Меню

Max1737 схема зарядного устройства

Схема умного зарядного устройства для Ni-Cd аккумуляторов (MAX713)

Традиционная («безопасная») зарядка никель-кадмиевых аккумуляторов током, значение которого в десять раз меньше емкости аккумулятора, удовлетворяет далеко не всех пользователей, поскольку в этом случае для гарантированной полной его зарядки требуется затратить более десяти часов.

Между тем аккумуляторы можно безопасно заряжать и большими токами, соответственно сокращая время зарядки. При этом, однако, необходим постоянный контроль за состоянием заряжаемого аккумулятора, чтобы избежать его выхода из строя.

Момент, когда никель-кадмиевый аккумулятор полностью заряжен, можно надежно установить, измеряя зависимость его напряжения от времени зарядки. В общем виде она показана на рис. 1.

Полностью заряженному аккумулятору соответствует момент, когда напряжение на нем достигает максимума. Поскольку для различных экземпляров абсолютное значение максимума может различаться, этот параметр нельзя использовать для однозначного определения окончания зарядки.

«Интeллeктyaпьныe,’ зарядные устройства, периодически измеряя напряжение на заряжаемом аккумуляторе определяют момент когда изменение напряжения сменит знак (напряжение начнет уменьшаться), и прекращают зарядку.

Схема умного зарядного устройства для Ni-Cd аккумуляторов (MAX713), схема

Точнее, обычно переводят зарядное устройство в безопасный режим зарядки малым током. Следует отметить, что уменьшение напряжения по отношению к максимуму после его прохождения невелико-около 10 мВ на один элемент, и для его регистрации нужна измерительная аппаратура с соответствующим разрешением

Второй параметр, который принято контролировать при быстрой зарядке, — время. Его рассчитывают исходя из тока быстрой зарядки, и даже если за это время напряжение на аккумуляторе не достигло максимума, зарядку прекращают.

Это позволяет в какой-то мере уменьшитъ опасность выхода из строя зарядного устройства если в него установлен дефектный аккумулятор, у которого может и не произойти смены знака изменения напряжения в процессе зарядки.

Есть еще один параметр который наряду со сменой знака изменения напряжения на аккумуляторе объективно отражает завершение процесса зарядки, — температура корпуса аккумулятора.

Однако этот параметр относится к числу наиболее трудно контролируемых, поскольку требует установления надежного теплового контакта датчика температуры с корпусом заряжаемого аккумулятора.

Более того, в герметичных аккумуляторных батареях которые в основном используются в современной носимой аппаратуре, это в принципе невозможно. Поэтому на практике зарядку аккумуляторов с контролем температуры не применяют.

Но при этом приходится также отказываться и от предельных — очень быстрых режимов зарядки.

Микросхема МАХ713

Для реализации описанных алгоритмов зарядки выпускают специализированные микросхемы которые выполняют все перечисленные выше функции контроля и управления. К их числу относится например микросхема МАХ713. Она позволяет заряжать как единичный элемент, так и батарею, состоящую из нескольких аккумуляторов.

Контрольное время для быстрой зарядки может быть в пределах от 22 до 264 минут (восемь дискретных значений), а ток — в пределах от 4С до 0,ЗЗС (С — емкость аккумулятора) Все эти параметры устанавливают программно. Предусмотрена в микросхеме МАХ713 и функция контроля температуры заряжаемого аккумулятора.

При расчете режима быстрой зарядки никель-кадмиевых аккумуляторов сначала выбирают зарядный ток I, ориентируясь на требуемое время зарядки. Следует заметить, что при отсутствии надежного контроля температуры заряжаемого аккумулятора выбирать его более 2С не рекомендуется.

По окончании режима быстрой зарядки ток снижают до значений, безопасных в течение длительного периода («дозарядка»). В микросхеме МАХ713 это значение например выбрано около 30 мА и не зависит от тока быстрой зарядки.

Принципиальная схема зарядного устройства

Схема «интеллектуального» зарядного устройства для никель-кадмиевых аккумуляторов, выполненного на микросхеме МАХ713, приведена на рис 2, Источник питания напряжением 12 В подключают к разъему X1.

Он должен обеспечивать ток нагрузки, по крайней мере на 50 мА больше максимального зарядного тока. При напряжении питания 12В можно заряжать батареи содержащие до девяти аккумуляторов.

