Меню

Мощный лабораторный блок питания сделай сам

Простая схема мощного, лабораторного блока питания.

Для нашего лабораторного блока питания понадобится всего 8 деталей, самое главное трансформатор, у которого на выходе порядка 12 -15 вольт. Транзистор возьмём простой и самый распространенный КТ805 с радиатором охлаждения.

Два конденсатора первый на 220 микрофарад 40 Вольт, второй на 2200 микрофарад 25 Вольт.

Резисторы на 1ком и 270 ом. Диодный мост, который рассчитан на 3-4 ампера. И переменный резистор на 10 килоом. Вот вроде все детали, которые нам понадобится для сбора нашей поделки. Делать будем простым навесным монтажом.

Собирать будем вот по такой, простой схеме…

Теперь берём небольшой проводок и припаем его к коллектору транзистора, а другим концом к плюсу нашего диодного моста.

Дальше берем конденсатор на 2200 микрофарад 25 Вольт, к нему припаиваем параллельно резистор 1 ком, который служит для плавного регулирования выходящего тока. Далее припаиваем плюс конденсатора к эммитору транзистора, а минус к нашему диодному мосту.

Затем берём наш второй конденсатор на 220 микрофарад, его минус припаиваем к минусу диодного моста, а плюс соответственно к плюсу диодного моста.

Теперь давайте разберемся и припаяем наш подстроечный резистор. Берем его левый контакт и припаиваем к минусу диодного моста, средний контакт резистора припаиваем в базе нашего транзистора, а третий, правый контакт припаиваем к сопротивлению на 270 ом, а второй конец сопротивления припаиваем к плюсу диодного моста.

Вот и собрали мы нашу схему навесным монтажом, теперь осталось припаять только трансформатор к схеме, это сделать очень просто, берём выход вторичной обмотки и припаиваем к переменным контактом диодного моста.

теперь осталось припаять только трансформатор к схеме, это сделать очень просто, берём выход вторичной обмотки и припаиваем к переменным контактом диодного моста.

Ну и осталось припаять только провода, которые служат выходом нашей схемы. Один провод «плюс» мы при паяем к эмиттеру транзистора, а второй минусовой провод паяем к минусу диодного моста.

Вот и готова наша простая схема небольшого лабораторного блока питания, который я надеюсь поможет вам в дальнейшем, никаких настроек он не требует и работает сразу.

Источник



Лабораторный блок питания

При создании различных электронных устройств, рано или поздно, встаёт вопрос о том, что использовать в качестве источника питания для самодельной электроники. Допустим, собрали вы какую-нибудь светодиодную мигалку, теперь её нужно от чего-то аккуратно запитать. Очень часто для этих целей используют различные зарядные устройства для телефонов, блоки питания компьютеров, всевозможные сетевые адаптеры, которые никак не ограничивают ток, отдаваемый в нагрузку.

А если, допустим, на плате этой самой светодиодной мигалки случайно остались незамеченными две замкнутые дорожки? Подключив её к мощному компьютерному блоку питания собранное устройство легко может сгореть, если на плате имеется какая-либо ошибка монтажа. Именно для того, чтобы не случалось таких неприятных ситуаций, существуют лабораторные блоки питания с защитой по току. Заранее зная, какой примерно ток будет потреблять подключаемое устройство, мы можем предотвратить короткое замыкание, и, как следствие, выгорание транзисторов и нежных микросхем.
В этой статье рассмотрим процесс создания именно такого блока питания, к которому можно подключать нагрузку, не боясь, что что-нибудь сгорит.

