Меню

Причины взрыва конденсатора блока питания



Почему взрываются конденсаторы

Частый вопрос – почему взрываются электролитические конденсаторы на материнской плате, видеокарте, блоке питания? Какие причины взрывов и пути решения проблемы, чтобы это не повторялось. Этому посвящена статья.

Теория

Очень часто при ремонте компьютеров и компьютерной техники – в блоках питания, материнской плате компьютера, видеокарте, мониторах, принтерах и других устройствах – можно обнаружить испорченные вздутые конденсаторы, в которых вытек электролит, а их корпус разрушен.

Конденсаторы – это рулоны (или стопки) фольги, разделенные диэлектриком. В электролитических конденсаторах одним электродом (анодом) является фольга, а другим (катодом)- электролит. В качестве диэлектрика выступает тонкая оксидная пленка, нанесенная на анод. Чтобы разобраться с причиной, по которой конденсаторы выходят из строя, составим примерную эквивалентную схему конденсатора.

Таким образом, у конденсатора есть и активное сопротивление r (эквивалентное последовательное сопротивление или по-научному ESR), и сопротивление утечки R, и индуктивность L из-за свернутого спиралью сэндвича. Условность схемы в том, что на самом деле схема представляет собой “длинную линию”, расчет которой чрезвычайно сложен.

Почему возникает взрыв конденсатора

Дело в том, что эти конденсаторы стоят в цепи импульсной схемы питания и служат для сглаживания пульсаций частотой в десятки килогерц. В принципе, уже из-за пульсаций через конденсаторы течет переменный ток, который немного нагревает внутреннее сопротивление. На малой частоте этот нагрев мал и конденсатор холодный. Закипание возникает тогда, когда выделяемая мощность больше мощности рассеивания. Так почему же происходит нагрев из-за которого электролит закипает и происходит взрыв и какую роль в нагревании играет индуктивность?

В импульсных схемах, если посмотреть осциллографом, то можно увидеть, что в момент переключения транзисторов возникает затухающий колебательный процесс, причем амплитуда перерегулирования очень значительная, а частота колебательного процесса высокая. Высокочастотная составляющая хорошо пропускается емкостью, она же и является основной причиной нагрева конденсатора. Причем же здесь индуктивность? А индуктивность и является причиной колебаний, т.к. она является частью колебательного контура LC. Поэтому, чем больше паразитная индуктивность конденсатора, тем больше энергия высокочастотной колебательной составляющей выделяется внутри конденсатора. Во избежание взрыва на корпусе конденсатора наносятся насечки, позволяющие выпустить пар кипящего электролита.

Как выбирать конденсаторы для замены

Что же делать? Чем заменить неисправный?

1. Нужно брать качественные изделия с малым ESR и индуктивностью. Они дороже, но греются меньше и взрываются значительно реже. К тому же, есть понятие “реактивная мощность конденсатора” – мощность, которую конденсатор способен выдержать, пропустив через себя, и которая зависит тангенса потерь диэлектрика и размеров конденсатора. Т.е., чем больше размер конденсатора, тем больше рассеивание и выше реактивная мощность.

2. Можно параллельно электролитическим конденсаторам поставить керамические небольшой емкости.

3. Если выбросы напряжения заходят в отрицательную область, то поможет обратный диод, который не даст обратному току “спалить” полярный конденсатор при приложении обратного напряжения.

Срок жизни электролитических конденсаторов ограничен из-за химических изменений в диэлектрике и зависит от того, как близко выбрано рабочее напряжение к максимальному. Другими словами, чем выше мы выберем максимальное напряжение конденсатора, тем дольше он будет служить.

Перепайка конденсаторов на материнской плате в нашем компьютерном центре обычно стоит 1000 руб вместе с работой по разборке и сборке компьютера.

Правда о конденсаторах

Однако самой правдоподобной версией массового выхода из строя электролитических конденсаторов является другая – технологическая. В пользу этой версии говорит тот факт, что взрываются в основном конденсаторы, произведенные конкретными китайскими фирмами.