В авторском варианте для питания устройства использовался обычный сетевой адаптер, обеспечивающий ток нагрузки до 300 мА при напряжении 12 В Светодиод HL1 индицирует работу устройства в целом, а светодиод HL2 — режим быстрой зарядки.

Схема умного зарядного устройства для Ni-Cd аккумуляторов (MAX713), схема

Рис 2. Принципиальная схема умного зарядного устройства.

Если он не светится, то это означает, что зарядка закончена Аккумулятор (батарею) подключают к разъему Х2 Зарядный ток регулирует транзистор VТ1. Если после включения устройства с подключенным аккумулятором светодиод HL2 не светится, значит, аккумулятор заряжен.

Программирование микросхемы производят подключением выводов 3 (PGM0), 4 (PGM1). 9 (PGM2) и 10 (PGM3) к выводам микросхемы 15 (+), 12 (ВАТТ-) 16 (REF). Они могут быть также и не подключены к чему-либо (OPEN). Через выводы PGM0 и PGM1 программируют число аккумуляторов в батарее (табл 1). а через выводы PGM2 и PGM3-таймер окончания быстрой зарядки (табл. 2).

Перед выбором окончательной версии устройства задают число элементов N в аккумуляторной батарее, подлежащей зарядке, и зарядный ток.

Исходя из первого параметра, определяют подключение выводов 3 и 4 микросхемы (в соответствии с табл 1), а по второму параметру — ориентировочное время зарядки Т (в часах) по формуле Т=С/0,8І. Здесь С подставляют в мАч, а I — в мА. В табл. 2 находят ближайшее большее значение программируемого интервала времени зарядки и определяют соответствующее ему подключение выводов 9 и 10 микросхемы.

Схема умного зарядного устройства для Ni-Cd аккумуляторов (MAX713), схема

На следующем этапе рассчитывают мощность Р (в ваттах), которая будет рассеиваться на транзисторе ?Т1, по формуле P=(Umax — Umin)*1. Здесь Umax — максимальное напряжение на выходе источника питания, В; Umin, — минимальное напряжение на батарее аккумуляторов, В: I — ток зарядки A.

Umin рассчитывают исходя из числа элементов и минимального напряжения на одном аккумуляторе обычно полагают 1В. На основе этого расчета выбирают транзистор и выясняют, нужен ли для него теплоотвод.

Сопротивление резистора R2 (в кило-омах) рассчитывают по формуле R2=U/5 1, где U — минимальное напряжение источни ка питания в вольтах Сопротивление резистора R5 (в омах) рассчитывают по формуле R5=0 25/I, где I — ток зарядки в амперах.

Приведенные на схеме номиналы соответствуют минимальному напряжению источника питания 12В и току зарядки 0,25 А. При напряжении питания 12 В можно заряжетъ батареи не более чем из семи аккумуляторов.

Steven Avritch. A Smart Charger For Nickel-Cadmium Batteries — QST 1994 September p.40-42. Р2001, 1.

Источник



Зарядное устройство на MAX713. Импульсный режим.

Вступление

MAX713 — наверное, самый известный контроллер заряда для NiCd/NiMH. Я о нем прочитал в незапамятные времена в журнале Радио и прикупил сразу, как только смог. Сделать планировал универсальный зарядничек для пальчиковых и иже с ними аккумуляторов. Но… Провалялся он у меня лет пять, задача утратила актуальность и однажды я решил применить его хоть куда-нибудь. Вот, зарядник от свежекупленного шуруповерта подойдет. А то уж больно убог он, да и пятичасовой заряд без контроля — не комильфо.

Первый вариант схемы был содран из журнала, обычный линейный режим. Ключевой транзистор, рассеивая 4Вт, прилично грелся и сварил до смерти одну из банок аккума. Не айс. Кроме того, родной блок питания не выдавал необходимых для нормальной работы зарядника 20В, и я начал изучать импульсные источники — хотелось запилить нечто в корпусе родного адаптера, а то в кейс не влезет. После прочтения книги Семёнова, в очередной раз заглянув в даташит, я обнаружил, что вариант включения MAX713 в импульсном режиме стал куда понятнее, и перепилил под него. Ну и кроме того, после нескольких экспериментов, с дымом и без, зарядник таки обзавелся импульсным источником питания. Но о нем — в следующий раз.

