при этом остальные компоненты АКБ остаются недозаряженными, что негативно влияет на конечную емкость батареи.

При эксплуатации элемента питания происходит неравномерное снижение напряжения на выводах элементов. Разрядка прекращается в момент фиксации минимально допустимого порога на секции, не получившей необходимого заряда.

Для исключения возможности возникновения ситуации в цепь питания батареи вводится балансировочный блок, который контролирует параметры на каждой секции. При достижении запрограммированного значения происходит параллельная коммутация балластного резистора, отсекающего подачу питания на клеммы секции.

Балластное сопротивление отключает питание в случае превышения силы тока, идущего через резистор, над параметром в цепи питания секции аккумулятора. Остальные компоненты аккумуляторной банки продолжают заряжаться.

По мере фиксации максимального напряжения происходит последовательное отключение цепей питания. После подключения всех имеющихся балластных сопротивлений зарядка прекращается. Напряжение всех секций будет равняться значению параметра, на который отрегулирован балансир.

Плата защиты литиевого аккумулятора

Защитные платы для Li-ion или Li-pol аккумуляторов дополнительно защищают изделия от взрыва или воспламенения, происходящего из-за избытка газов при перезарядке. Следует учитывать, что регулярная эксплуатация недозаряженных элементов приводит к деградации катода и анода, что сокращает срок службы изделия.

Часть аккумуляторных банок оснащается платой защиты в заводских условиях. Для самодельных устройств и некоторых аккумуляторов потребуется монтаж дополнительного узла фабричного изготовления или собранного своими руками.

Схема

В конструкции всех литий-ионных или литий-полимерных банок предусмотрена защитная плата PCB или PCM. Устройство обеспечивает разрыв цепи при возникновении аварийной ситуации (например, короткого замыкания).

Защитный блок не оснащен регуляторами напряжения или силы тока, допускается разрядка элементов до 2,5 В и ниже (зависит от качества контроллера), что негативно влияет на рабочие характеристики аккумуляторов. Плата балансировки MBS устанавливается вместо защитного устройства, узел обеспечивает защиту от замыканий и равномерную зарядку элементов.

Схемы плат защиты литиевого аккумулятора

На рынке представлены следующие балансировочные платы фабричного изготовления:

  1. Устройство на базе стабилизатора LM317 обеспечивает подачу на батареи напряжения 4,2 В.
    В конструкции предусмотрены регулировочные сопротивления, в процессе зарядки работает контрольный светодиод красного цвета. Для подключения устройства используется внешний блок питания, коммутация к портам USB не предусмотрена конструкцией.
  2. Китайские производители массово выпускают балансировочные платы на основе стабилизатора ТР4056, которые дополнительно оснащены защитой от переполюсовки аккумуляторов. Устройство предназначено для подключения к портам USB, предусмотрен регулятор параметров зарядки.
    Оборудование контролирует процесс зарядки в автоматическом режиме, при достижении заданной емкости производится плавное снижение силы зарядного тока. В конструкции предусмотрен штекер для установки дополнительного температурного сенсора.
  3. Устройство на основе чипа NCP1835 отличается уменьшенными габаритами и универсальностью, допускается коммутация аккумуляторов с различными параметрами. Балансир обеспечивает зарядку сильно разряженных элементов путем подачи тока малой силы, предусмотрена защита от установки батареек (со звуковой индикацией). В конструкции модуля предусмотрен регулятор времени зарядки.
  4. Узел на базе контроллера зарядки S8254AA, оснащенный дополнительной балансировкой для аккумуляторов 18650. Оборудование поддерживает защиту от переразрядки и перезарядки, имеется контроль над коротким замыканием.
    Платы на основе контроллера S8254AA не оснащаются лампами, отображающими статус зарядки. Поставщики выпускают аналогичный блок без балансира, изделие отличается применением гетинакса красного цвета. Детали с балансиром изготовлены на основе гетинакса темно-синего цвета.
Читайте также:  Аккумулятор 0 092 s40 060

Базовая схема балансира самодельного типа включает в себя стабилитрон TL431A (с повышенной точностью управления) и транзистор BD140 (относится к типу изделий с прямой проводимостью).

