Меню

Литий ионные аккумуляторы моделирование

Литий ионные аккумуляторы моделирование

  • НОВОСТИ
  • О НАС
  • ПРОЕКТЫ
  • БЛОГ
  • КОНТАКТЫ
  • С нами работают

Всем известно, что аккумуляторы имеют широкое применение в мехатронике, робототехнике, автоматических системах управления и промышленности в целом. Электроавтомобили, автономные роботы, системы резервного питания, мобильные средства связи и вычислительной техники – далеко не полный перечень вариантов их применения. Совершенствуются и сами аккумуляторы. В своих разработках в большинстве случаев мы применяем литий-ионные аккумуляторные батареи.

Особенности строения аккумуляторов (в частности химические процессы в них протекающие) диктуют необходимость применения разнообразных схем зарядных устройств и устройств контроля состояния аккумуляторов. Наиболее важное место здесь занимает система контроля и управления аккумуляторной батареей (далее — СКУ АБ, в иностранной литературе используется аббревиатура BMS – battery management syste).

Применение систем контроля и управления аккумуляторной батареей позволяет:

В ходе работы литий-ионных аккумуляторов возникает такое явление, как разбалансировка. Это связано с тем, что все аккумуляторы имеют различия в таких характеристиках, как ток саморазряда в режиме хранения, внутреннее сопротивление, скорость деградации электродных материалов и т.д. Соответственно различия в напряжениях аккумуляторов приводят к снижению их срока службы и выходу из строя. Для решения этой проблемы люди придумали системы балансировки аккумуляторов.

В данной статье мы постараемся рассказать о наших изысканиях в попытках разработать схему активной балансировки.

Так, определенные системы зарядки литий-ионных аккумуляторов построены на том, что зарядка прекращается в том момент, когда одна из батарей достигнет верхнего порога (для литий-ионных аккумуляторов он составляет 4,2 вольта, как правило). Соответственно, батареи, емкость которых ниже, не заряжаются в таком случае полностью и эффективность использования такой ячейки снижается (а ещё она быстрее выйдет из строя т.к. всё чаще и чаще может уходить в глубокий разряд если система позволяет).

Аналогично и с разрядкой аккумулятора – если система контроля отключает аккумуляторы, ориентируясь по первой ячейке, которая достигнет нижнего порога напряжения (3 вольта для литий-ионных аккумуляторов, как правило), то эффективность использования такой системы резко упадет. Говоря опять же, простым языком не будет использован весь потенциал аккумулятора. Заряжаться он будет, ориентируясь на самую «живую» ячейку, а отключаться при разрядке, ориентируясь на самую «дохлую».

Гораздо более катастрофичными могут оказаться последствия, если система ориентируется на среднее значения напряжения между ячейками при заряде или разряде аккумулятора. В таком случае ячейки с меньшей емкостью могут не успеть зарядиться до верхнего порога в 4,2 вольта, в то время, как другие ячейки зарядятся выше этого значения, что может привести к их взрыву. Аналогично, при разряде такие ячейки могут разрядиться ниже порога в 3 вольта, что приведет к серьезной потере емкости такой ячейки.

Поэтому литиевые аккумуляторы балансировать нужно. А если кто-то говорит, что и так работает, то рано или поздно он поедет в травму с ожогами. Ага. Вообще балансировку можно осуществлять активными методами и пассивными.

Балансировка с переключающимися емкостями (Рисунок 4) заключается в том, что энергия сначала закачивается в буферную емкость от i-ячейки, а затем передается из буферной емкости в соседнюю (i+1)-ячейку. Отсюда следует главный недостаток такой системы – передача заряда из ячеек, отдаленных друг от друга, крайне затруднительна.

Общий недостаток емкостных систем балансировки – броски тока при переключениях между ячейками, что может привести к выходу ключей из строя.

Потери энергии при этом невелики и в основном происходят в диоде и дросселе.

Аналогично катушкам индуктивности можно использовать трансформаторы (с разным числом обмоток). Эффективность метода не очень высокая, но данная система решает проблемы больших токов при разрыве в цепи. Если опять вернуться к примеру со 100 ячейками по 3,6 вольта, то при обрыве в цепи на транзисторах будет напряжение не 360 вольт, а всего 3,6, что не приведет к их сгоранию.

Существует три варианта построения систем балансировки на трансформаторах. Первый, buck-boost converter, основан на том, что энергия передается между двумя соседними фиксированными парами ячеек (между соседней четной и нечетной ячейкой). Данный метод изображен на Рисунке 8.