История вопроса. Некоторые китайские фирмы не захотели покупать патенты на производство электролитических конденсаторов и разработали свою технологию, в частности, формулу электролита. Однако, формула оказалась нестабильной. Через несколько лет их электролит под воздействием рабочих факторов (одни из важнейших – повышенная рабочая температура и напряжение) изменяет свои электрические параметры, в частности, сопротивление. В результате через несколько лет конденсаторы вспучивались из-за вскипания электролита.

Поэтому самое главное при замене конденсаторов – это заменять их на качественные конденсаторы, произведенные надежной фирмой.

Источник

Как заменить конденсатор в электронной аппаратуре

Самая распространённая поломка современной электроники — это неисправность электролитических конденсаторов. Если вы после разбора корпуса электронного устройства замечали, что на печатной плате имеются конденсаторы с деформированным, вздутым корпусом, из которого сочится ядовитый электролит, то самое время разобраться, как распознать поломку или дефект в конденсаторе и подобрать адекватную замену. Располагая профессиональным флюсом для пайки, припоем, паяльной станцией, набором новых конденсаторов, вы без особого труда «оживите» любой электронный прибор своими руками.

Что такое конденсатор

По сути, конденсатор — радиоэлектронный компонент, основная цель которого — это накопление и отдача электроэнергии с целью фильтрации, сглаживания и генерации переменных электрических колебаний. Любой конденсатор имеет два важнейших электрических параметра: ёмкость и максимальное постоянное напряжение, которое может быть приложено к конденсатору без его пробоя или разрушения. Ёмкость, как правило, определяет, какое количество электрической энергии может вобрать в себя конденсатор, если приложить к его обкладкам постоянное напряжение, не превышающее заданного лимита. Ёмкость измеряется в Фарадах. Наибольшее распространение получили конденсаторы, ёмкость которых исчисляется в микрофарадах (мкФ), пикофарадах (пкФ) и нанофарадах (нФ). Во многих случаях рекомендуется заменять неисправный конденсатор на исправный, имеющий аналогичные ёмкостные характеристики. Однако в ремонтной практике бытует мнение о том, что в схемах блоков питания можно ставить конденсатор, несколько превышающий по ёмкости фабричные параметры. К примеру, если мы хотим заменить разорвавшийся электролит на 100мкФ 12Вольт в блоке питания, который призван сгладить колебания после диодного выпрямительного моста, можно смело устанавливать ёмкость даже на 470мкФ 25В. Во-первых, повышенная ёмкость конденсатора только уменьшит пульсации, что само по себе неплохо для блока питания. Во-вторых, повышенное предельное напряжение только повысит общую надёжность схемы. Главное, чтобы отведённое под установку конденсатора место подходило.

Почему взрываются конденсаторы электролитического типа

Самая частая причина, по которой происходит взрыв электролитического конденсатора — это превышение напряжения межу обкладками конденсатора. Не секрет, что во многих приборах китайского производства параметр максимального напряжения точно соответствует приложенному напряжению. По своей задумке производители конденсаторов не предусматривали, что в штатном включении конденсатора в состав электросхемы на его контакты будет подаваться именно максимальное напряжение. К примеру, если на конденсаторе написано 16В 100мкФ, то не стоит его подключать в схему, где на него будет постоянно подаваться 15 или 16В. Безусловно, он выдержит какое-то время такое издевательство, но запас прочности будет практически равен нолю. Гораздо лучше устанавливать такие конденсаторы в цепь с напряжением 10–12В., чтобы был какой-то запас по напряжению.

Полярность подключения электролитических конденсаторов

Электролитические конденсаторы имеют отрицательный и положительный электроды. Как правило, отрицательный электрод определяется по маркировке на корпусе (белая продольная полоса за значками «-»), а положительная обкладка никак не промаркирована. Исключение – отечественные конденсаторы, где, напротив, положительный терминал промаркирован значком «+». При замене конденсаторов необходимо сопоставить и проверить, соответствует ли полярность подключения конденсатора маркировке на печатной плате (кружок, где имеется заштрихованный сегмент). Сопоставив минусовую полосу с заштрихованным сегментом, вы безошибочно вставите конденсатор. Остаётся лишь обрезать ножки конденсатора, обработать места пайки и качественно припаять. Если случайно перепутать полярность подключения, то даже абсолютно новый и вполне исправный конденсатор просто-напросто разорвётся, измазав попутно все соседние компоненты и печатную плату токопроводящим электролитом.