Читайте также:  Зарубежные автомобильные зарядные устройства для
Описание MAX713

В целом, алгоритм работы контроллера схож с уже описанным в предыдущей статье. Эта микросхема работает почти так же, вот только у ней вдвое больше ног и:

  • Встроенный стабилизатор зарядного тока. Причем, можно вывести его в неустойчивый режим, тогда он будет работать как ШИМ-регулятор.
  • Встроенный делитель напряжения. Тут количество элементов в батарее задается так же, как и таймаут — подачей соответствующей кодовой комбинации на выводы PGM.
  • Встроенный стабилизатор питания контроллера.
  • Таймер и слежение за температурой могут работать одновременно.

Кроме того, есть практически идентичная микра MAX712. Отличается она только условием завершения заряда по dv/dt — по прекращению нарастания напряжения на аккумуляторе, а не по его снижению (т.е. MAX712 отключает при dv/dt=0V, а MAX713 при dv/dt=-2.5mV, dt зависит от выбранного таймаута зарядки и составляет от 21 до 168 секунд).

Блок-схема MAX713

Итак, чего на схеме есть интересного.

  • Программируемый делитель напряжения. Управляется через выводы PGM0 и PGM1, состоянием которых можно задать число элементов в батарее от 1 до 16. Кодовая табличка приведена в даташите.
  • Таймер, управляемый выводами PGM2 и PGM3. Ими можно задать максимальное время заряда (как в MC33340), а также отключить слежение за dv/dt. Табличка там же.
  • Температурный компаратор. Идентичен таковому в MC33340, только выводы ни с чем не мультиплексированы.
  • Параллельный стабилизатор на 5В. Обеспечивает микросхему стабильным питанием.
  • Единственный информационный выход — nFASTCHG. Придавлен к земле когда идет быстрая зарядка.
  • Стабилизатор зарядного тока.

С первыми тремя пунктами все вполне понятно, а вот стабилизаторы стоит рассмотреть чуть подробнее.

Стабилизатор питания

Стабилизатор питания в MAX713 — параллельный. Поэтому запитывать ее следует через резистор. Резистор должен обеспечивать ток не менее 5 мА (примерно столько потребляет микросхема), но не более 100 мА (это максимум, который способен прожевать стабилизатор). Поскольку ток довольно скромный — лучше всего выбрать его в районе 8-10 мА и подавать через последовательно включенные резистор и светодиод, индицирующий наличие питания. Разумеется, в этом случае источник питания должен обеспечивать достаточное напряжение, где-нибудь от 8-9В. Ну а менее, чем 5В и вовсе недостаточно в любом случае. Запас в 3-5 мА нужен для питания индикатора заряда.

Подключение индикаторов и питания

Резистор в данной схеме рассчитывается по следущим формулам:
R1 = (VMIN — VLED — 5В) / 8мА
R1 > (VMAX — VLED — 5В) / 20мА

Если не удается удовлетворить второму условию — можно перенести индикатор питания в другое место (скажем, запитать его через резистор от стабилизированных 5В) и увеличить ток с 20 мА до 100 мА. Также, если индикатор питания запитан от питания контроллера — придется увеличить минимальный ток. Кроме того, сопротивление в 470 Ом для второго резистора маловато. Следует увеличить либо его, либо минимальный ток через R1.

Кроме того, минимальное напряжение питания девайса в целом определяется количеством заряжаемых батарей по формуле:
VMIN = N * 1.9В + VO,
где N — количество элементов в батарее, а VO — падение напряжения на регулирующем элементе. Оно составляет 1.5В для линейного режима и 2В для импульсного. Если напряжение на выходе источника питания пульсирующее (например, обычный сетевой адаптер с трансформатором и мостиком) — VMIN должно быть ниже уровня пульсаций.

Также стоит отметить, что при питании более 20В следует принимать специальные меры. Подробнее — в даташите.