В цепь включаются сопротивления, которые допускается заменить диодами 1N4007. При использовании диодов учитывается нагрев элементов при работе, при изготовлении монтажной платы принимают во внимание необходимость охлаждения узлов.

Для регулировки требуется подать постоянное напряжение 5 В на входы устройства. В цепи предусмотрен резистор, изменяя значение сопротивления, необходимо добиться напряжения 4,2 В на колодках, предназначенных для установки литий-ионных аккумуляторов.

Для подачи питания в рабочем режиме используется трансформатор, напряжение равно суммарному значению подключенных аккумуляторов. На каждый элемент подается запас напряжения в пределах 0,15 В. Например, для зарядки 3 элементов требуется подвести напряжение 3*4,2+3*0,15=13,05 В.

Устройство обеспечивает зарядку батарей до момента достижения напряжения 4,2 В. После фиксации параметра включается стабилитрон, который активирует подачу питания через транзистор к балластным резисторам, имеющим сопротивление 4 Ом. В цепи предусматриваются контрольные светодиоды, которые включаются при подаче питания в балластную цепь.

Упрощенный блок на основе стабилитрона TL431A строится с использованием полупроводникового транзистора, удовлетворяющего параметрам зарядки. Поскольку элемент при работе нагревается, то необходимо предусмотреть охлаждение. В основе выбора типа радиатора лежит расчет по мощности.

Например, при напряжении 4,2 В и силе тока 0,5 А расчетная мощность составит 2,1 Вт. При увеличении параметров зарядки мощность возрастает, что вызывает сложности с теплоотводом. В конструкции используется 2 сопротивления, регулирующих пороговое значение напряжения.

После подбора сопротивлений и транзистора изготавливается требуемое количество балансировочных блоков, которые ставятся на аккумуляторы во время зарядки.

Небольшие габариты устройств позволяют закрепить узлы на общей пластине. При монтаже нескольких балансиров требуется обеспечить изоляцию корпусов транзисторов (из-за подачи отрицательного питания от батареи).

Источник

ОДНОВРЕМЕННАЯ ЗАРЯДКА НЕСКОЛЬКИХ АККУМУЛЯТОРОВ

Сейчас всё большую популярность набирают литиевые аккумуляторы. Особенно пальчиковые, типа 18650, на 3,7 В 3000 мА. Ни сколько не сомневаюсь, что ещё 3-5 лет, и они полностью вытеснят никель-кадмиевые. Правда остаётся открытым вопрос про их зарядку. Если со старыми АКБ всё понятно — собирай в батарею и через резистор к любому подходящему блоку питания, то тут такой фокус не проходит. Но как же тогда зарядить сразу несколько штук, не используя дорогие фирменные балансировочные ЗУ?

ЗАРЯДКА НЕСКОЛЬКИХ АККУМУЛЯТОРОВ - простая схема

Теория

Для последовательного соединения аккумуляторов, обычно к плюсу электрической схемы подключают положительную клемму первого последовательное соединение аккумуляторов аккумулятора. К его отрицательной клемме подключают положительную клемму второго аккумулятора и т.д. Отрицательную клемму последнего аккумулятора подключают к минусу блока. Получившаяся при последовательном соединении аккумуляторная батарея имеет ту же емкость, что и у одиночного аккумулятора, а напряжение такой батареи равно сумме напряжений входящих в нее аккумуляторов. Значит если аккумуляторы имеют одинаковые напряжения, то напряжение батареи равно напряжению одного аккумулятора, умноженному на количество аккумуляторов в аккумуляторной батарее.

Энергия, накопленная в АКБ, равна сумме энергий отдельных аккумуляторов (произведению энергий отдельных аккумуляторов, если аккумуляторы одинаковые), независимо от того, как соединены аккумуляторы — параллельно или последовательно.