Немного о безопасности

Не секрет, что замена низковольтных конденсаторов может принести вред здоровью лишь в случае ошибки подключения полярности. При первом включении конденсатор взорвётся. Вторая опасность, которую стоит ожидать от конденсаторов, заключается в напряжении между его обкладками. Если вы когда-нибудь разбирали блоки питания от компьютеров, то вы, вероятно, замечали огромные электролиты на 200В. Именно в этих конденсаторах остаётся опасное высокое напряжение, которое может серьёзно травмировать вас. Перед заменой конденсаторов блоков питания рекомендуем полностью его разрядить либо резистором, либо неоновой лампочкой на 220В.

Читайте также:  Блок питания fsp atx 500w q dion qd500 500w

Полезный совет: такие конденсаторы очень не любят разряжаться через короткое замыкание, поэтому не замыкайте их выводы отвёрткой с целью разряда.

Источник

Взорвался конденсатор в блоке питания

Теория

Очень часто при ремонте компьютеров и компьютерной техники – в блоках питания, материнской плате компьютера, видеокарте, мониторах, принтерах и других устройствах – можно обнаружить испорченные вздутые конденсаторы, в которых вытек электролит, а их корпус разрушен.

Конденсаторы – это рулоны (или стопки) фольги, разделенные диэлектриком. В электролитических конденсаторах одним электродом (анодом) является фольга, а другим (катодом)- электролит. В качестве диэлектрика выступает тонкая оксидная пленка, нанесенная на анод. Чтобы разобраться с причиной, по которой конденсаторы выходят из строя, составим примерную эквивалентную схему конденсатора.

Таким образом, у конденсатора есть и активное сопротивление r (эквивалентное последовательное сопротивление или по-научному ESR), и сопротивление утечки R, и индуктивность L из-за свернутого спиралью сэндвича. Условность схемы в том, что на самом деле схема представляет собой “длинную линию”, расчет которой чрезвычайно сложен.

Почему возникает взрыв конденсатора

Дело в том, что эти конденсаторы стоят в цепи импульсной схемы питания и служат для сглаживания пульсаций частотой в десятки килогерц. В принципе, уже из-за пульсаций через конденсаторы течет переменный ток, который немного нагревает внутреннее сопротивление. На малой частоте этот нагрев мал и конденсатор холодный. Закипание возникает тогда, когда выделяемая мощность больше мощности рассеивания. Так почему же происходит нагрев из-за которого электролит закипает и происходит взрыв и какую роль в нагревании играет индуктивность?

В импульсных схемах, если посмотреть осциллографом, то можно увидеть, что в момент переключения транзисторов возникает затухающий колебательный процесс, причем амплитуда перерегулирования очень значительная, а частота колебательного процесса высокая. Высокочастотная составляющая хорошо пропускается емкостью, она же и является основной причиной нагрева конденсатора. Причем же здесь индуктивность? А индуктивность и является причиной колебаний, т.к. она является частью колебательного контура LC. Поэтому, чем больше паразитная индуктивность конденсатора, тем больше энергия высокочастотной колебательной составляющей выделяется внутри конденсатора. Во избежание взрыва на корпусе конденсатора наносятся насечки, позволяющие выпустить пар кипящего электролита.

Как выбирать конденсаторы для замены

1. Нужно брать качественные изделия с малым ESR и индуктивностью. Они дороже, но греются меньше и взрываются значительно реже. К тому же, есть понятие “реактивная мощность конденсатора” – мощность, которую конденсатор способен выдержать, пропустив через себя, и которая зависит тангенса потерь диэлектрика и размеров конденсатора. Т.е., чем больше размер конденсатора, тем больше рассеивание и выше реактивная мощность.

2. Можно параллельно электролитическим конденсаторам поставить керамические небольшой емкости.

3. Если выбросы напряжения заходят в отрицательную область, то поможет обратный диод, который не даст обратному току “спалить” полярный конденсатор при приложении обратного напряжения.

