Меню

Микроконтроллерное управление лабораторным блоком питания

Микроконтроллерное управление лабораторным блоком питания

БП с микроконтроллерным управлением и регулировкой параметров при помощи энкодера.

Автор: Sonata
Опубликовано 01.12.2010

Идея блока питания была взята на сайте.
Хотелось что бы параметры блока устанавливались с помощью энкодера.
Для этого пришлось немного изменить схему и программу.
В результате получилась схема:

Управление напряжением и током стабилизации осуществляется встроенным в контроллер ШИМ ом. Его скважность регулируется энкодером, каждый шаг которого приводит к увеличению или уменьшению опорных напряжений по напряжению и току и как следствие к изменению напряжения на выходе БП или тока стабилизации.
При нажатии на кнопку энкодера на индикаторе напротив изменяемого параметра появляется стрелка и при последующем вращении изменяется выбранный параметр.

Если в течении некоторого времени не проводить никаких действий система управления переходит в ждущий режим и не реагирует на вращение энкодера.
Установленные параметры сохраняются в энергонезависимой памяти и при последующем включении устанавливаются по последнему выставленному значению.
Индикатор в верхней строке отображает измеренное напряжение и ток.
В нижней строке отображается установленный ток ограничения.
При выполнении условия Iizm>Iset БП переходит в режим стабилизации тока.
За основу был взят БП АТХ CODEGEN, который был переделан под напряжение 20В и добавлена плата управления.

В результате получился вот такой вот блок питания:

Источник



Лабораторный блок питания с микропроцессорным управлением на ATMega16 из старого Back-UPS

Предыстория с Back-UPS

«Досталась» как-то мне УПСка за бесплатно. Конечно, неисправная. Вот такая:

Рис. 1. Внешний вид блока бесперебойного питания до модификации
Оказалось, что после выработки ресурса аккумуляторной батареи компьютерщики в нашей конторе их частенько просто списывают и выбрасывают целиком. Забота о природе не позволила мне мириться с таким положением вещей. Притащив это богатство домой начал думать что же с ней делать. Попытка восстановить аккумулятор методом заливки дистиллированной воды и зарядки малым током не привела к успеху.

Что дальше? Покупать аккумулятор? Да и есть уже у меня УПСка, и не нужна мне вторая. Основные полезные детали очевидны: прочный, пластиковый, аккуратный корпус и мощный трансформатор внутри. Решил сделать из нее лабораторный блок питания для мастерской. Тем более, что старый Б5-47 уже надоел своим визгом, наверное, просится на пенсию машинка 1988 года рождения.

Техническое задание

для нового блока определил максимально нескромное (иначе его проще купить готовый):
1) Линейная схема — это надежно и тепло!
2) Выходное напряжение: не менее 15В — хватит и для зарядки 12В аккумуляторов, и для питания цифровых цепей, кроме того, есть идея как в дальнейшем увеличить выходное напряжение в 2 раза.
3) Выходной ток: не менее 3А, но можно и побольше.
4) Регулируемое напряжение стабилизации и регулируемое ограничение по току, защита от КЗ.
5) Цифровая индикация.
6) Интерфейс к компьютеру — можно будет с компьютера контролировать процесс зарядки — разрядки аккумулятора, составлять сложные протоколы работы, можно даже реализовать контроль параметров через какой-нибудь Web-сервис типа Pachube.
7) Удобное управление — я люблю энкодеры.
8) Малый шум (это после работы с блоком питания Б5-47).
9) Минимальные затраты — используем преимущественно имеющиеся комплектующие.

В поисках готового решения набрел на сайт Гвидо Сошера, где опубликована уже третья версия цифрового блока питания, которая, в принципе, устроила по всем параметрам, кроме управления и используемого микроконтроллера. Не оказалось у меня в запасе восьмой Меги… Зато оказалась ATMega16, и макетка для нее.

И не люблю я кнопки. В плане управления устройствами я поклонник энкодера: всего одна ручка, нажал — вошел в режим управления, крутанул — установил значение, нажал — значение сохранилось в EEPROM. Красота! Но программу Гвидо пришлось переработать.