Схема блока питания

Схема содержит в себе микросхему LM324, которая совмещает в себе 4 операционных усилителя, вместо неё можно ставить TL074. Операционный усилитель ОР1 отвечает за регулировку выходного напряжения, а ОР2-ОР4 следят за потребляемым нагрузкой током. Микросхема TL431 формирует опорное напряжение, примерно равное 10,7 вольт, оно не зависит от величины питающего напряжения. Переменный резистор R4 устанавливает выходное напряжение, резистором R5 можно подогнать рамки изменения напряжения под свои нужны. Защита по току работает следующим образом: нагрузка потребляет ток, который протекает через низкоомный резистор R20, который называется шунтом, величина падения напряжения на нём зависит от потребляемого тока. Операционный усилитель ОР4 используется в качестве усилителя, повышая малое напряжение падения на шунте до уровня 5-6 вольт, напряжение на выходе ОР4 меняется от нуля до 5-6 вольт в зависимости от тока нагрузки. Каскад ОР3 работает в качестве компаратора, сравнивая напряжение на своих входах. Напряжение на одном входе задаётся переменным резистором R13, который устанавливает порог срабатывания защиты, а напряжение на втором входе зависит от тока нагрузки. Таким образом, как только ток превысит определённый уровень, на выходе ОР3 появится напряжение, открывающее транзистор VT3, который, в свою очередь, подтягивает базу транзистора VT2 к земле, закрывая его. Закрытый транзистор VT2 закрывает силовой VT1, размыкая цепь питания нагрузки. Происходят все эти процессы за считанные доли секунды.
Резистор R20 стоит взять мощностью ватт на 5, чтобы предотвратить его возможный нагрев при долгой работе. Подстроечный резистор R19 задаёт чувствительность по току, чем больше его номинал, тем большей чувствительности можно добиться. Резистор R16 настраивает гистерезис защиты, рекомендую не увлекаться с повышением его номинала. Сопротивление 5-10 кОм обеспечит чёткое защёлкивание схемы при срабатывании защиты, более большое сопротивление даст эффект ограничения по току, когда напряжение не выходе будет пропадать не полностью.
В качестве силового транзистора можно применить отечественные КТ818, КТ837, КТ825 или импортный TIP42. Особое внимание стоит уделить его охлаждению, ведь вся разница входного и выходного напряжение будет рассеиваться в виде тепла на этом транзисторе. Именно поэтому не стоит использовать блок питания на малом выходном напряжении и большом токе, нагрев транзистора при этом будет максимальным. Итак, перейдём от слов к делу.

Читайте также:  Какой мощности блок питания взять

Источник

Мощный источник лабораторного питания на основе доступных модулей

Продолжаю тему самодельных мощных и точных источников питания для ремонта и разработки электроники.

Брендовые модели с поверкой и сертификатом Госреестра избыточны для дома. Вы же не будете покупать Keysight только для того, чтобы залить скетч в Ардуино. А вот недорогие модели с Алиэкспресс и местных радиомагазинов могут быть вполне востребованы. Я постараюсь показать как сделать лабораторный источник питания (ЛБП) своими руками из доступных комплектующих.

Для начала определитесь с требованиями к готовому ЛБП и его функциям: мощности/напряжения/токи на выходе, параметры стабилизации (CV/CC), необходимые защиты выхода от перегрузки (OVP/OCP/OPP), необходимость удаленного управления, калибровки, точность удерживания параметров, а также дополнительные функции: калькуляторы энергии и возможность заряда батарей. Если с суммарной мощностью определились, тогда есть смысл подобрать подходящий источник питания. На фото представлены несколько типовых источников на 350W, 500W и 1000W. Не маловажно и выходное напряжение, так как для преобразователей серий DPH/DPS/DPX требуются источники на 48. 60 Вольт. Можно взять на 48В и «слегка» поднять напряжение на выходе подстройкой «ADJ».

Модулей для управления источниками питания множество, они отличаются по выходным параметрам и по функционалу, подробнее посмотреть можно в статье: «Как сделать лабораторный источник питания своими руками». В основном отличаются величиной стабилизируемого напряжения и тока, но все имеют ограничения по мощности. Так что заранее прикидывайте требуемую выходную мощность ЛБП. Преобразователи небольшой мощности (150-250 Вт) помещаются в компактном корпусе, а повышенной — имеют отдельную плату с пассивным или активным охлаждением.