Системы активной балансировки, построенные на использовании преобразователей – повышающих, понижающих, прямоходовых и обратноходовых, а так же двунаправленных, считаются наиболее эффективными топологиями. В таких системах ключи находятся со стороны вторичной обмотки трансформатора (со стороны аккумулятора), то есть на ключи действует только напряжение ячеек, что не приведет к их выгоранию. В то же время усилители находятся со стороны первичной обмотки трансформатора (то есть с той стороны, к которой подключается зарядное устройство). Такой подход позволяет минимизировать потери в ключах, и одновременно с этим согласовывает разные уровни напряжений с обеих сторон трансформатора.

В частности, системы, построенные на повышающих преобразователях, передают энергию от одной ячейки ко всей группе ячеек. Пример такой системы показан на рисунке 11. Контроллер выбирает наиболее заряженную ячейку, включает соответствующий ей преобразователь, и энергия от ячейки начинает распределяться на всю группу.

Общей чертой обратноходовых преобразователей и buck-boost преобразователей является то, что они хранят энергию непосредственно в дросселе. В отличии от них, прямоходовой преобразователь только передает энергию через трансформатор, а для хранения энергии используются дополнительные элементы – катушки индуктивности. Сама энергия непосредственно передается с первичной обмотки от зарядного устройства.

Для создания системы активной балансировки был выбран метод балансировки на двунаправленном buck-boost преобразователе. Такой метод позволяет передавать энергию как от одной ячейки к группе ячеек (buck mode – передача энергии от наиболее заряженной ячейки), так и от группы ячеек к одной, наименее заряженной ячейке (boost mode). Для решения проблемы бросков тока будет использован контроллер тока, который позволяет формировать ШИМ-сигнал по току с постоянной амплитудой. Уникальность разрабатываемой системы заключается в том, что контроль преобразователя будет осуществляться одной единственной микросхемой, то есть микросхема будет непосредственно регулировать сигнал на первичной и вторичной обмотке трансформатора, а так же выполнять функции контроллера тока.

В области активной балансировки существует много наработок.

Известно изобретение «Устройство выравнивания напряжения на батарее» (патент США «Stackable Bi-directional Multicell Battery Balancer» №US8692516B2, МПК: H02J7/00, опубликован 08.04.2014).

Указанное устройство представляет собой систему из двунаправленных преобразователей энергии обратноходового типа, способную передавать энергию от всей батареи наименее заряженной ячейке и энергию от наиболее заряженной ячейки всей батарее. Так же устройство позволяет измерять напряжение каждого отдельного элемента литий-ионной АБ. Данной устройство построена на специализированных микросхемах компании Linear Technology (американская компания, производителей полупроводниковых элементов, микросхем, электроники и изделий на их основе) – LTC3300-1 и LTC6802-1 (Рисунок 12). Главным преимуществом данного изобретения является возможность его применения для высоковольтных батарей (напряжением до 1000 вольт). Недостатком данного устройства является сложность схемы управления, обуславливающая необходимость применения специализированной микросхемы LTC3300-1. Реализация логики работы данной микросхемы на элементной базе общего назначения достаточно сложна.

Другим примером изобретений в области активной балансировки является устройство контроля и балансировки литий-ионной аккумуляторной батареи, разработанное сотрудниками ЦНИИ РТК (Патент RU 176470 U1, опубликовано 22.01.2018, авторы: Гук М.Ю., Зыков Н.В., Иванов М.М., Кузнецов В.А.)

Данное устройство состоит из трансформатора с общим сердечников и одинаковыми по количеству витков рабочими обмотками, такими что, по крайней мере, две соседние ячейки имеют одну общую пару рабочих обмоток, которая своей общей точкой подключена к общей точке соединения этих ячеек, а свободными концами эта пара рабочих обмоток подключена через ключевые элементы к другим выводам соответствующих ячеек, а также генератора импульсов, выполненного в виде преобразователя постоянного напряжения и управляемых ключевых элементов, выпиленных на полевых транзисторах. Также в систему балансировки был введен коммутатор для измерения напряжения каждого элемента АБ в отдельности и микропроцессор для управления всей системой в целом. Микропроцессор с помощью коммутатора измеряет напряжение на ячейках АБ и выдает команду балансировочному устройству на проведение процедуры балансировки только при превышении разности напряжений на элементах АБ определённого порогового значения, что обеспечивает снижение потерь энергии и увеличение срока службы батареи.