Разработка схемы и программы ЛБП

Для последней на тот момент «3.0» версии блока питания, схема у Гвидо на сайте не приведена. Даны только общие идеи построения блока. Вот они:
1) Для управления выходным напряжением используется гибридный ЦАП: младшие разряды получаются из ШИМ модулятора, а старшие из R-2R преобразователя.
2) Используется наивысшая скорость работы АЦП в непрерывном цикле по прерываниям, затем точность преобразования еще повышается путем усреднения избыточного числа измерений (оверсэмплинг), но только для канала измерения напряжения, таким образом точность измерения повышается до

0,01В.
3) Выходная часть блока выполнена по схеме эмиттерного повторителя с предварительным усилителем.

После некоторых поисков была найдена схема 1-й версии блока. Так же на сайте выложены исходные тексты последней версии прошивки контроллера. По этим источникам удалось уточнить распределение ножек микроконтроллера и схема приобрела следующий вид:

Рис. 2. Схема блока питания.

Основные изменения в схеме относительно оригинала:
1) под R-2R ЦАП выделен порт С микроконтроллера целиком, так проще работать,
2) сами резисторы в ЦАПе других номиналов, такие, какие были, кстати, эти резисторы надо бы подбирать с высокой точностью, иначе при работе ЦАПа будут ступеньки.
3) схема Дарлингтона в выходном каскаде заменена на один КТ8106А;
4) токоизмерительный шунт сделан более мощным и с меньшим сопротивлением (0,55 Ом);
5) устранено совмещение сигнальных линий энкодера и LCD-экрана.
6) предусмотрена обвязка термодатчика и схема управления вентилятором с ШИМ управлением.

Исходники были модифицированы под данную схему. Переназначены ножки микроконтроллера. Файлы для работы с клавиатурой были заменены ( kbd.c и kbd.h) на файлы для работы с энкодером. Алгоритм работы энкодера следующий: нажали на энкодер — вошли в режим установки напряжения, нажали еще раз — вошли в режим установки тока, нажали еще раз — сохранили установки. Если в режиме настройки не трогать энкодер более 20 секунд, блок автоматом выходит из режима настройки и не сохраняет изменения. Энкодер работает по внешним прерываниям и использует таймер Timer2 для реализации защитных пауз.

Изменена логика работы со светодиодом состояния. Теперь он показывает аварийные ситуации — перегрузку блока питания, перегрев и состояние перезаписи прошивки бутлоадером.

В логику работы дисплея введено мигание изменяемого параметра.

Добавлен опрос 3-го аналогового входа АЦП для термодатчика. Реализована ШИМ-регулировка оборотов вентилятора охлаждения в зависимости от показаний датчика.

Читайте также:  Блок питания uv 2040ba 6gpm

Изменен протокол общения блока с компьютером. Теперь используются стандартизованные команды, позволяющие задать установки тока/напряжения и калибровочные настройки. Теперь калибровки также хранятся в EEPROM микроконтроллера.
Использование более емкого микроконтроллера позволило использовать бутлоадер.

Сборка

Корпус УПС очень хорошо подходит для переделки. Прочный, пластик, внутренние усилительные ребра. Да и размер подходящий. Вместо задней панели с силовыми разъемами я вырезал аналогичный по цвету и форме кусок ровного пластика от лотка струйного принтера. К нему прикрутил радиатор от старого Атлона. К радиатору через изолирующую термоподложку прикрепил выходной транзистор, диодный мост и датчик температуры. Два слова о том как определять обмотки в трансформаторе: самые толстые три провода — это вторичная силовая обмотка. От нее у меня питается силовая часть. Бывает еще и вторая слаботочная вторичная обмотка для питания внутренней схемы УПС. Она определяется так — это два тонких провода одинакового (у меня были оранжевые) цвета. У меня от нее запитана схема управления, микроконтроллер, подсветка экрана и вентилятор. Остальные относительно тонкие провода — это первичная обмотка с большим количеством отводов. С их помощью можно подобрать подходящее выходное напряжение силовой обмотки при приемлемом токе холостого хода.