Литий-ионные батареи просто подключить к БП нельзя — нужно выравнивание зарядных токов на каждом элементе (банке). Балансировку проводят при зарядке аккумулятора, когда энергии много и её можно сильно не экономить и поэтому без особых потерь можно воспользоваться пассивным рассеиванием «лишнего» электричества.

Никель-кадмиевые АКБ не требуют дополнительных систем, поскольку каждое звено при достижении его максимального напряжения заряда перестает принимать энергию. Признаки полного заряда Ni-Cd — это увеличение напряжения до определенного значения, а затем его падение на несколько десятков милливольт, и повышение температуры — так что лишняя энергия сразу превращается в тепло.

У литиевых аккумуляторов наоборот. Разрядка до низких напряжений вызывает деградацию химии и необратимое повреждение элемнта, с ростом внутреннего сопротивления. В общем они не защищены от перезаряда, и можно потратить много лишней энергии, резко сокращая тем самым время их службы.

Если соединить несколько литиевых элементов в ряд и запитать через зажимы на обоих концах блока, то мы не можем контролировать заряд отдельных элементов. Достаточно того, что одно из них будет иметь несколько более высокое сопротивление или чуть меньшую емкость, и это звено гораздо быстрее достигнет напряжения заряда 4,2 В, в то время как остальные будут еще иметь 4,1 В. И когда напряжение всего пакета достигнет напряжение заряда, может оказаться, что эти слабые звенья заряжены до 4,3 Вольт или даже больше. С каждым таким циклом будет происходить ухудшение параметров. К тому же Li-Ion является неустойчивым и при перегрузке может достичь высокой температуры, а, следовательно, взорваться.

ЗАРЯДКА Блока литиевых АККУМУЛЯТОРОВ

Чаще всего на выходе источника зарядного напряжения ставится устройство, называемое «балансиром». Простейший тип балансира — это ограничитель напряжения. Он представляет из себя компаратор, сравнивающий напряжение на банке Li-Ion с пороговым значением 4,20 В. По достижении этого значения приоткрывается мощный ключ-транзистор, включенный параллельно элементу, пропускающий через себя большую часть тока заряда и превращающий энергию в тепло. На долю самой банки при этом достается крайне малая часть тока, что, практически, останавливает ее заряд, давая дозарядиться соседним. Выравнивание напряжений на элементах батареи с таким балансиром происходит только в конце заряда по достижении элементами порогового значения.

Упрощённая схема балансира для АКБ

Структурная схема балансира для АКБ

Вот упрощённая схема балансира тока на базе TL431. Резисторы R1 и R2 устанавливают напряжение 4,20 Вольт, или можно выбрать другие, в зависимости от типа батареи. Эталонное напряжение для регулятора снимается с транзистора, и уже на границе 4,20 В система начнет приоткрывать транзистор, чтобы не допустить превышения заданного напряжения. Минимальное увеличение напряжения вызовет очень быстрый рост тока транзистора. Во время тестов, уже при 4,22 В (превышение на 20 мВ), ток составил более 1 А.

ЗАРЯДКА НЕСКОЛЬКИХ АККУМУЛЯТОРОВ - балансир

Сюда подходит в принципе любой транзистор PNP, работающий в диапазоне напряжений и токов, которые нас интересуют. Если батареи должны быть заряжены током 500 мА. Расчет его мощности прост: 4,20 В х 0,5 А = 2,1 В, и столько должен потерять транзистор, что вероятно, потребует небольшого охлаждения. Для зарядного тока 1 А или больше мощность потерь, соответственно, растет, и все труднее будет избавиться от тепла. Во время теста были проверены несколько разных транзисторов, в частности BD244C, 2N6491 и A1535A — все они ведут себя одинаково.

