Меню

Перематываем трансформатор от компьютерного блока питания



Перематываем трансформатор от компьютерного блока питания

ну вот, блок питания мы нашли, аккуратно при помощи паяльника, оплётки от кабеля, канифоли и *такойто матери* получили заветный трансформатор.
у меня для проверки трансформаторов изготовлен самодельный простенький стенд, при его помощи я покажу , что же мы имеем сразу *так сказать* не перематывая трансформатор, возможно имеющегося на выходе обмоток трансформатора напряжения хватит для Ваших нужд, но если этого мало, то читаем тему дальше.

рассмотрим то как изначально намотан трансформатор, для этого разбираем его.
Первым делом следует удалить скотч с магнитопровода, следующим шагом на следует разделить части магнитопровода, для этого следует нагреть магнитопровод , некоторые советуют *заварить* трансформатор в воде, но такой способ годиться далеко не во всех случаях, так как используемый для соединения частей магнитопровода клей сохраняет свои скрепляющие способности вплоть до 270-300 градусов Цельсия. По этому лично я применяю фен паяльной станции, Вы же можете применить строительный фен либо паяльник для пайки пластиковых водопроводных труб, для этого просто положите трансформатор открытой стороной феррита на паяльник и ждите около 3-6 минут при установленной температуре 270-300 градусов. Для ускорения процесса и боле равномерного нагрева магнитопровода , я использую эдакий *тепловой мешок* принцип действия его напоминает экран, только наш сдерживает тепло внутри и не даёт ему расходиться в стороны, таким образом мы прогреваем трансформатор наиболее эффективно и значительно быстрее, в простейшем случае можно использовать лист бумаги свернутый как показано на фото.После нагрева до необходимой температуры клей теряет свои свойства и при помощи пинцета или руками в ХЛОПЧАТОБУМАЖНЫХ перчатках разделяем части магнитопровода.

Источник

Реинкарнация компьютерных БП. Часть 1

Те, кто уже имел дело с силовыми трансформаторами компьютерных БП, знают, что первичная обмотка трансформатора содержит около 40 витков провода, разделенных, как правило, на 2 секции, наматываемых до и после вторичной обмотки. Таким образом достигается уменьшение паразитной емкости первичной обмотки и усиливается индуктивная связь между обмотками, что важно для ШИ-возможностей БП. Суммарное же количество витков вторичных полуобмоток — 7 (3+4). Таким образом, коэффициент трансформации штатного трансформатора приблизительно равен 5,7. Для полумостовой схемы преобразователя амплитуда прямоугольных импульсов будет равна половине питающего напряжения преобразователя, т.е. — 220Х1,4/2=154В (пренебрегая падением напряжения на К-Э-переходах транзисторных ключей).

Это значит, что действующее значение «переменки» на выходе трансформатора составит приблизительно 27В. Значение выходного напряжения первой части полуобмоток (первые 3 витка от средней точки) — 11,5В. Выпрямив полученные напряжения, получим «постоянку» с приблизительными значениями, соответственно, 38 и 16 Вольт. Габаритная мощность магнитопроводов трансформаторов современных и чуть менее современных компьютерных БП составит не менее 250Вт на частотах преобразования от 30кГц. Это значит, что при расчетных выходных напряжениях мы можем расчитывать на выходной ток от 6,5 Ампер. Впечатляет? Причем все ЭТО можно получить при простой схемотехнике и незначительных усилиях при конструировании, учитывая, разумеется, отсутствие такого сервиса, как стабилизация выходных напряжений, например. А во многих случаях стабилизация и не нужна. Взамен получаем мощность, приемлемый набор выходных напряжений, позволяющий использование возрожденного БП в широком диапазоне задач (от построения лабораторного БП до питания мощных усилителей) компактность, малый вес. А эти показатели перекрывают такой минус, как отсутствие стабилизации.