Стабилизатор зарядного тока

Блок-схема стабилизатора

А вот и самая интересная часть. Этот блок обеспечивает режим заряда аккумуляторов. Он может находиться в одном из трех режимов:

  • Стабилизация выходного напряжения. Этот режим включается при отсутствии на выходе батареи и ограничивает выходное напряжение на уровне N * VLIMIT. VLIMIT задается напряжением на одноименном выводе, обычно он подключается к встроенному источнику опорного напряжения на 2В (вывод VREF). Также в этот режим зарядник может перейти при зарядке неисправной батареи, если напряжение на ней во время заряда превысит N * VLIMIT.
  • Стабилизация выходного тока в режиме быстрого заряда. Это основной режим заряда аккумулятора. Ток определяется сопротивлением шунта RSENSE по формуле RSENSE = 0.25В / IFAST.
  • Стабилизация выходного тока в режиме капельного заряда. Он, в зависимости от выбранного максимального времени заряда, составляет от 1/8 до 1/64 тока быстрого заряда. Табличка… Да-да, все там же 🙂 В целом, если выбирать время адекватно, ITRICKLE оказывается в диапазоне C/10..C/20.

Кроме того, сам стабилизатор может работать в одном из двух режимов — импульсном или линейном. Это определяется емкостью конденсатора коррекции C2. Линейный режим весьма прост и неоднократно описан. Но — в нем на регулирующем транзисторе рассеивается приличная мощность, кроме того, вывод DRV микросхемы тоже работает в линейном режиме и на нем тоже рассеивается некоторая мощность (которая, в сумме с мощностью, расеиваемой стабилизатором питания микросхемы, не должна превышать 0.6-0.8Вт в зависимости от корпуса).

Включение микросхемы в импульсном режиме

Приведенная в даташите схема включения в импульсном режиме, по сравнению с линейным, несколько пугает и весьма скудно описана. Однако, если присмотреться (и если разбираться в импульсных преобразвателях, разумеется) не все так страшно. По большей части, тут все то же самое, но:

  • Конденсатор C2 заметно уменьшился. Именно это переводит петлю стабилизации тока в неустойчивый режим. Он же определяет частоту генерации, в данном случае — около 30 кГц.
  • Регулирующий транзистор теперь полевой (хотя, на самом деле, туда без проблем можно вкорячить биполярник) и вместе с D2 и L1 образует обычный step-down. Работа этой схемы неплохо описана DI HALT’ом, канализационная аналогия прилагается 🙂 Дроссель можно посчитать, но в принципе, схема допускает нехилый разброс его индуктивности, так что можно просто взять 220 мкГн и не заморачиваться (у меня оно работало даже с дросселем на 1 мГн из ЭПРА).
  • На Q1, Q2 и R2 собран драйвер MOSFET’а. В принципе, вполне типичная схема. Хотя, если напряжение питания превышает максимально допустимое напряжение исток-затвор — над драйвером придется поработать… Либо заменить полевик на биполярник.
  • Любопытно реализована схема питания и индикации. Ток питания ограничивается неким «токоограничивающим диодом», каковых я с полпинка в продаже не нашел, а индикатор запитывается не от питания контроллера, а от входного. Можно взять на заметку, а можно откатить на вариант из раздела про питание, он проще.
Читайте также:  Зарядное устройство для senseit p101

На этом я закруглюсь с описанием микросхемы, хотя в даташите описано еще некоторое количество тонкостей. Перейдем к конструкции.

  • Заряжаемая батарея: 12В, 1200мАч, NiCd.
  • Корпус: от родного зарядника, довольно небольшой.
  • Питание: сетевой адаптер, 20В 0.4А.

Выбор и расчет схемы

Прежде всего — выберем схему. Режим — импульсный (в корпус некуда вкорячить достаточно эффективный радиатор), питание МС через резистор (питание стабильное и искать токоограничивающий диод или корячить стабилизатор тока смысла нет), индикация двумя светодиодами («Питание» и «Заряд») по наиболее простой схеме. Кроме того, поскольку напряжение питания 20В — что близко к предельно допустимому для затвора VT4 и U1.DRV — введем дополнительный транзистор VT1. Он, во первых, ограничит напряжение на U1.DRV примерно пятью вольтами, а во вторых — ограничит напряжение исток-затвор транзистора VT4 примерно на уровне -15В.