В результате удаления силовых разъемов, между задней стенкой и трансформатором освободилось место, в которое поместились конденсаторы фильтра. В лицевой панели разметил и вырезал отверстия для экрана и выходных разъемов. В крышке корпуса размещены плата управления, энкодер, выключатель питания и плата RS232-интерфейса. В передней части корпуса оставлено свободное место для дальнейшего усиления блока (можно будет поставить второй трансформатор).

В качестве интефейса МК-компьютер я пока использую готовую платку преобразователя USB-TTL RS232 на микросхеме CP2102. Через нее осуществляется перепрошивка МК и общение компьютера со схемой. В будущем я планирую сделать оптоизолированный RS232 интерфейс.

Источник

Блок питания с микроконтроллерным управлением

Состоит из блока индикации и управления, измерительной части и блока защиты от КЗ.

Блок индикации и управления.
Индикатор — ЖКИ дисплей на основе контроллера НD44780, 2 сточки по 16 символов. Управление напряжением осуществляется встроенным в контроллер ШИМ ом. Его скважность регулируется энкодером, каждый шаг которого приводит к увеличению или уменьшению напряжения на 0,1 вольт на выходе БП. Полный оборот энкодера – 2 вольта. Поскольку ШИМ может изменять напряжение на накопительной емкости лишь в интервале от 0 до 5 вольт, применен ОУ с коэффициентом усиления 5. Таким образом фактическое напряжение на выходе БП регулируется в пределах 0 – 25 вольт.
Регулирующим элементом является мощный составной транзистор КТ827А. С эмиттера регулирующего транзистора через верхнее плечо делителя (2 Х 8,2 к) осуществляется обратная связь, благодаря чему даже при больших токах в нагрузке напряжение поддерживается на строго заданном уровне вплоть до сотых долей вольта.

Измерительная часть – двухканальный АЦП (Микрочип), измеряющий реальное напряжение на выходе БП и падение напряжения на шунтирующем резисторе, усиленное ОУ, что прямо пропорционально потребляемому нагрузкой току. Сердцем конструкции является контроллер.

Блок защиты от короткого замыкания в нагрузке. Выполнен виде отдельного устройства включенного между выпрямителем и регулирующим элементом. Ток срабатывания защиты — 5 А. Подбирается резистором 47к в базовой цепи транзистора управляющего ключом КТ825Г.

Принципиальная схема блока питания

Настройка.
Заключается в подборе резисторов, обозначенных звездочкой, для соответствия показаний ЖКИ реальным току и напряжению на выходе БП.

Детали.
Шунт взят из разбитого мультиметра, его сопротивление около 0,01 Ом. Исходное состояние контактов энкодера описано в принципиальной схеме, он может быть любой соответствующий этим состояниям. Кроме вращения, он имеет вн контакты, которые замыкаются без фиксации при нажатии на вал.
Транзисторы n-p-n без маркировки могут быть КТ315 или любыми маломощными, подобными им в чип корпусе. Транзистор p-n-p в ключе, управляющем подсветкой может быть любой средней мощности.

Как пользоваться БП.
Энкодером регулируется напряжение 0 – 25 вольт с шагом 0,1 вольта. При кратком (менее 0,5 сек) нажатии на ручку включается/выключается подсветка. При нажатии более 0,5 сек происходит запись установленного напряжения в энергонезависимую память контроллера.

Фото БП

Фото БП

Фото БП

Полный проект для MPLAB вы можете скачать ниже.

Источник

ЛАБОРАТОРНЫЙ БП С ИНДИКАЦИЕЙ НА МИКРОКОНТРОЛЛЕРЕ

Представляю для вашего внимания проверенную схему хорошего лабораторного источника питания, опубликованного в журнале «Радио» №3, с максимальным напряжением 40 В и током до 10 А. Блок питания оснащён цифровым блоком индикации, с микроконтроллерным управлением. Схема БП показана на рисунке:

Описание работы устройства. Оптопара поддерживает падение напряжения на линейном стабилизаторе примерно 1,5 В. Если падение напряжения на микросхеме увеличивается (например, вследствие увеличения входного напряжения), светодиод оптопары и, соответственно, фототранзистор открываются. ШИ-контроллер выключается, закрывая коммутирующий транзистор. Напряжение на входе линейного стабилизатора уменьшится.