Я не рекомендую экономить на мощный источниках питания, тем более, питающих точную технику. На дешевых китайцы уже сэкономили на защите, так что берите с хорошими отзывами или проверенные.

Из проверенных можно брать MeanWell, например, серию LRS-350. В источник уже встроен вентилятор, обороты вращения которого управляются автоматически по датчику температуры.

Схемотехника типовая, базовые защиты присутствуют. Хотя источник питания бюджетный, о чем свидетельствуют пустые (не распаянные) места на плате.

Для сборки и управления источником нам потребуется программируемый преобразователь питания RD6006 (в наличии, доставка IML) или аналогичный. Версия RD6006W имеет возможность удаленного управления через Wi-Fi.

Преобразователь предназначен для монтажа в приборный корпус и, фактически, представляет собой лицевую панель лабораторного источника питания. Помимо небольшого цветного дисплея имеется клавиатурно-цифровой блок с функциональными клавишами и энкодером. Подключение осуществляется стандартными клеммами типа Banana-plug.

Внутри установлен мощный преобразователь-стабилизатор питания с контроллером. Есть даже модуль часов точного времени.

Монтаж элементарный, со сборкой можно справиться без специальных навыков или инструментов. Подключаем вход блока питания к сети, выход — к преобразователю.

У модуля RD6006 для подключения предназначена разъемная клемма, которая облегчает монтаж корпус и сборку в общем.

Подключаем и проверяем.

При подаче питания отображается заставка RIDEN RD6006.

Перфекционисты могут прикупить отдельно корпус или напечатать его на 3D принтере. Модели можно найти в свободном доступе.

Дисплей отображает множество параметров: текущий ток-напряжение и мощность, есть указание об системных установках: V-SET, I-SET, а также об ограничительных параметрах OVP/OCP. Присутствует калькулятор энергии и системное время.

Управление простое, энкодером, плюс функциональные клавиши. Версия RD6006W может управляться с компьютера или смартфона. Клавиша «SHIFT» активирует вторую функцию. Есть и ячейки памяти для хранения комбинаций установок.

Для примера — простая нагрузка на 50W. Устанавливаем ровно 12В.

Для контроля — мультиметр HP890CN (можно проверять и другим мультиметром для контроля). Параметры совпадают, на фото отклонение 10 мВ.

Читайте также:  Как узнать штекер блока питания

Увеличиваю нагрузку до 100 Вт: 18В и 6А.

Просадки напряжения не наблюдается, преобразователь тянет нагрузку спокойно.

Аналогично и с малыми напряжениями — на фото 5В.

Максимум на RD6006 можно установить 60 Вольт. У меня на входе 60.09В, можно слегка поднять входное напряжение, тогда получится ровно 60В с источника.

При выборе источника питания обращайте внимание, что входное напряжение должно превышать выходное примерно на 10%, для учета КПД преобразователя.

Таким образом, за относительно небольшие деньги и за один вечер можно собрать для собственных нужд источник питания с регулировкой и приличной мощностью, с высокой точностью стабилизации выходных параметров. Подобными источниками можно реанимировать и тренировать аккумуляторные батареи и сборки, в режиме стабилизации тока — проводить гальваническое осаждение металлических покрытий (анодирование, хромирование и т.п.). Да и большой диапазон регулировки крайне удобен для домашних экспериментов.

В любом случае, это вполне рабочий вариант. Тем более, если есть готовый приборный корпус (или корпус от старой аппаратуры) или мощный источник: трансформатор, драйвер светодиодных лент, ноутбучный адаптер, блок питания от компьютера и т.п. Тем более, что модули RIDEN DPSxxxx и 6006 далеко не новинка и про них существует множество полезной информации и примеров.

Источник

Мощный «лабораторный» блок питания: схема и подробное описание сборки

«Лабораторными» обычно называют блоки питания универсального назначения. Они должны обладать набором параметров, позволяющим использовать их для самых различных операций. Это, как правило, регулируемые схемы, способные выдавать напряжение в достаточно широком диапазоне напряжений и токов. Кроме того, они должны обеспечивать безопасность подключаемых к ним устройств, то есть иметь защиту от короткого замыкания, перегрузки, перегрева.