Затем выберем параметры. Во первых, это ток заряда. Параметры адаптера ненавязчиво намекают выбрать его равным C/3, т.е. 400мА (примерно столько же было и в родной схеме). VMIN = 10 * 1.9В + 2В = 21В, что чуть выше, чем напряжение адаптера. Но в данном случае не страшно, параметр «1.9В» в формуле — это максимальное напряжение на одном элементе во время заряда, но при столь малом токе (а MAX713 рассчитана на токи до 4C) оно врядли будет достигнуто. Время заряда примерно можно посчитать как 1.5 * C / I, что дает 4.5 часа. Выбираем из таблички подключение для PGM3/4, дающее таймаут 264 минуты (максимальный) с включенным voltage slope detection (т.е. отключение по dv/dt). Также выбираем из таблицы подключение PGM0/1 для 10 элементов в батарее. Слежение за температурой в батарее не предусмотрено, так что просто подаем 0 на TLO, 5В на THI и нечто среднее на TEMP, удобнее всего взять VREF, которое равно 2В. Повесим туда же и VLIMIT, это дефолтный вариант из даташита.

Теперь необходимо посчитать номиналы.

Конденсаторы по большей части выбираем «как в даташите» или «что есть, но не слишком далеко от даташита». Критичен здесь только C4, но 220пФ у меня не было. C5 можно уменьшить вплоть до 1мкФ, остальные уменьшать не стоит. Не забываем и про напряжение — все электролиты на 25В, кроме C5 на 6.3В. Транзисторы опять же по принципу «что есть», в качестве VT1-VT3 подходят любые маломощные транзисторы общего назначения соответствующей проводимости, а вот VT4 должен выдерживать не менее 25В сток-исток, исток-затвор 15-20В, ну и выдерживать ток порядка ампера. Да, IRF9540 — нехило так эти параметры переплевывает, но — что в магазине было. Я еще посматривал на FETKY-сборку из дохлого винта, но она была всего на 20В. VD1 — любой шоттки на требуемые ток (порядка 0.5-1А) и напряжение (более 20В, лучше с запасом). В качестве VD2 вообще пригоден почти любой диод на 0.5 А и 20В. СИДы выбираем по вкусу, я выбрал зеленый на питание и красный на заряд, трехмиллиметровые — по размеру дырок в корпусе.

Чуть интереснее расчет резисторов и дросселя.

R1 считается по приведенной выше формуле. 1.2кОм чуть менее расчетного значения, но это не страшно. Зато есть запас тока на HL2. R2 ограничивает ток HL2 примерно тремя миллиамперами. Можно было и побольше, тускло светит, а запас питания есть. R4 задает ток каскада на VT1, в данном случае примерно 3мА (на нем 5В минус падение на выводе DRV МС и эмиттерном переходе транзистора), на R3 при этом токе должны падать остальные 15В. R5 — токозадающий, формула опять же приведена выше.

В плане дросселя вполне приемлема точность как у Фау-1 — плюс-минус пол-Лондона, какая разница. Сперва я взял дроссель фильтра из ЭПРА, но он, зараза, грелся до оверсотни градусов, и тока нужного не выдавал. Пришлось перемотать его проводом потолще, около 0.3-0.4мм, взятым с балластного дросселя той же ЭПРА. Сердечник дросселя фильтра — гантелька, длиной около сантиметра и внешним диаметром около 8мм. После намотки до заполнения получилось как раз 250-300 мкГн, подошло отлично и не грелось.

Рекомендации по трассировке платы

Во первых, даташит предупреждает — C4 необходимо цеплять к выводам CC и BATT- как можно более короткими дорожками, в идеале — вообще SMD прямо между ними посадить. Во вторых, по дорожке, соединяющей U1.GND и R5 не должны течь токи силовой части. Проще говоря, она должна соединять их напрямую, ни на что больше не отвлекаясь, и от U1.GND больше никуда не идти. То же самое касательно соединения U1.BATT- и R5. Но тут допустимо после U1.BATT развести соединения к обвязке МС. Провод к BAT- тоже надо отводить непосредственно от ножки R5 отдельной дорожкой. Также нежелательна большая длина проводов между U1.BATT+ и BAT+ и между U1.BATT- и BAT-. К силовой части (VT4, VD1, VD2, L1, C1, C2, C6) применяются обычные правила разводки импульсных силовых схем, т.е. силовые дорожки потолще и покороче, площадь контура протекания больших импульсных токов (здесь это C1/C2, сток-исток VT4, VD1 и в меньшей степени L1 и C6) поменьше и все такое. Заметные импульсные токи есть и в контуре драйвера — C1/C2, VT2/VT3, VT4.