Плата лабораторного блока питания 0-40В

Для повышения стабильности резистор R3 размещают как можно ближе к микросхеме стабилизатора DA1. Дроссели L1, L2 — отрезки ферритовых трубок, надетых на выводы затворов полевых транзисторов VT1, VT3. Длина этих трубок равна примерно половине длины вывода. Дроссель L3 наматывают на двух сложенных вместе кольцевых магнитопроводах К36х25х7,5 из пермаллоя МП 140. Его обмотка содержит 45 витков, которые намотаны в два провода ПЭВ-2 диаметром 1 мм, уложенных равномерно по периметру магнитопровода. Транзистор IRF9540 допустимо заменить на IRF4905, а транзистор IRF1010N — на BUZ11, IRF540.

Изготовление лабораторного блока питания 0-40В

Если потребуется блок питания с выходным током, превышающим 7,5 А, необходимо добавить еще один стабилизатор DA5 параллельно DA1. Тогда максимальный ток нагрузки достигнет 15 А. В этом случае дроссель L3 наматывают жгутом, состоящим из четырех проводов ПЭВ-2 диаметром 1 мм, и увеличивают примерно в два раза емкость конденсаторов С1—СЗ. Резисторы R18, R19 подбирают по одинаковой степени нагрева микросхем DA1, DA5. ШИ-контроллер следует заменить другим, допускающим работу на более высокой частоте, например, КР1156ЕУ2.

САМОДЕЛЬНЫЙ ЛАБОРАТОРНЫЙ БП - ОБЩИЙ ВИД

Модуль цифрового измерения напряжения и тока лабораторного БП

Основа устройства — микроконтроллер PICI6F873. На микросхеме DA2 собран стабилизатор напряжения, которое используется и как образцовое для встроенного АЦП микроконтроллера DDI. Линии порта RA5 и RA4 запрограммированы как входы АЦП для измерения напряжения и тока соответственно, a RA3 — для управления полевым транзистором. Датчиком тока служит резистор R2, а датчиком напряжения — резистивный делитель R7 R8. Сигнал датчика тока усиливает ОУ DAI. 1. а ОУ DA1.2 использован как буферный усилитель.

Читайте также:  Тест блока питания компьютера под нагрузкой

Схема цифрового измерения напряжения и тока лабораторного БП

  • Измерение напряжения, В — 0..50.
  • Измерение тока, А — 0.05..9,99.
  • Пороги срабатывания защиты:
  • — по току. А — от 0,05 до 9.99.
  • — по напряжению. В — от 0,1 до 50.
  • Напряжение питания, В — 9. 40.
  • Максимальный потребляемый ток, мА — 50.

Работа цифрового измерения напряжения и тока: при нажатии на кнопку SB3 «Авто в режиме установки выполняется выход на рабочий режим, а в рабочем режиме — автоматическая установка защиты. В последнем случае значения тока и напряжения, при которых срабатывает защита, автоматически устанавливаются больше текущих значений напряжения и потребляемого тока на две единицы младшего разряда. Подробнее о работе модуля читайте на форуме.

Модуль цифрового измерения напряжения и тока

Светодиодные семиэлементные индикаторы могут быть любые с общим катодом, кнопки — малогабаритные с самовозвратом, например DTST-6, постоянные резисторы — МЛТ, С2-22. Резистор R2 изготовлен из отрезка высокоомного провода, в авторском варианте использован резистор от вышедшего из строя мультиметра М-830. Полевой транзистор — мощный переключательный с n-каналом, желательно с буквой L в первой части названия, так как для его открывания достаточно напряжения 4-5 В. При токах нагрузки более 5 А сопротивление открытого канала должно быть не более 0,01 Ом. Необходимо обратить внимание на то, чтобы максимально допустимый ток стока был больше тока нагрузки.

цифровой измеритель напряжения и тока на микроконтроллере

Налаживание блока индикации начинают с установки подстроенным резистором R4 выходного напряжения (5,12 В) стабилизатора на микросхеме DA2. при этом предварительно микроконтроллер удаляют. Затем его устанавливают и подают на вход напряжение 10. 15 В. Измеряя это напряжение цифровым вольтметром, сравнивают его показания с показаниями индикатора устройства и при небольших отличиях добиваются их совпадения резистором R4. При этом следует учесть, что напряжение питания микроконтроллера не должно превышать 5,5 В. В случае необходимости подбирают резистор R7.