Срок жизни электролитических конденсаторов ограничен из-за химических изменений в диэлектрике и зависит от того, как близко выбрано рабочее напряжение к максимальному. Другими словами, чем выше мы выберем максимальное напряжение конденсатора, тем дольше он будет служить.

Перепайка конденсаторов на материнской плате в нашем компьютерном центре обычно стоит 1000 руб вместе с работой по разборке и сборке компьютера.

Правда о конденсаторах

Однако самой правдоподобной версией массового выхода из строя электролитических конденсаторов является другая – технологическая. В пользу этой версии говорит тот факт, что взрываются в основном конденсаторы, произведенные конкретными китайскими фирмами.

История вопроса. Некоторые китайские фирмы не захотели покупать патенты на производство электролитических конденсаторов и разработали свою технологию, в частности, формулу электролита. Однако, формула оказалась нестабильной. Через несколько лет их электролит под воздействием рабочих факторов (одни из важнейших – повышенная рабочая температура и напряжение) изменяет свои электрические параметры, в частности, сопротивление. В результате через несколько лет конденсаторы вспучивались из-за вскипания электролита.

Поэтому самое главное при замене конденсаторов – это заменять их на качественные конденсаторы, произведенные надежной фирмой.

Теория

Очень часто при ремонте компьютеров и компьютерной техники – в блоках питания, материнской плате компьютера, видеокарте, мониторах, принтерах и других устройствах – можно обнаружить испорченные вздутые конденсаторы, в которых вытек электролит, а их корпус разрушен.

Конденсаторы – это рулоны (или стопки) фольги, разделенные диэлектриком. В электролитических конденсаторах одним электродом (анодом) является фольга, а другим (катодом)- электролит. В качестве диэлектрика выступает тонкая оксидная пленка, нанесенная на анод. Чтобы разобраться с причиной, по которой конденсаторы выходят из строя, составим примерную эквивалентную схему конденсатора.

Таким образом, у конденсатора есть и активное сопротивление r (эквивалентное последовательное сопротивление или по-научному ESR), и сопротивление утечки R, и индуктивность L из-за свернутого спиралью сэндвича. Условность схемы в том, что на самом деле схема представляет собой “длинную линию”, расчет которой чрезвычайно сложен.

Почему возникает взрыв конденсатора

Дело в том, что эти конденсаторы стоят в цепи импульсной схемы питания и служат для сглаживания пульсаций частотой в десятки килогерц. В принципе, уже из-за пульсаций через конденсаторы течет переменный ток, который немного нагревает внутреннее сопротивление. На малой частоте этот нагрев мал и конденсатор холодный. Закипание возникает тогда, когда выделяемая мощность больше мощности рассеивания. Так почему же происходит нагрев из-за которого электролит закипает и происходит взрыв и какую роль в нагревании играет индуктивность?

В импульсных схемах, если посмотреть осциллографом, то можно увидеть, что в момент переключения транзисторов возникает затухающий колебательный процесс, причем амплитуда перерегулирования очень значительная, а частота колебательного процесса высокая. Высокочастотная составляющая хорошо пропускается емкостью, она же и является основной причиной нагрева конденсатора. Причем же здесь индуктивность? А индуктивность и является причиной колебаний, т.к. она является частью колебательного контура LC. Поэтому, чем больше паразитная индуктивность конденсатора, тем больше энергия высокочастотной колебательной составляющей выделяется внутри конденсатора. Во избежание взрыва на корпусе конденсатора наносятся насечки, позволяющие выпустить пар кипящего электролита.

Как выбирать конденсаторы для замены

1. Нужно брать качественные изделия с малым ESR и индуктивностью. Они дороже, но греются меньше и взрываются значительно реже. К тому же, есть понятие “реактивная мощность конденсатора” – мощность, которую конденсатор способен выдержать, пропустив через себя, и которая зависит тангенса потерь диэлектрика и размеров конденсатора. Т.е., чем больше размер конденсатора, тем больше рассеивание и выше реактивная мощность.

2. Можно параллельно электролитическим конденсаторам поставить керамические небольшой емкости.