У трансформаторов компьютерных БП есть один большой плюс, помимо уже замеченных в этом тексте, — стандартный установочный профиль. Это обстоятельство делает задачу разработки универсальной схемы с применением тр-ов от разных БП очень простой, равно, как и разработку печатной платы для этой схемы. Это значит, изготовление БП с подобными трансформаторами можно поставить на поток, не взирая на габаритные и мощностные различия трансформаторов. Еще один плюс силовых трансформаторов компьютерных БП — высокая надежность, обусловленная применением качественных современных ферритов, эпоксдной пропиткой, избыточным сечением обмоточных проводов. Никто из тех, кому доводилось ремонтировать компьютерные БП, не сможет, пожалуй, припомнить гибель такого трансформатора. И еще — трансформатор можно легко экранировать полоской фольги, создав КЗ-виток вокруг самого трансформатора.

Задача проста. Схема должна быть максимально простой и повторяемой при использовании трансформаторов от разных БП. Для этой цели попробуем применить трансформатор в схеме двухтактного полумостового автогенераторного преобразователя, так полюбившегося производителями электронных трансформаторов (Рис 1а) с любым из узлов запуска (Рис 1б — рис 1г).

Читайте также:  Бестрансформаторный блок питания с регулировкой напряжения

Проще схемы, пожалуй, не бывает.

До сборки схемы по рис 1а необходимо намотать коммутирующий (управляющий) трансформатор на ферритовом кольце размером 10Х6Х3мм (наружный диаметр Х внутренний диаметр Х высота) или другом, имеющим близкие габариты из материалов 1000/1500/2000/3000НН. Можно попробовать и другие размеры и марки феррита, но следует учесть, что размеры бОльшие, чем те, что указаны, могут значительно снизить частоту коммутации, а то и вовсе привести к неспособности трансформатора к насыщению. При этом габариты трансформатора должны обеспечивать определенную мощность для создания в его обмотках тока, достаточного для открывания транзисторов. Кроме того, габариты трансформатора должны обеспечить и достаточное пространство для размещения необходимого количества витков. «Базовые» обмотки могут содержать от 3 до 10 витков медного провода диаметром не менее 0,3мм в эмалевой или любой другой изоляции. Возможно использование одножильного монтажного провода с жилой указанного диаметра. Таким же проводом наматываем и обмотку связи — 1-10 витков.

Обмотка связи в виде 1-4 витков провода делается и на «компьютерном» трансформаторе. Практически в любом трансформаторе найдется зазор между имеющимися обмотками и боковыми частями магнитопровода для нескольких дополнительных витков провода казанного сечения.
Собираем макет электрической схемы преобразователя (рис 2, рис 3), подпаиваем к схеме выводы

«компьютерного» трансформатора; к выводам его вторичной обмотки подпаиваем нагрузочный резистор, обеспечивающий небольшую, до 10Вт, потребляемую мощность (но можно и без нагрузки); параллельно любой из вторичных обмоток подключаем осциллограф и через лампу накаливания мощностью 150-200Вт подключаем схему к сети. Увидев на дисплее осциллографа импульсы правильной прямоугольной формы

и не заметив свечения нити балластной лампы, понимаем, что преобразователь — работает. Выключаем, проверяем на нагрев радиатор, на котором закреплены транзисторы (MJE13007), трансформатор. Если все эти предметы не изменили своей температуры за несколько секунд проверочного включения относительно той, что была до включения, то — продолжаем эксперементировать.

Измеряем частоту преобразования и при необходимости подбираем ее значение с помощью подбора витков обмоток связи одного из трансформаторов и резистора R3 (рис 1а). При подборе частоты указанными манипуляциями следует учесть, что при увеличении витков обмотки связи трансформатора Tr2, частота преобразования будет снижаться, а ток через резистор R3 — возрастет. Увеличение числа витков обмотки связи на Tr1 так же будет способствовать снижению частоты, равно. как и уменьшение сопротивления резистора R3. Оптимальным следует считать режим преобразования с частотой равной или большей той частоты, при которой трансформатор эксплуатировался в исходном БП. Т.е. — от 30-35кГц. Преобразователь, собранный по схеме на рис 1а, работает уверенно и на более низких частотах. Правда, продолжительность испытаний не превышала получаса для каждого варианта (см таблицу 1), а мощность нагрузки не превышала 55Вт.