Передняя панель лабораторного блока питания 0-40В, с цифровой индикацией тока и напряжения

Для налаживания измерителя тока к выходу устройства подключают нагрузку с последовательно включенным амперметром. При токе 100мА сравнивают показания и добиваются их совпадения подбором резистора R5. Затем проверяют точность показаний при токе в несколько ампер. Плата и прошивка индикатора — в архиве.

лабораторный блок питания 0-40В, с цифровой индикацией тока и напряжения собранный своими руками

После срабатывания защиты устраняют причину, ее вызвавшую. Возвращают устройство в исходное состояние, отключив и включив источник или включив режим «Установка», а затем нажимая на кнопку SB3 «Авто».

фотографии лабораторного блока питания радиолюбителя

Необходимо отметить, что устройство реагирует на нажатие кнопок после их отпускания. Если присутствует дребезг контактов, то параллельно кнопкам следует установить конденсаторы емкостью 0.047. 0,22 мкФ. Питать устройство желательно от отдельного источника. Конструкцию собрал и испытал: Romick_Калуга.

Источник

Микроконтроллерный блок управления лабораторным трансформатором

Известно, что для регулирования переменного напряжения при различных экспериментах необходим лабораторный авто­трансформатор. Однако если его нет, можно использовать трансформатор, описанный в [1]. Для повышения оперативности и удобства работы с таким трансформатором в своё время был разработан и описан в [2] блок управления. К сожалению, он довольно сложен, поскольку построен на логических микросхе­мах малой и средней степени интеграции. Автор предлагает ана­логичный блок управления на микроконтроллере.

Принцип работы блока остался прежним — каждому из возможных значений выходного напряжения соот­ветствует двоичный код, коммутирую­щий нужным образом вторичные обмот­ки трансформатора. Так же, как в прото­типе, блок не измеряет выходное на­пряжение, а только показывает его рас­чётное значение. Благодаря микроконт­роллеру удалось значительно умень­шить число деталей в блоке, что резко упростило проектирование и изготовле­ние печатной платы, а также налажива­ние устройства.

На рис. 1 представлена схема блока управления, построенного на микро­контроллере PIC16F628A-1/P (DD1) и регистре хранения ЭКР1554ИР22 (DD2). Можно было бы реализовать его и на более дешёвом микроконтроллере PIC12F629 и двух сдвиговых регистрах- преобразователях последовательного кода в параллельный. Но такое устрой­ство получилось бы менее стойким к воздействию импульсных помех, неиз­бежных при коммутации обладающих большой индуктивностью обмоток элек­тромагнитных реле и трансформатора.

Для узлов динамической индикации помехи не опасны, поскольку показания индикатора постоянно обновляются, и помеха приведёт, в худшем случае, к кратковременному искажению показа­ний. Однако искажённый код, поданный на ключи, управляющие переключаю­щими обмотки трансформатора реле, может привести к неожиданной подаче на нагрузку опасного для неё повышен­ного напряжения. Поэтому выбран мик­роконтроллер, число выводов которого достаточно для непосредственного формирования на них параллельного кода управления реле.

Поскольку в микроконтроллерах се­рии PIC16F628 внутренние резисторы, соединяющие входы с плюсом источ­ника питания, установлены только на линиях порта В, резисторы R1— R4 выполняют ту же функцию на линиях порта А. Транзисторы VТ1—VТ3 комму­тируют общие аноды разрядов свето­диодного индикатора Н01. На транзис­торные ключи, коммутирующие с помо­щью реле вторичные обмотки транс­форматора, сигналы управления по­ступают с выходов регистра хранения DD2.

После включения питания програм­ма микроконтроллера записывает нуле­вой код в один из его внутренних регистров и в регистр DD2. Это нужно для того, чтобы работа трансформатора всегда начиналась с нулевого напряже­ния на выходе, что предохранит от случайного повреждения подключённую к нему низковольтную нагрузку.