Читайте также:  Аккумулятор для lenovo k5 play

Аналогичным к вышеописанному, но не имеющим возможности измерения напряжения каждого элемента АБ в отдельности, является устройство выравнивания напряжения на батарее (патент на изобретение США «Charge Redistribution Method For Cell Arrays», №US2014103857A1, МПК: H02J7/00, опубликован 17.04.2014).

В общем, посмотрели, поискали и решили, что интересно сделать всё-таки своё. Потому что кроме общего описания в этих патентах в общем-то и нет. Патентов на самом деле есть побольше, но привели несколько… Да и не о патентах вообще речь, а о том, что велосипеды изобретаются и делиться ими никто особо не хочет. Ну или нам не повезло просто.

Для создания системы активной балансировки был выбран метод балансировки на двунаправленном buck-boost преобразователе. Такой метод позволяет передавать энергию как от одной ячейки к группе ячеек (buck mode – передача энергии от наиболее заряженной ячейки), так и от группы ячеек к одной, наименее заряженной ячейке (boost mode). Вообще поиск показал, что есть решение у Texas Instruments, которое мы и попробуем реализовать. Зарядное устройство и нагрузка подключаются к первичной обмотке трансформатора, а батареи – ко вторичной обмотке.

Для реализации используются специализированные микросхемы от Texas Instruments – EMB1428 и ЕМВ1499. EMB1428 – драйвер, который управляет матрицей полевых транзисторов, коммутирующих нужную ячейку к вторичной обмотке трансформатора. ЕМВ1499 – двунаправленный контроллер тока, выполняющий также функции контроллера ШИМ сигнала на обеих обмотках buck-boost преобразователя.

Разрабатываемое устройство состоит из двух функциональных частей – коммутатора (Рисунок 13) и непосредственно устройства балансировки. Коммутатор построен на основе матрицы транзисторов и драйвера EMB1428 . Устройство балансировки построено на трансформаторе и микросхеме ЕМВ1499, образующими buck-boost преобразователь с системой управления.

Матрица транзисторов (Рисунок 14) состоит условно из двух частей. Одна состоит из транзисторов, которые напрямую подключаются к выводам ячеек аккумулятора – назовем ее «переключатель ячеек». Транзисторы ставятся парами, у них общий исток и общий затвор, такое построение блокирует протекание тока в обе стороны при закрытых транзисторах, что позволяет уменьшить потери. Можно пронумеровать такие пары транзисторов от 0 до 7 снизу вверх. Один сток подключатся к выводу батареи, второй сток – подсоединяется к общей линии, четной (ODD, линия красного цвета на Рисунке 14) или нечетной (EVEN, линия синего цвета на Рисунке 14), в зависимости от номера.

Вторая часть находится между » переключателем ячеек» и DC/DC преобразователем – назовем ее » переключатель полярности». EMB1428Q связан с микроконтроллером через интерфейс связи SPI (EMB1428Q получает от MCU команду, какая батарея требует заряда/разряда, докладывает об ошибках). Получив команду, EMB1428Q выбирает нужную ячейку в аккумуляторе, подключает ее через транзисторы к четной и нечетной линии и к нужному каналу, чтобы была нужная полярность (сначала EMB1428Q закрывает ненужные транзисторы, потом открывает нужные транзисторы). Например, выделение ячейки 1: открываются транзисторы Vg0 и Vg1, Vg11 и Vg8 (верх – к плюсу, низ – к минусу). Ячейка 2: открываются транзисторы Vg1 и Vg2, Vg9 и Vg10.

Источник



Как устроен Li-Ion аккумулятор?

Автономную работу всевозможных устройств,отмобильных гаджетов до персонального электротранспорта, обеспечивают аккумуляторы. С учетом необходимых значений емкости и напряжения, они объединяются в аккумуляторные батареи. Ключевые характеристики АКБ – емкость, напряжение, масса, время восполнения заряда, допустимый температурный режим – зависят от типа используемой химии.

Для автономного питания современной техники успешно используются литий-ионные аккумуляторы. Они имеют большой циклический ресурс, малый саморазряд, широкий температурный диапазон и солидную удельную емкость. Катод у таких элементов выполнен из производных лития, а заряд переносят ионы Li. Далее мы подробнее рассмотрим устройство Li-ion аккумуляторов и принцип их работы.

Как устроена литий-ионная батарея?