При указанных в таблице 1 изменениях номиналов деталей и обмоточных данных, нагрев транзисторов, установленных на радиаторе в макете (на рис 2, 3) не превышал 40 градусов при получасе работы. Нагрев существенно может быть снижен достижением оптимального количества витков обмоток связи обоих трансформаторов. Эта же мера снизит разогрев и резистора R3. Правильный подбор витков будет способствовать и общей стабильности схемы. При испытаниях умышленно было выбрано неверное соотношение витков. О хорошем и правильном — в продолжении.

А результаты испытания ЭТОЙ схемы с трансформатором из компьютерного БП показали следующее.
1. Действующие напряжения вторичных обмоток трансформаторов (а испытывались четыре различных трансформатора от разных БП) оказались несколько выше расчетных: 11,8 — 13,6В (пятивольтовая полуобмотка разных тран-в), 28-30,5В — (двенадцативольтовая полуобмотка).

2. Схема преобразователя нормально запускалась и работала при различных параметрах цепи ОС
Можно добавить также, что частота преобразования ЭТОЙ схемы растет с увеличением тока нагрузки, — характерно для подобных преобразователей.
О преобразователе, собранном по схеме на рис 1д.

Как видно, схема — все та же, но в качестве ключей применены мощные полевые транзисторы. Выбраны были IRFP460A, т.к. просто оказались в наличии именно эти транзисторы. Обмотки коммутирующего тр-ра, разумеется, намотаны уже несколько иначе, т.к. порог открывания полевых транзисторов — 5-12В. Затворные обмотки коммутирующего трансформатора и обмотка связи содержат одинаковое количество витков — по 20 — медного провода в диаметром 0,3 в эмали. Перед наматыванием провода в эмалевой изоляции, не лишним будет окунуть магнитопровод в клей («момент» или «БФ-2») для создания изоляционного слоя поверх проводящего, в общем-то, материала магнитопровода. Габариты кольца такие-же, как и у трансформатора из предыдущей схемы. Количество витков обмотки связи силового тр-ра так же придется увеличить (3-4 витка) для создания необходимого напряжения на обмотке связи тр-ра Tr1.

Читайте также:  Что такое блок питания для компа

Фото макета на рис 4, 5.

Преимущества преобразователя, собранного по схеме на рис 1д перед прототипом на биполярных ключах. 1.Схема практически не дает разброса частоты при изменении нагрузки (в указанных пределах — см таблицу 2).

3. Резисторы обратной связи R3 практически не нагреваются, каких бы номиналов они ни применялись при испытании. Это обстоятельство позволяет применить в качестве R3 маломощные (от 0,25Вт) резисторы.

4. Практически отсутствует нагрев ключей. Это значит, что и площадь охлаждающих радиаторов может быть относительно небольшой, а устройство в целом — более компактным.
5. ЭТА схема по своим свойствам сопоставима со схемой на на полумостовом драйвере типа IR2151-IR2153, но имеет более высокий КПД за счет отсутствия цепей питания самого драйвера; схема меньше уязвима и менее требовательна к компоновке в отличии от схемы со специализированным драйвером.

Надеюсь, статья поможет многим переосмыслить собственные взгляды на старые компьютерные БП и сэкономить при создании таких несложных и нужных БП.