Читайте также:  Автомобильный аккумулятор bosch s3 005 56r 480a 242x175x190

ЗАРЯДКА НЕСКОЛЬКИХ АККУМУЛЯТОРОВ - транзисторы

Делитель напряжения R1 и R2 следует подобрать так, чтобы получить нужное напряжение ограничения. Для удобства вот несколько значений после применения которых, мы получим следующие результаты:

  • R1 + R2 = Vo
  • 22K + 33K = 4,166 В
  • 15К + 22K = 4,204 В
  • 47K + 68K = 4,227 В
  • 27K + 39K = 4,230 В
  • 39K + 56K = 4,241 В
  • 33K + 47K = 4,255 В

Схема устройства для балансировки аккумуляторов

Схема устройства для балансировки аккумуляторов

Это аналог мощного стабилитрона, нагруженного на низкоомную нагрузку, роль которой здесь выполняют диоды D2. D5. Микросхема D1 измеряет напряжение на плюсе и минусе аккумулятора и если оно поднимается выше порога, открывает мощный транзистор, пропуская через себя весь ток от ЗУ. Как соединяется всё это вместе и к блоку питания — смотрите далее.

Схема устройства для балансировки аккумуляторов литиевых

Блоки получаются действительно маленькие, и вы можете смело устанавливать их сразу на элементе. Следует только иметь в виду, что на корпусе транзистора возникает потенциал отрицательного полюса батареи, и вы должны быть осторожны при установке систем общего радиатора — надо использовать изоляцию корпусов транзисторов друг от друга.

Испытания

Сразу 6 штук балансировочных блоков понадобились для одновременной зарядки 6 аккумуляторов 18650. Элементы видны на фото ниже.

одновременная зарядка нескольких аккумуляторов 18650

Все элементы зарядились ровно до 4,20 вольта (напряжение были выставлены потенциометрами), а транзисторы стали горячие, хотя и обошлось без дополнительного охлаждения — зарядка током 500 мА. Таким образом, можно смело рекомендовать данный метод для одновременного заряда нескольких литиевых аккумуляторов от общего источника напряжения.

Форум по обсуждению материала ОДНОВРЕМЕННАЯ ЗАРЯДКА НЕСКОЛЬКИХ АККУМУЛЯТОРОВ

Модуль простого транзисторного металлоискателя из Китая — схема принципиальная и испытание этого МД.

Тристабильный мультивибратор — схема трёхканального переключателя LED.

Современная беспроводная связь — эволюция приёмо-передающей аппаратуры и внедрение цифровой обработки данных.

Источник

Аккумуляторы и батареи

Информационный сайт о накопителях энергии

Платы балансировки литиевого аккумулятора

Общим свойством всех литиевых аккумуляторов является нетерпимость к перезаряду и глубокой посадке напряжения. Есть около 10 разновидностей литий-ионных и полимерных аккумуляторов с использованием разных составов активных составляющих. Все они отличаются рабочим диапазоном по напряжению, но требовательны к соблюдению границ. Платы – это электрические схемы, внедренные в цепь для поддержания нужных параметров, отключения литиевых аккумулятора в случаях его неисправности. Для зарядки, балансировки, контроля разряда и защиты литиевых аккумуляторов составляются отдельные или совмещенные платы, которые выполняются на твердой подложке.

Балансировочная плата для литиевых аккумуляторов

Зачем нужен балансир при зарядке батареи? При последовательном соединении нескольких банок напряжение суммируется, и емкость батареи будет равна самой низкой, из всех элементов.

Чтобы не допустить перезаряда «ленивой» банки, ее нужно отключить от питания, как только на ней будет достигнуто зарядное напряжение. Это позволит другим элементам продолжить зарядку. Для выполнения контроля за равномерным зарядом служит балансир. Он должен быть включен в цепь с последовательным соединением элементов. Для параллельного соединения балансир не нужен, там уровень заряда распределяется равномерно, как в сообщающихся сосудах.

Плата балансира может быть выполнена отдельно или входить в общий защитный контур MBS для литиевых аккумуляторов. Называется сборка балансировочным шлейфом.