3. Если выбросы напряжения заходят в отрицательную область, то поможет обратный диод, который не даст обратному току “спалить” полярный конденсатор при приложении обратного напряжения.

Срок жизни электролитических конденсаторов ограничен из-за химических изменений в диэлектрике и зависит от того, как близко выбрано рабочее напряжение к максимальному. Другими словами, чем выше мы выберем максимальное напряжение конденсатора, тем дольше он будет служить.

Перепайка конденсаторов на материнской плате в нашем компьютерном центре обычно стоит 1000 руб вместе с работой по разборке и сборке компьютера.

Правда о конденсаторах

Однако самой правдоподобной версией массового выхода из строя электролитических конденсаторов является другая – технологическая. В пользу этой версии говорит тот факт, что взрываются в основном конденсаторы, произведенные конкретными китайскими фирмами.

Читайте также:  Блок питания для подзарядки аккумулятора

История вопроса. Некоторые китайские фирмы не захотели покупать патенты на производство электролитических конденсаторов и разработали свою технологию, в частности, формулу электролита. Однако, формула оказалась нестабильной. Через несколько лет их электролит под воздействием рабочих факторов (одни из важнейших – повышенная рабочая температура и напряжение) изменяет свои электрические параметры, в частности, сопротивление. В результате через несколько лет конденсаторы вспучивались из-за вскипания электролита.

Поэтому самое главное при замене конденсаторов – это заменять их на качественные конденсаторы, произведенные надежной фирмой.

Привет всем был у меня блок питания от компьютера, выкл его сегодня поработав 5мин он как бабахнет как оказалось взорвался конденсатор mef250 1.0k блок работал без нагрузки не не замыкался 🙁 что делать пробовать найти такой конденсатор не получилось или уже смысла нету 🙂 ? И подскажите аналог ему !)
Всем спасибо !

Смотрите также

Комментарии 69

Если знаний по ремонту нет то приобретай новый и не парься. Быстрее и спокойнее для нервов будет. Или в ремонтных мастерских по компьютерам кто б/у занимается можно взять подешевке но сколько проработает никто не скажет.

За это огромное спасибо

там скорее всего полупроводники погорели, а их менять смысла нету, лучше в компьютерной мастерской попроси блок питания должны так отдать или рублей за сто продать. у меня таких блоков несколько штук лежит ) хорошие блоки питания только надо кондёры выходные такие как 16в1000мф подобные на новые менять тогда нормально пашет. могу почтой если не найдёшь отправить тебе .

Спасибо попробую узнать 🙂

не факт, что после замены БП заработает… Просто так он не взрывается без далеко идущих последствий

Не читал всё, но хоть кто-то написал, что это не конденсатор? 😉

Странно. Обычно хотя-бы парочка пишет, то-что нагуглили — это копаситор 🙂

Не читал всё, но хоть кто-то написал, что это не конденсатор? 😉

Тю. А я разве спорил? Я тебе и место на схеме могу показать где он стоял 😉

))) просмотрел все комменты вроде не кто не говорил что это не конденсатор)))

Эх. Где бродят те, кто разбирается во всём, но с помощью гугула 🙂

Тю. А я разве спорил? Я тебе и место на схеме могу показать где он стоял 😉

У меня, кстати, тоже взрывался, но без последствий.
www.drive2.ru/b/150956/

Ого. Вот это заморочился.

Сделать было проще, чем описать словами…

Это у технарей — есть.

Это обычный металлопленочный конденсатор. Выпускается по сей день. Посмотри маркировку — емкость и напряжение. Перепиши на бумажку, и иди сней в магазин радиодеталей. Можно заменить его таким же по характеристикам любым неполярным конденсатопом. Ни в коем случае не электролитом.

Ох ты ж и раритет выкопал… Я думал что все JNC ещё лет 10 назад вымерли… Если удастся запустить — повесь на шину 5в резистор керамику ом на десять, чтоб нагрузку создать. А лучше, конечно, выкинуть и купить бушный но поновее.