Далее программа переводит регистр DD2 в режим вывода записанного в него кода, установив на его входе ED низкий уровень. С выходов регистра двоичный код напряжения поступает на транзи­сторные ключи, управляющие реле, коммутирующими обмотки трансфор­матора. Эти ключи аналогичны обве­дённым штрихпунктирными линиями на схеме, изображённой на рис. 2 в [2]. Адреса подключения выходов регистра DD2 рассматриваемого устройства обозначены в соответствии с той же схемой.

Затем программа преобразует дво­ичный код напряжения в семиэлемент­ные коды цифр для трёх разрядов светодиодного индикатора HG1, гася при этом незначащие нули. Она поочерёдно выводит эти коды в порт В, одновремен­но включая нужный разряд индикатора установкой высокого уровня на линиях RA0, RA1 или RA7. Цикл вывода трёх цифр занимает около 360 мс. Такая дли­тельность цикла индикации, от которой зависит и скорость изменения напряже­ния на выходе трансформатора, выбра­на не случайно. С одной стороны, напряжение на выходе трансформатора изменяется достаточно быстро и плав­но, а с другой — интервалы времени между переключениями электромагнит­ных реле достаточны для завершения переходных процессов в трансформа­торе, что уменьшает искрение контак­тов реле.

Читайте также:  Блок питания для унитазов

По завершении каждого цикла инди­кации программа проверяет состояние кнопок SB1-SB4 и, если ни одна из них не нажата, снова записывает двоичное число из регистра памяти микроконт­роллера в регистр DD2, после чего про­цесс повторяется. Это основной режим работы, в котором устройство находит­ся до тех пор, пока не будет нажата какая-либо из кнопок SB1-SB4.

При нажатии на кнопку SB2 и её удержании двоичный код напряжения увеличивается на единицу с каждым циклом индикации, что соответствует увеличению напряжения на один вольт. Если при нажатой кнопке SB2 нажать и на кнопку SB3, то напряжение станет расти с шагом 10 В. По достижении мак­симума (255 В) дальнейшее увеличение напряжения прекращается независимо от состояния кнопок.

Следует заметить, что при нажатой кнопке SB3 рост напряжения может прекратиться раньше, чем будет дос­тигнуто значение 255 В. Дело в том, что попытка прибавить 10 к числу, превы­шающему 245, приведёт к переполне­нию восьмиразрядного регистра и уста­новке на выходе трансформатора на­пряжения в интервале от 0 до 9 В. По­этому такие действия программно запрещены. Достигнутое напряжение можно довести до максимума, оставив нажатой только кнопку SB2.

Аналогично кнопке SB2 работает и кнопка SB1, но она уменьшает напряже­ние. Если случайно нажать на кнопки SB1 и SB2 одновременно, то приоритет будет отдан кнопке SB1, и напряжение на выходе трансформатора станет уменьшаться.

Когда нужно установить требуемое напряжение, не расходуя напрасно ресурс реле на многочисленные переключения, можно воспользо­ваться режимом быстрой ус­тановки. Для входа в него нажмите на кнопку SBЗ и удер­живайте её, пока не будет включена десятичная запятая в младшем разряде индикато­ра HG1.

В этом режиме длитель­ность цикла индикации умень­шена приблизительно до 200 мс, а напряжение на выхо­де трансформатора остаётся неизменным и не зависящим от показаний индикатора, пока блок управления не будет возвращён в основной режим. Кнопками SB1 — SB3 следует установить на индикаторе требуемое напряжение, как было описано выше, а затем нажать или удерживать, если она была нажата, кнопку SB3, пока устройство не вернётся в основной режим и на выходе не будет установлено вновь заданное напряжение.

Если нужно возвратиться в основной режим, не принимая новое значение, следует удерживать нажатой кнопку SB4. То же самое произойдёт, если в течение приблизительно 5 с не будет нажата ни одна из кнопок. В основном режиме кнопка SB4 служит для выключения выходного напряже­ния. При нажатии на неё будут установ­лены нулевое значение на индикаторе и нулевое напряжение на выходе транс­форматора.