Фоточки

Версия первая, линейная:

Версия вторая, импульсная. Можно заметить две вполне типичные ошибки трассировки. Во первых, я влепил VT4 туда, где под него нету места по высоте. Поэтому он так странно установлен 🙂 Кстати, черный бочонок за ним — тот самый дроссель. Во вторых, я забыл провести одну из дорожек, теперь там перемычка. Ну и в третьих, уже позже я добавил параллельно C6 керамический SMD кондер на 0.1 мкФ.

Ну и в полном сборе:

Заметно, что светодиод «Зарядка» светит тускловато.

Источник

Max1737 схема зарядного устройства

Добрый вечер уважаемые коты.
Нужно собрать зарядку, у микросхемы 3 порога я так понял, можно изменять ток заряда?
Залил дш, вот схема еще.
Мне нужно сделать норм зу для акб.
Изображение
Схема:

Вложения:
MAX1737.rar [175.67 KiB]
Скачиваний: 199

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Так в чем дело? Схема есть, даташит есть. В чем собственно вопрос? Ни одного вопроса мы здесь не услышали. А так всегда каждый знающий рад помочь.

Читайте также:  Какую зарядное устройство для аккумулятора aaa

_________________
Философская мудрость века настоящего, становится всеобщим здравым смыслом века последующего.

Последний раз редактировалось _RUS73_ Пн янв 14, 2013 23:08:37, всего редактировалось 1 раз.

Благодаря облачным технологиям появилась возможность реализовать сложные проекты на базе микроконтроллера путем перераспределения вычислительной нагрузки между микроконтроллером и облаком. Простые в использовании отладочные платы, такие как AVR- и PIC-IoT WG, позволяют выполнять ресурсоемкие вычисления, передавая их в облако.

Приглашаем 23/06/2021 всех желающих принять участие в вебинаре, посвященном проектированию и разработке систем умного дома на базе компонентов STMicroelectronics. Предлагаемые ST ресурсы позволят разработчику легко построить каркас системы и быстро создать прототип своего приложения. На вебинаре также расскажем о беспроводных интерфейсах – ведь благодаря поддержке стандартов BLE и ZigBee разработчики смогут при необходимости интегрировать устройства сторонних производителей и создавать открытые системы.

Часовой пояс: UTC + 3 часа

Кто сейчас на форуме

Сейчас этот форум просматривают: sashok17 и гости: 28

Источник

Зарядка литиевых батарей с нестандартными напряжениями c MAX1737

Литий-ионный (Li-Ion) и литий-полимерный (Li-Pol) аккумуляторы в настоящее время являются наиболее распространенным типом батареи применяемых в большинстве потребительских электронных устройств.

Благодаря соотношению высокой плотности запасенной энергии к емкости батареи, они идеально подходят для большинства мобильных и портативных устройств, будь то для потребительской, промышленной или измерительной электроники. В настоящее время наиболее распространенным типом батареи является батарея с напряжением заряда 4,2 В ± 1%.

Особенно в последние годы, на рынке появляется большое количество различных специальных батарей с использованием технологии лития, но со значительно более высокой плотностью запасенной энергии, а также других показателей напряжения и тока зарядки.

По этой причине компания «Maxim» недавно представила проект зарядного устройства для литий-ионных аккумуляторов на MAX1737, но в конфигурации с поддержкой нестандартного напряжения и повышенного тока заряда.

Рис. 1: Внутренняя блок-схема MAX1737 от «Maxim»

Если быть более конкретным, то речь идет, например, о батареи серии ANR26650m1od компании A123 Systems, которые имеют номинальное рабочее напряжение 3,3 В. Батареи можно заряжать со стандартной скоростью 1,3 C (и, следовательно, током 3А), или быстрее до 4,34 C (током до 10 А) с напряжением в конце зарядки 3,6 В. Подобных специальных батарей сегодня множество, и все они требуют выбора напряжения в диапазоне от 3,6 до 4,2 В.

На рис. 2 приведена схема применения чипа MAX1737, предназначенного для зарядки от одного до четырех литиевых элементов с рабочим напряжением 4,2 В. Вся настройка нестандартных напряжений заключается, прежде всего, в добавлении двойного контура, маломощного операционного усилителя MAX4163 и несколько резисторов.

Рис. 2: Схема зарядного устройства на MAX1737 и MAX4163.