Ранее подобные устройства собирались на транзисторах и операционных усилителях в качестве задающих и регулирующих элементов, поэтому имели достаточно сложную конструкцию и были не просты в изготовлении и настройке. В настоящее время существует множество специализированных интегральных микросхем (ИМС), содержащих в одном корпусе практически готовый блок питания-стабилизатор с очень высокими характеристиками и защитой по всем основным параметрам.

Поэтому сделать хороший лабораторный блок питания сейчас по силам даже начинающим радиолюбителям или просто людям, умеющим элементарно пользоваться паяльником.

В данной статье приведена схема и описание подобного блока питания (см. схему ниже).

Он способен выдать на выходе от нуля до 30 вольт стабилизированного напряжения при токе 8 ампер. А при замене силовых элементов на другие, максимальное напряжение и ток могут быть и больше. Схема имеет плавную регулировку выходного напряжения в диапазоне 0. 30 вольт и защиту от короткого замыкания и перегрузки на выходе. Может быть собрана как на отечественных компонентах, так и на их импортных аналогах.

В основе схемы лежит микросхема-стабилизатор типа КР142ЕН12А, она обеспечивает все основные качественные характеристики всего блока питания и его защитные функции. Её можно заменить на импортный аналог LM317 без каких-либо изменений в схеме (но при замене обязательно уточняйте цоколёвку — расположение выводов каждой конкретной ИМС по техническому описанию на неё!).

При обычной, типовой схеме включения, эти микросхемы имеют нижний предел регулировки напряжения порядка 1,2. 1,3 вольт. В приведённой же здесь схеме включение не совсем обычно, вывод «1» ИМС подключен к «общему» проводу не непосредственно, а через стабистор VD1 и переменный резистор R4.

Кроме того, как видно из схемы, на этот вывод подаётся небольшое отрицательное напряжение смещения «минус» 5 вольт. Когда сопротивление R4 мало, минусовое напряжение поступает на вывод «1» и «закрывает» микросхему. Напряжение на выходе блока питания (БП) равно нулю.

При увеличении сопротивления R1 микросхема-стабилизатор постепенно открывается и напряжение на выходе БП растёт до максимально возможного значения. Для указанных здесь деталей это значение составляет +30 вольт.

Если нагрузка маломощная и ток на выходе не большой, работает только ИМС в своём обычном режиме. Если же ток в нагрузке превышает максимальное допустимые для этой микросхемы 1,5 ампера, вступает в работу дополнительный каскад на транзисторах и выполняет роль «ключа», пропуская ток через себя. При этом ИМС выступает в роли управляющего элемента и продолжает выполнять свои основные функции — стабилизацию выходного напряжения и защиту от короткого замыкания и перегрузки.

Стабистор КС113А , по сути — стабилитрон на низкое напряжение 1,3 вольта. Его, при необходимости, допустимо заменить на стабилитрон КС133 или аналогичный импортный (напряжение стабилизации 1. 3,9 вольт). Переменный резистор R4 можно ставить сопротивлением от 2,2 до 4,7 кОм.

Читайте также:  Блок питания supermicro pws 704p 1r 750w

Микросхему и мощный транзистор КТ819 (или аналогичный импортный) необходимо установить на теплоотводы, эффективная охлаждающая поверхность которых должна иметь площадь, достаточную для отвода тепла при максимальной нагрузке блока питания. Возможна их установка на один, общий теплоотвод, но при этом следует использовать изоляционные теплопроводные прокладки. Мощность резисторов: R1, R5 — 1 Вт, R2 — 2 Вт, R3, R4 — 0,5 Вт.

Источник

Регулируемый блок питания своими руками

Блок питания необходимая вещь для каждого радиолюбителя, потому, что для питания электронных самоделок нужен регулируемый источник питания со стабилизированным выходным напряжением от 1.2 до 30 вольт и силой тока до 10А, а также встроенной защитой от короткого замыкания. Схема изображенная на этом рисунке построена из минимального количества доступных и недорогих деталей.