дак он у автора и помер, дорога одна — в утиль)

Ох ты ж и раритет выкопал… Я думал что все JNC ещё лет 10 назад вымерли… Если удастся запустить — повесь на шину 5в резистор керамику ом на десять, чтоб нагрузку создать. А лучше, конечно, выкинуть и купить бушный но поновее.

а есть разница нагрузку на 5 или на 12 кинуть?

Лучше на 5, обычно в блоках стабилизация именно по пяти вольтам идет, а 12в по принципу «шо выйдет». Хотя никто не мешает и на 5 и на 12 по резистору повесить.

я на 12 в повесил светодиодную ленту которая внутри блока, типа нагрузка… вот думаю не сгорит ли блок

верно ниже написали, схемотехника АТ блока такова, что не любит он без нагрузки жить, давным-давно я такое на своей шкуре понял, им нужна нагрузка примерно на четверть его мощности постоянная чтобы жить нормально.
Как же я радовался когда оказалось, что ATX блоки к этому более терпимо относятся

То есть АТХ можно без нагрузки вкл ?) просто на будущие чтоб знать или тоже не желательно ?)

как минимум подобных прецедентов с ними не было. Вот уже 15 лет как.
Обусловлено тем, что в них предусмотрена работа с минимальным энергопотреблением нагрузки

То есть АТХ можно без нагрузки вкл ?) просто на будущие чтоб знать или тоже не желательно ?)

не ссы, ща АТ не реально найти

У меня в гараже 2 шт. имеются :))))

То есть АТХ можно без нагрузки вкл ?) просто на будущие чтоб знать или тоже не желательно ?)

у АТ не у всех есть обратная связь и защиты.АТХ же почти любой напичкан парой защит.

верно ниже написали, схемотехника АТ блока такова, что не любит он без нагрузки жить, давным-давно я такое на своей шкуре понял, им нужна нагрузка примерно на четверть его мощности постоянная чтобы жить нормально.
Как же я радовался когда оказалось, что ATX блоки к этому более терпимо относятся

Старье в помойку, любой простенький АТХ блок выдаст необхожимо кол-во ампер по линии 12В для запуска магнитолы… Для справки автору: на блоках питания АТХ — желтые провода — это линия 12В. Для запуска АТХ блока питания достаточно в основной колодке замкнуть хоть скрепкой зеленый! провод с любым черным, БП работает, пока вставлена скрепка…

для запуска — да, для нормальной работы простенькой магнитолы 300Вт АТХ не хватает
особенно с приводом CD

Еще как хватает.
Второй год, такая связка в магазине работает.

для запуска — да, для нормальной работы простенькой магнитолы 300Вт АТХ не хватает
особенно с приводом CD

Это потому, что нет нагрузки на 5 В шине, а 12 В нагружается. Происходит перекос напряжения и срабатывает защита. Достаточно подвесить на 5 В шину лампочку 12В 21Вт, и 12 В шину можно грузить на 10 А…

Дешевле в любой компьтерной комиссионке купить б/у на 300w и лучше АТХ.
Если не имеешь опыта восстановления-купи другой.

А чем больше ват тем чем лучше извени за глупый вопрос ?) Ампер больше ?
И почему лучше Atx, если не трудно напиши в качестве развития 🙂
Спасибо!

кроме надписей на корпусе еще можно по весу определить. хороший блок весит приличненько в отличии от китая который разве шо ветром не сдувает

А чем больше ват тем чем лучше извени за глупый вопрос ?) Ампер больше ?
И почему лучше Atx, если не трудно напиши в качестве развития 🙂
Спасибо!

ATX наверное потому что продажа экспанатов из музея преследуется статьями из уголовного кодекса, про АТ блоки знают только олдфаги, школота из магазинов не знает что такие когда то делали и продавали) Да и старые они, их лет как 15 не выпускают уже кажется.

А чем больше ват тем чем лучше извени за глупый вопрос ?) Ампер больше ?
И почему лучше Atx, если не трудно напиши в качестве развития 🙂
Спасибо!

ат и атикс это не амерная разница, а разница в типе подключения

А чем больше ват тем чем лучше извени за глупый вопрос ?) Ампер больше ?
И почему лучше Atx, если не трудно напиши в качестве развития 🙂
Спасибо!