Источник

Пошаговая инструкция по перемотке импульсного трансформатора

Трансформатор представляет собой преобразователь переменного напряжения или же гальванической развязки. Благодаря устройству исходное напряжение преобразуется в конечное, которое требуется для работы конкретного электроприбора. Ведь для каждого электрического прибора требуется определенное напряжение. К примеру, если оно большое, прибор может сгореть, а низкое, то он не сможет работать. В каких случаях требуется перемотка конкретного импульсного трансформатора, и для чего она нужна?

Как правильно разобрать

Несмотря на то, что с виду трансформатор кажется сложным устройством, его разборка достаточно проста в исполнении. Главная задача в данном случае, это удаление поверхностной оболочки, состоящей из ферритового магнитопровода.

Для этого требуется подогреть феррит до 300 0 С и расшатывая имеющиеся половинки вытянуть их из каркаса. Делать это нужно быстро, чтобы размягченный клей не успел застыть. Такую процедуру нужно производить обязательно в перчатках. Далее потребуется:

  • откусить кусачками прикрепленные медные обмотки;
  • размотать проволоку до самого основания;
  • устранить на каркасе оставшиеся кусочки обмотки.

Всего несколько шагов и каркас трансформатора полностью очищен. Главная сложность заключается в разогреве ферритовой оболочки. Но в данном случае можно воспользоваться несколькими советами. Например, использовать строительный фен, паяльную станцию или же подогреть на сковородке.

Определение назначения перемотки

В случае, когда причиной поломки, к примеру, компьютерного оборудования стал выход из строя трансформатор, то можно произвести его перемотку, а не покупать новый компьютер. Основанием для осуществления перемотки могут быть:

  • имеющееся число витков не соответствует установленным нормам;
  • при осуществлении монтажа были допущены ошибки;
  • в ходе эксплуатации нарушались обозначенные правила;
  • допущены дефекты непосредственно при заводском изготовлении оборудования.

Чтобы проверить работу трансформатора, следует разобрать блок питания и осмотреть устройство, нет ли на нем видимых повреждений.

Если таковых нет, то стоит проверить первичную и вторичную обмотку.

Методика и пример расчета

Одним из простых способов произвести расчет относительно намотки проводки на импульсный трансформатор считается использование специальных программ. Благодаря чему, можно выяснить сколько витков нужно будет сделать, и какие материалы лучше для этого использовать. К примеру, можно привести такой расчет:

  1. Если за основу брать частоту преобразования 50кГц, это в том случае, когда трансформатор будет переделываться для БП ПК, то в программе нужно отметить показатели в значении 30кГц.
  2. Затем требуется обозначить габариты, и соответственно параметры сердечника.

Согласно данным программы, то получается число витков должно составить 38 для первой обмотки. Что касается второй обмотки, то число витков составит 10+10 двумя жилами обозначенного провода. Также следует сказать, что в случае, если основа трансформатора небольшая и число витков не помещается в один слой, то можно сделать наматывание провода в два слоя, но по одинаковому количеству витков. В непременном порядке их нужно будет изолировать от вторичной намотки.

Не менее важным параметром считается то, что нужно учитывать количество наматываемого провода. То есть, когда наматывается второй слой, количество провода увеличивается, поэтому не стоит откусывать указанный в расчете метраж.

Читайте также:  Блок питания с проводом для монитора

Как правильно мотать

Перед тем, как начать мотать трансформатор следует помнить, что эта работа кропотливая, если работа будет производиться вручную. Все дело в том, что витки должны плотно прилегать друг другу. Наилучшим вариантом будет использование при помощи примитивного прибора, который можно сделать самостоятельно. Также нужно сказать, что наматывать провод нужно исключительно на основе расчетов. То есть, точное количество витков непосредственно в одном слое.

Каждый слой должен быть отделен от следующего ряда витков специальной изоляционной лентой. Если таковой нет, то можно использовать тонкую, но плотную бумагу.

К примеру, можно использовать кальку. Зачастую обмотка составляет три слоя, и каждый из них должен быть изолирован друг от друга. По окончанию процесса намотки выводы проводки нужно качественно припаять.