В основе конструкции литий-ионного аккумулятора– 2 составляющие: анод, выполненный из пористого углерода на фольге из меди, и катод – из оксида лития на фольге из алюминия. Их разделяет пористый сепаратор из полипропилена, обильно пропитанный электролитом, который выполняет функции проводника. Система находится в герметичном корпусе. Электроды подключены к токосъемникам. Некоторые аккумуляторы дополнительно имеют клапан-предохранитель для сброса внутреннего давления.

Пластины из меди и алюминия, смазанные электролитом и разделенные пористой прослойкой, обычно сворачиваются в рулон. В итоге получается элемент цилиндрической формы. При другом способе укладки пластин получаются изделия в форме призм и пакетов. Состав катода бывает разным: LiMn2O4, LiFePO4, LiCoO2,LiMnO2, LiMnRON, LiC6, LiNiO2и т.д.

Типы Li-ionаккумуляторов

В зависимости от используемого материала катода литиевые элементы бывают:

  1. Литий-марганцевые (LiMn2O4, LNO). Имеют меньшее внутреннее сопротивление, высокую мощность и умеренную емкость – 100–150 Вт·ч/кг. Стандартные токи заряда и разряда – до 1С, но есть модели с С-рейтингом зарядки до 3С и С-рейтингом разряда до 10С, а в импульсном режиме – до 50С. Ресурс – около 500 циклов. Применяются такие накопители в электроинструменте, силовых агрегатах, медицинском оборудовании.
  2. Литий-кобальтовые (LiCoO2, LCO). Имеют высокую энергоемкость (150–200 Вт·ч/кг), но уступают аналогам по термической стабильности и сроку службы (500–1000 циклов). Токи заряда и разряда для таких элементов не должны превышать 1С. Накопители энергии на основе кобальта встречаются все реже, но еще используются в мобильных телефонах, цифровых камерах, ноутбуках.
  3. Литий-никель-марганец-кобальт-оксидные (NMC, NCM). Обеспечивают высокую мощность и емкость – 150–220 Вт·ч/кг, выдерживают 1000–2000 циклов. Стандартные токи заряда и разряда – 1С. Используются в медицинском и промышленном оборудовании, электровелосипедах и других видах электротранспорта.
  4. Литий-никель-кобальт-алюминий-оксидные (NCA). Отличаются высокой удельной энергоемкостью – 200–260 Вт·ч/кг. Имеют ресурс около 500 циклов, зарядные токи 0,7С и разрядные 1С. Обеспечивают автономное питание промышленного и медицинского оборудования, электрических силовых агрегатов и других устройств, требующих высокой емкости.
  5. Литий-железо-фосфатные (LFP, LiFePO4). Отличаются большим ресурсом (более 2000 циклов), термической и химической стабильностью, высокой безопасностью эксплуатации и малым внутренним сопротивлением. Их удельная энергоемкость составляет 90–120 Вт·ч/кг, ток зарядки – 1С, ток разрядки – до 25С. Используются такие элементы питания в устройствах, для которых важна выносливость аккумов, способность работать на морозе и выдерживать высокие токи нагрузки.
  6. Литий-титанатные (LiTi). Отличаются низким номинальным напряжением (2,4 В) и удельной энергоемкостью 70–80 Вт·ч/кг, но быстро заряжаются, имеют широкий температурный диапазон и ресурс 3000–7000 циклов. Номинальные токи зарядки 1С, максимум – 5С. Допустимые разрядные токи – 10С, а при импульсной подзарядке – 30С. Литий-титанатные элементы считаются самыми безопасными. Используются они в уличном освещении, ИБП, электротранспорте.

Как работает литиевый аккумулятор?

Принцип работы Li-ion аккумуляторов идентичен для элементов всех типов, независимо от материала катода.Когда на электроды подается напряжение – «плюс» на оксид лития и «минус» на графит – положительно заряженные ионы лития отцепляются от молекул оксида и переходят на углеродную пластинку. В результате протекает окислительная реакция, и аккумулятор заряжается.

При работе литиевого аккумулятора под нагрузкой протекает обратный процесс. Ионы Li + возвращаются на пластинку из оксида лития, в свое стандартное состояние. Графитовая пластинка на фольге из меди становится «минусом», а оксид лития на фольге из алюминия – «плюсом».