Читайте также:  Почему импульсный блок питания называется импульсным

Любой можно АТ или АТХ.Любой.

А чем больше ват тем чем лучше извени за глупый вопрос ?) Ампер больше ?
И почему лучше Atx, если не трудно напиши в качестве развития 🙂
Спасибо!

Блок питания AT (PC/XT, PS/2) имеет всего 12 основных проводов для подключения к материнской плате (2 разъёма по 6 контактов). В 1995 году компания Intel с ужасом обнаружила, что существующие блоки питания не справляются с возросшей нагрузкой, и ввела стандарт на 20-ти/24-контактный разъём. Кроме того, мощности стабилизатора +3,3 В на материнской плате для питания процессора также перестало хватать, и его перенесли в блок питания. Ну и Microsoft, ввела в операционную систему Windows, режимы управления питанием Advanced Power Management (APM)…
Так, в 1996 году появился современный блок питания ATX.

Источник

От чего умирают конденсаторы? Типы, применение, сравнительные характеристики, области применения, причины смерти.

собственно главный вопрос: от чего умирают конденсаторы? от тока, напряжения, мощности?(при прочих равных условиях: нормальные влажность, температура, механика).

типы, сравнительные характеристики и области применения.

надеюсь всем полезно будет

начнём:
1. Электролитические. Имеют полярность. Подключать в обратной полярности нельзя-взорвутся. Постоянный ток. Большая ёмкость. Большая паразитная индуктивность. Большие погрешность и ток утечки.

2. Неполярные электролитические конденсаторы только для переменного тока

3. Керамические, бумажные и другие неэлектролитические конденсаторы. Неполярные. Переменный и постоянный ток. Потери меньше, чем у электролитов.

Применение:
1)в фильтрах блоков питания — электролиты,
2)остальное (питание, шунты, развязки) — керамика

Напряжение указанное на конденсаторе должно быть не меньше максимально допустимого напряжения.

«Остальное» не обязательно керамика. Кое где предпочтительнее плёночные.
Если не рассматривать «экзотику» (типа вакуумных и др.), то:

Электролиты (полярные и неполярные) умирают или от времени (высыхают из-за недостаточной герметичности корпуса), или от перенапряжения, или от несоблюдения полярности, или превышения напряжения пульсаций (переменная составляющая). Есть ещё понятие «формовка» или «тренеровка» электролитов, что уменьшает число отказов.

Неэлектролитические — практически вечные. На моей памяти только пробои диэлектрика из-за превышения напряжения, и отслоение напыления от керамики (потеря контакта).

Источник

Что может произойти с вашей электроникой, если ее на нее не подавать питание длительное время

Вы никогда не сталкивались с такой ситуацией, что при подаче питания на электроприбор, то есть при его включении, после длительного перерыва в работе, например, более года, он внезапно выходит из строя? Хотя до последнего выключения он работал исправно. А это имеет место быть. И чем больше был перерыв в работе электроприбора, тем больше вероятность его выхода из строя при включении. Нет, я не утверждаю, что при включении электроприбора в данной ситуации он обязательно выйдет из строя. Но! Вероятность этого события при этом увеличится.

Давайте разберемся, почему это происходит. Почти все электроприборы, от компьютера, до стиральной машины содержат в своем составе электролитические конденсаторы. И в этой статье речь пойдет о них, как об основных виновниках выхода из строя электроприборов. Чтобы понять физические процессы происходящие при этом в электролитических конденсаторах, рассмотрим их устройство.

Электролитический конденсатор состоит из герметичной колбы, в которую запрессованы две обкладки свернутые в спираль. Положительная и отрицательная. Положительная обкладка выполнена из алюминиевой фольги, покрытой тонкой пленкой оксида алюминия, которая исполняет роль диэлектрика в конденсаторе между обкладками.

Отрицательной обкладкой является жидкий электролит, которым пропитана бумажная лента и которая имеет гальванический контакт с неоксидированной (непокрытой пленкой оксида алюминия) алюминиевой фольгой, обеспечивающей надежный контакт между отрицательным выводом конденсатора и электролитом, благодаря их большой площади соприкосновения.