Поскольку опрос состояния кнопок происходит в конце каждого цикла индикации, устройство реагирует на нажатия кнопок не мгновенно, а с за­держкой не более одного цикла индика­ции. По этой причине нажатые кнопки следует удерживать до изменения показаний индикатора.

Устройство смонтировано на двух печатных платах, показанных на рис. 2 и рис. 3. Такой вариант оказался проще, чем разводка печатных провод­ников на одной плате. Платы рассчита­ны на установку импортных постоянных резисторов мощностью 0,05 Вт. Сопро­тивление резисторов R5—R12 может находиться в пределах от 330 Ом до 3,3 кОм в зависимости от требуемой яркости свечения индикатора и его типа. Конденсаторы С3 и С4 припаяны непосредственно к выводам питания микросхем. Микросхему ЭКР1554ИР22 можно заменить на 74AC373N или 74HC373N.

Платы механически соединены меж­ду собой сторонами печатных провод­ников внутрь с помощью четырёх резь­бовых стоек высотой 10 мм. К корпусу блока эта сборка прикреплена крон­штейнами из оцинкованной стали тол­щиной 0,6 мм. На фотоснимке рис. 4 показан внешний вид блока управления без корпуса. Контактные площадки обеих плат с одинаковыми номерами красного цвета соединены изолирован­ными проводами. Аналогичный приме­нённому в [2] узел электронных ключей может быть собран на печатной плате, изображённой в [2] на рис. 4.

Питание описываемого блока управ­ления обеспечивает отдельный сетевой трансформатор с выходным напряже­нием 10 В и мощностью не менее 5 В-А. Этот вариант предпочтительнее пита­ния от дополнительной обмотки основ­ного трансформатора. Дело в том, что при замыканиях в нагрузке лаборатор­ного трансформатора, вполне веро­ятных в практике радиолюбителя, напряжение на его вторичных обмотках, в том числе на питающей узел управле­ния, падает. Это может вызвать само­произвольное переключение реле, и даже выгорание их контактов. При пита­нии от отдельного трансформатора такой проблемы не возникает. К тому же меньше наводок на микроконтроллер от силовых цепей.

Узел питания блока собран по схеме, изображённой на рис. 5. Нумерация элементов на ней продолжает начатую на рис. 1. По цепи +12 В этот узел дол­жен обеспечивать ток, больший сум­марного, протекающего через обмотки всех реле, в 1,2…1,5 раза.

Напряжение +12 В поступает на обмотки реле К1—К8 [2] не сразу после подачи на трансформатор Т1 сетевого напряжения, а только после нажатия на кнопку SB5 и срабатывания дополни­тельного реле К1. До этого момента обмотки всех реле обесточены, поэто­му напряжение на выходе лабораторно­го трансформатора остаётся равным нулю независимо от состояния блока управления. Иначе случайный код, самопроизвольно устанавливающийся в регистре DD2 в момент подачи пита­ния и сохраняющийся до первой записи в него правильного кода микроконтрол­лером, будет приводить к кратковре­менному появлению на выходе транс­форматора произвольного напряже­ния, даже максимального. Нажимать на кнопку SB5 следует только после появ­ления нуля на индикаторе HG1.

Плата узла питания ис­пользована готовая от источ­ника питания антенного уси­лителя. Реле К1 — RAS-1215 с сопротивлением обмотки 400 Ом, аналогичное приме­нённым в [2].

Программа микроконт­роллера написана в среде MPLAB IDE v8.92 на языке ассемблера MPASM. Для по­лучения семиэлементных ко­дов цифр использована про­грамма, описанная в [3]. При правильном монтаже нала­живания устройство не тре­бует и начинает работать сразу.

ЛИТЕРАТУРА

  1. Терсков В. С шагом в один вольт. — Радио, 1993, N° 9, с. 24, 25.
  2. Герасимов Е. Блок управления лабора­торным трансформатором. — Радио, 2016, № 9, с. 27—29.
  3. Кожухин П. Программа — справочник кодов для вывода на индикаторы. — Радио, 2010, № 6, с. 34..

Автор: Е. ГЕРАСИМОВ, станица Выселки Краснодарского края
Источник: Радио №6/2017

Источник