Микросхема LM317 является регулируемым стабилизатором напряжения со встроенной защитой от короткого замыкания. Стабилизатор напряжения LM317 рассчитан на ток не более 1.5А, поэтому в схему добавлен мощный транзистор MJE13009 способный пропускать через себя реально большой ток до 10А, если верить даташиту максимум 12А. При вращении ручки переменного резистора Р1 на 5К изменяется напряжения на выходе блока питания.

Так же имеется два шунтирующих резистора R1 и R2 сопротивлением 200 Ом, через них микросхема определяет напряжение на выходе и сравнивает с напряжением на входе. Резистор R3 на 10К разряжает конденсатор С1 после отключения блока питания. Схема питается напряжением от 12 до 35 вольт. Сила тока будет зависеть от мощности трансформатора или импульсного источника питания.

А эту схему я нарисовал по просьбе начинающих радиолюбителей, которые собирают схемы навесным монтажом.

Сборку желательно выполнять на печатной плате, так будет красиво и аккуратно.

Печатная плата сделана под импортные транзисторы, поэтому если надо поставить советский, транзистор придется развернуть и соединить проводами. Транзистор MJE13009 можно заменить на MJE13007 из советских КТ805, КТ808, КТ819 и другие транзисторы структуры n-p-n, все зависит от тока, который вам нужен. Силовые дорожки печатной платы желательно усилить припоем или тонкой медной проволокой. Стабилизатор напряжения LM317 и транзистор надо установить на радиатор с достаточной для охлаждения площадью, хороший вариант это, конечно радиатор от компьютерного процессора.

Желательно прикрутить туда и диодный мост. Не забудьте изолировать LM317 от радиатора пластиковой шайбой и тепло проводящей прокладкой, иначе произойдет большой бум. Диодный мост можно ставить практически любой на ток не менее 10А. Лично я поставил GBJ2510 на 25А с двойным запасом по мощности, будет в два раза холоднее и надёжнее.

А теперь самое интересное… Испытания блока питания на прочность.

Регулятор напряжения я подключил к источнику питания с напряжением 32 вольта и выходным током 10А. Без нагрузки падение напряжения на выходе регулятора всего 3В. Потом подключил две последовательно соединенные галогеновые лампы H4 55 Вт 12В, нити ламп соединил вместе для создания максимальной нагрузки в итоге получилось 220 Вт. Напряжение просело на 7В, номинальное напряжение источника питания было 32В. Сила тока потребляемая четырьмя нитями галогеновых ламп составила 9А.

Радиатор начал быстро нагреваться, через 5 минут температура поднялась до 65С°. Поэтому при снятии больших нагрузок рекомендую поставить вентилятор. Подключить его можно по этой схеме. Диодный мост и конденсатор можно не ставить, а подключить стабилизатор напряжения L7812CV напрямую к конденсатору С1 регулируемого блока питания.

Что будет с блоком питания при коротком замыкании?

При коротком замыкании напряжение на выходе регулятора снижается до 1 вольта, а сила тока равна силе тока источника питания в моем случае 10А. В таком состоянии при хорошем охлаждении блок может находится длительное время, после устранения короткого замыкания напряжение автоматически восстанавливается до заданного переменным резистором Р1 предела. Во время 10 минутных испытаний в режиме короткого замыкания ни одна деталь блока питания не пострадала.

Радиодетали для сборки регулируемого блока питания на LM317

  • Стабилизатор напряжения LM317
  • Диодный мост GBJ2501, 2502, 2504, 2506, 2508, 2510 и другие аналогичные рассчитанные на ток не менее 10А
  • Конденсатор С1 4700mf 50V
  • Резисторы R1, R2 200 Ом, R3 10K все резисторы мощностью 0.25 Вт
  • Переменный резистор Р1 5К
  • Транзистор MJE13007, MJE13009, КТ805, КТ808, КТ819 и другие структуры n-p-n

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать регулируемый блок питания своими руками

Источник