Важно знать! Используемый изоляционный материал должен быть не только плотным, но важно чтобы он не имел повреждений. Обусловлено это тем, чтобы исключить вероятность замыкания.

Источник

Перематываем трансформатор от компьютерного блока питания

Текущее время: Чт июн 24, 2021 17:30:35

Часовой пояс: UTC + 3 часа

Перемотка трансформатора ATX

Страница 1 из 1 [ Сообщений: 9 ]

Я неоднократно переделывал БП от ПК в зарядные устройства для аккумуляторов 50-60 Ач. Настала необходимость сделать зарядку для 140 Ач. Силовую всю пределал, можно сказать собрал новую схему, но вот с трансформатором — проблема. Разобрался он замечательно, после нагрева феном. Я снял с него вторичку: 3 витка 3 проводами -5 Вольт далее 4 витка 1 проводом — 12 вольт. Итого для 12 вольт 7 витков( на одно плечё). С намоткой всегда были проблемы. Пробовал следующие варианты:
1. первичка + 2 по 10 витков 2,5 мм кв
2. певичка +2 по 12 витков 0,75 мм
3. от другого трансформатора с разделенной первичкой: 20 витков первички, экран,2 по 10 витков вторичка 1,2 мм, экран, 20 витков первички
4. Сам намотал на картонный каркас 40 витков первичку и 16 витков вторичку с отводом по середине.

Результат одинаковый. 12 В при ШИМ открытом на полную. УВеличиваю сопротивление ОС напряжение на уровне 9 вольт начинает регулироваться. При подключении нагрузки 10 Ом напряжение падает до 2 В. Запаса Шим не хватает.

Вопрос — витков больше, как я понимаю, напряжение должно быть больше ШИМ стабилизировать увереннее. На не перемотаном трансформаторе на полную было 24 В. И по мощности запас был больше. Может тонкости какие в перемотке? Именно в укладке провода?

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Приглашаем всех желающих 15 июля 2021 г. принять участие в бесплатном вебинаре, посвященном решениям Microchip и сервисам Microsoft для интернета вещей. На вебинаре будут рассмотрены наиболее перспективные решения Microchip, являющиеся своеобразными «кирпичиками» – готовыми узлами, из которых можно быстро собрать конечное устройство интернета вещей на базе микроконтроллеров и микропроцессоров производства Microchip. Особое внимание на вебинаре будет уделено облачным сервисам Microsoft для IoT.

_________________
Выслушай и противную сторону, даже если она и противна

Приглашаем 07/07/2021 всех желающих принять участие в вебинаре, посвященном работе с графической библиотекой TouchGFX и новой линейке высокопроизводительных микроконтроллеров STM32H7A/B производства STMicroelectronics. На вебинаре будут разобраны ключевые преимущества линейки STM32H7A/B, а также показан пример создания проекта с помощью среды TouchGFX Designer и методы взаимодействия этой программы с экосистемой STM32Cube.

Можно и так, но тогда прийдется и конструкцию переделывать под мост (крепление, радиатор)
Перематывая транс, можно добится максимальной отдачи. Ненужные 12в обмотки будут занимать место понапрасну, которое можно использовать при перемотке для увеличения сечения провода и количества витков.
По сему считаю перемотку целесообразной.
И он вообще по моему пытается вопхнуть туда левый транс

Слева направо: первый вариант намотки, по центру вторичка намотана тонким проводом для проведения эксперимента (легче мотать), последний — вторичка намотана между двух частей первички и отделена экранами из медной фольги, при проверке была намотана аккуратно (как на среднем трансформаторе) сматывал, чтобы удостовериться в количестве витков вторички.

Попробовал поставить трансформатор с исправного БП — заработало. Перемотал еще раз включая первичку — работает. Но загадка осталась.
Всем спасибо.

Источник