Кроме того, в схеме реализована возможность изменять напряжение зарядки путем подбора сопротивления резистора RCS. Так в случае использования резистора сопротивлением 33 мОм можно выставить зарядный ток 3 A, таким образом, получим стандартный зарядный ток для указанной выше батареи A123. Соответственно необходимо подобрать силовые элементы N1, N2, D1, D4 и индуктивность L1 необходимой мощности, которые могли бы работать при токе 3 А.

В случае, когда требуется еще более высокий зарядный ток (выше 3А), необходимо транзисторы N1 и N2 заменить на более мощные транзисторы с таким же рабочим напряжением. Обязательным условием является также емкость управляющего вывода Gate, которая не должна быть слишком высокой, чтобы не нагружать выходы чипа MAX1737. Также нужно подобрать диоды D1, D4 и другие элементы по которым проходит зарядный ток

Электросхема зарядки MAX1737 внутренне настроена на автоматическое переключение с режима постоянного тока (СС) на режим постоянного напряжения (CV) со значением 4,2 В ± 0,8%. Таким образом, для реализации данного режима работы, в схему было добавлено два операционных усилителя MAX4163. Операционный усилитель А2 является неинвертирующим усилителем с коэффициентом усиления 1,16, так что на его выходе обеспечивается напряжение 4,2 В, когда напряжение на входе достигает 3,6 В. Вход операционного усилителя А2 подключен к + клеммы аккумулятора (вывод который обычно используется для измерения напряжения батареи), так что зарядное устройство из режима CC выходит при достижении 3,6 В.

Второй операционный усилитель А1 подключена как дифференциальный усилитель с единичным усилением. Его прямой вход подключен к выходу А2 а инвертирующий вход к положительному выводу зарядки аккумулятора. Его выход контролирует сигнал CS, цепи управления. Работа А1 заключается в том, чтобы отслеживать зарядный ток в виде разницы напряжений между BATT и CS. Если падение напряжения на резисторе RCS равно нулю, то такое же значение и на контакте BATT и, следовательно, на обоих входах операционного усилителя А1.

Источник

Зарядка 3х литиевых аккумуляторов 3S (MAX1737)

Всем привет!
Имеется зарядное устройство на микросхеме max1737. Заряжает нормально, но сильно греются ключи (вроде irf7904) и катушка (SDR0805 22мкГн)(Даже при токе 600mA примерно до 60-70 градусов нагревается). Диоды на питание и на управление верхним ключом поставил bat54. Диод основного питания 3А. Схема по даташиту. Работает зарядка минимум от 16,5В.
А хотелось бы чтоб меньше грелась, работала от 14-15 Вольт и меньше обвеса. Хотелось бы добавить на плату защиту от превышения/занижения напряжения ячейки и балансировку. Лучше решения на микросхемах, а не на dw-01p и tl431. Микросхемах не китайских, не MPS, а доступных не через алиэкспресс, таких как : TI, maxim, Analog.
Выбрал зарядку BQ24105, защиту BQ77904. Балансир нормальный не нашёл.

И вот вопросы:
1) как узнать из даташита минимальное рабочее напряжение? Например, для BQ24105, max1758, max1737.
Будет ли BQ24105 работать от 14-15 вольт(у него же p-mosfetы у входа)?
2) почему зарядник греется, если мощность рассеивания, теоретически меньше ватта и фронты равненькие?! Может хиленькие диоды bat54?
Max1758 меньше будет греться?
3) Есть ли ещё зарядки хорошие, маленькие, такие как BQ24105 и MP26123?
4) BQ77904 при защите от превышения напряжения, включается защита на 4.225, а отключается на 4.125. Будет ли с этим корректно работать зарядка? Стоит ли вообще применять такую защиту? Если не стоит, то какая лучше?
5) Есть ли маленькая микросхема балансира 3S? Или защита+балансир, а то что-то не нашёл!

Подскажите, пожалуйста, а то почти месяц ковыряю тему и опыта явно не хватает!

Помощь в написании контрольных, курсовых и дипломных работ здесь.

Зарядка и защита литиевых аккумуляторов
Доброго дня! Вот достался мне аккумулятор от какого-то ноутбука с выгоревшим контроллером. Банки.

Зарядка для литиевых таблеток
Собираюсь в одном устройстве использовать аккумуляторы Lir2032 у них такой же форм фактор, как и.

зарядка аккумуляторов
зарядка аккумуляторов на практике работает корректно 233.rar

Источник