При длительном перерыве в работе, то есть при отсутствии на конденсаторе напряжения в течении этого времени, происходит постепенное разрушение диэлектрика (оксида алюминия) при его взаимодействии с электролитом в отсутствии напряжения на обкладках конденсатора. Это приводит к утончению диэлектрического слоя, к увеличению тока утечки и как следствие, увеличению вероятности пробоя конденсатора при подаче на него номинального напряжения. Этот эффект начинает проявляться при перерыве в работе конденсатора длительностью более года.

Специалисты в таких случаях рекомендуют проводить тренировку (формовку) конденсаторов, суть которой заключается в подаче на конденсатор в течении длительного времени постепенно увеличивающегося напряжения, с контролем тока утечки. При этом, подача в начале тренировки малого значения напряжения, не приведет к пробою конденсатора, и начнется процесс восстановления диэлектрического слоя (оксида алюминия) благодаря процессу электролиза. И по мере восстановления диэлектрического слоя, напряжение на конденсаторе увеличивается до номинального. Скорость увеличения напряжения определяется по значению тока утечки.

Рекомендации одного из производителей электролитических конденсаторов по проведению тренировки (риформинга).

Еще выдержка из технической документации производителя конденсаторов EPCOS.

Проведем практическую проверку этого эффекта. В качестве подопытного возьму недавно купленный на радиорынке электролитический конденсатор на 3300 мкФ., с номинальным напряжением 25 В., дата изготовления сентябрь 2016 года.

Предполагаю, что с даты изготовления, и до сегодняшнего дня на него никто не подавал напряжение. И потому для эксперимента он подходит, как нельзя лучше. Подам на него с лабораторного источника питания 25 В., и после его заряда в разрыв включу амперметр (прибор Ц-43101) для измерения тока утечки.

Ссылка на видео: https://disk.yandex.ru/i/B1R4rwUrHpjyyQ

Отсюда видно, что ток утечки составил 35 мкА. (вся шкала прибора 250 мкА). Оставляю его под напряжением на 1 час, и повторю измерение.

Ссылка на видео: https://disk.yandex.ru/i/k8fSGwiW3YpzgQ

В этом случае, как мы видим, ток утечки составил 7 мкА. Итого ток утечки уменьшился в 5 раз. Отсюда вывод, вышеизложенное явление подтверждено на практике.

Но не будете, же вы выпаивать из своих компьютеров и телевизоров конденсаторы для их тренировки, после их длительного перерыва в работе. Поэтому включайте свою электронику (подавайте на нее питание) хотя бы раз в год. А иначе после включения, особенно если в вашей электронике применены дешевые конденсаторы из них может выйти белый дым.

Во время моей учебы, мой преподаватель по предмету «радиокомпоненты» как то спросил у нас: так на чем работает вся электроника? Многие начали отвечать, что работает на упорядоченном движении заряженных частиц, и так далее. На что преподаватель в шутку сказал, что вся электроника работает на белом дыме. Пока белый дым находится в электронике, она работает. Как только белый дым выходит из электроники, она перестает работать. Так и в данном случае с нашими электролитическими конденсаторами, подобное может произойти.

Кроме того, электролитические конденсаторы подвержены высыханию. И это их основная проблема, каждый второй ремонт электроники по моему опыту заканчивается заменой именно этой детали. Высыхание происходит из-за плохой герметизации корпуса. Вследствие чего электролит постепенно испаряется, а поскольку он является одной из обкладок конденсатора, то и получается, что испаряется одна обкладка конденсатора. И емкость уменьшается до нуля. Опять же это зависит от качества конденсаторов. С качественными конденсаторами вероятность подобного значительно меньше. Но, к сожалению, при покупке электроники возможности изучить применяемую в ней элементную базу, какие там стоят конденсаторы не всегда возможно.

Подобных недостатков лишены полимерные конденсаторы.

Поэтому, выбирая комплектующие компьютерной техники, старайтесь выбирать комплектующие, выполненные на полимерных конденсаторах. Тем более, что во многих комплектующих визуально открыт доступ к используемой элементной базе. И легко, например, увидеть на материнской плате, какие конденсаторы применяются.

Источник