Целью внедрения схемы является недопущение перезаряда отдельных элементов. Если используется один и защищенный аккумулятор, в нем предусмотрен блок от перезаряда.

Система баланса

Плата защиты литиевого аккумулятора

Литиевые аккумуляторы при перезарядке, нагревании могут загореться или взорваться. При проседании напряжения возникают трудности с зарядкой. Каждый случай нарушения режима ведет к безвозвратной потере емкости банки. Поэтому любая сборка из литиевых аккумуляторов содержит защитную плату.

Если используются незащищенные элементы, контроллер заряда-разряда устанавливается непременно. РСВ-плата предусмотрена , как обязательный элемент во всех аккумуляторов для бытовых приборов.

РСВ –платы и РСМ-модули не являются контроллерами, они не регулируют ток и напряжение. Их задача – разорвать цепь, если случилось короткое замыкание, перегрев. Модули допускают разряд до 2,5 В, что опасно. Все модули защиты китайские, продукция выпускается миллионами и вряд ли тестируется каждая микросхема. Это не полноценная защита, аварийная.

Для защиты используют платы заряда и защиты MBS, подбираемые по удвоенной токовой нагрузке, со встроенным балансиром. Платы зарядки и защиты литиевых аккумуляторов представляют контроллеры, которые обеспечивают 2 этапа процесса и обеспечивают нужные параметры. Непременным условием второго этапа зарядки является отключение питания при достижении максимального рабочего напряжения литиевого аккумулятора.

Плата заряда на 4 элемента с балансировкой

Схемы плат защиты литиевого аккумулятора

Все литий-ионные и литий-полимерные аккумуляторы и собранные батареи должны иметь защиту. Чтобы провести зарядку в 2 этапа, необходимо обеспечить последовательно режим постоянного тока, постоянного напряжения. Используются в сборке РСМ или MBS платы.

Собрать самостоятельно или купить готовые платы для подключения, выбирать вам. Для зарядки литиевых аккумуляторов специалисты используют китайские изделия. Их заказывают на AliExpress, с бесплатной доставкой.

LM317

ЗУ LM317

Простое зарядное устройство, стабилизатор тока.

Настройка заключается в создании напряжения 4,2 В подстройкой резисторов R4, R6. Сопротивление R8 является подстроечным сопротивлением. Погасший светодиод известит об окончании процесса. Недостатком этого устройства считают невозможность запитки от порта USB. Высокое напряжение питания 8-12 В, условие работы этого ЗУ.

ТР4056

Специалисты предлагают, для зарядки литиевого аккумулятора воспользоваться китайской платой ТП4056, с защитой от переплюсовки батарей или без. Купить ее можно на АлиЭкспресс, стоимость единицы обходится примерно в 30 центов.

tp4056-sxema-zu

Максимальный ток в 1 А регулируется заменой резистора R3. Напряжение 5 А, имеется индикатор зарядки.

  • постоянно, напряжение на аккумуляторе;
  • предзарядка, если на клеммах меньше 2,9В;
  • максимальный постоянный ток 1 А, при замене резистора, увеличении сопротивления, ток падает;
  • при напряжении 4,2 В начинается плавное снижение зарядного тока при постоянном напряжении;
  • При токе 0,1С зарядка отключается.

tp4056-plata

Специалисты советуют покупать плату с защитой или выведенным контактом для температурного датчика.

NCP1835

Зарядная плата обеспечивает высокую стабильность зарядного напряжения при миниатюрном размере платы – 3х3 мм. Этим устройством обеспечивается зарядка литиевых аккумуляторов всех видов и размеров.

ncp1835-shema

  • малое количество элементов;
  • заряжает сильно разряженные аккумуляторы током около 30 мА;
  • детектирует незаряжаемые батарейки, подает сигнал;
  • можно задать время заряда от 6 до 748 минут.

Видео

Посмотрите на видео полный обзор платы заряда ТП4056

Источник