Особенности зарядкиLi-ionэлементов

Литий-ионные элементы питания чувствительны к перезаряду. На поверхности анода при чрезмерном заряде осаждается металлический литий. Он выглядит как мелкий мшистый осадок и способен вступать в реакцию с электролитом. На катоде при перезаряде активно выделяется кислород. Внешне это может проявляться в виде интенсивного нагрева, роста давления и разгерметизации элемента.

Читайте также:  Аккумулятор для remington pg6030

Заряжаются Li-ionаккумуляторы в 2 этапа:

  1. При стабильном значении тока 0,2С–1С до рекомендованного производителем напряжения, обычно – 4,1–4,2 В. Длится эта стадия около 40 минут.
  2. При неизменном напряжении. Процесс зарядки завершается, когда значение зарядного тока уменьшается до величины, составляющей 3% от начального значения.

Быстрее происходит зарядка в импульсном режиме.Но для продления срока службы литиевых элементов их рекомендуется заряжать током, номинал которого составляет 50% от значения емкости, т.е. 0,5С.

Защита литиевых аккумуляторов

Элементы питания на основе лития защищены от коротких замыканийвнутри системы, например, с помощью 2-слойного сепаратора. Один из его слоев выполняется не из полипропилена, а из аналога полиэтилена. При риске короткого замыкания, к примеру, если дендриты лития прорастают к катоду, защитный слой локально нагревается, частично плавится, становится непроницаемым и блокирует последующее прорастание дендритов.

Для защиты от избыточного заряда и глубокого разряда накопители энергии снабжаются специальными ограничителями – платами защиты по току и напряжению. Они не допускают выхода напряжения за границы рекомендованного диапазона и в критических ситуациях автоматически отключают элемент от питания или нагрузки.

Поэтому для безопасной работы элементов и аккумуляторных батарей важно использовать BMSплаты. В противном случае высок риск повреждения аккумуляторов и их преждевременного выхода из строя. Такой контроллер зарядно-разрядного процесса может устанавливаться и на отдельные аккумуляторы, и на собранную из них батарею.

Производство литиевых элементов питания

Сырье для основных элементов в схеме Li-ion аккумуляторов – катода и анода – имеет вид мелкофракционного черного порошка. Чем мельче частицы, тем больше получается эффективная площадь электродов. Оптимальная форма частиц – сферическая, с гладкими краями, т.к. неровности чувствительны к токовым нагрузкам.

Производственный процесс состоит из следующих этапов:

  1. Порошковидные материалы наносятся в виде суспензии на фольгу. Аноды и катоды обычно производятся в различных цехах, чтобы обеспечить максимальную чистоту материалов. Металлическая фольга играет роль токоприемника.
  2. Фольга с нанесенными материалами сушится, разделяется на полоски и складывается в несколько слоев. Процесс сворачивания строго контролируется, т.к. любые дефекты способны привести к коротким замыканиям внутри системы.
  3. Между пластинами анода и катода зажимается сепаратор, обработанный электролитом.
  4. Пластинки сворачиваются рулоном или по другой схеме и помещаются в корпус.

Готовые изделия проходят тестирование – контролируемый цикл заряда-разряда. Подзарядку начинают с минимального напряжения и с постепенным его повышением.Протестированные изделия заряжаются до оптимального уровня, чтобы исключить риск значительного падения напряжения из-за саморазряда, и поставляются в продажу.

Предыдущая статья нашего блога посвящена сигнализации для электровелосипедов.

Источник

Учитываем нагрев в проектировании литий-ионных аккумуляторов

Author Image

Управление температурным режимом — важная часть в работе литий-ионных аккумуляторов, которую необходимо учитывать. Посредством имитационного моделирования вы можете проанализировать как теплота перемещается внутри источника энергии и тем самым процесс проектировки.

Повод для беспокойства

Несмотря на то, слышите вы или нет название постоянно, литий-ионные аккумуляторы определённо играют активную роль в поддержании вашего ежедневного общения. Эти лёгкие, перезаряжаемые аккумуляторы обычно используются в разнообразной потребительской электронике, в том числе ноутбуках и сотовых телефонах. С их высокой плотностью энергии, литий-ионные аккумуляторы стали даже использовать в промышленности и транспортировке.

Литий-ионный аккумулятор из сотового телефона.

Литий-ионный аккумулятор из сотового телефона. (“NOKIA® Battery” автор Kristoferb. Лицензия Creative Commons Атрибуция — На тех же условиях 3.0 через Викисклад.)

По мере того как растёт использование этих устройств, увеличивается и беспокойство по поводу их безопасности. Как упоминалось в предыдущей статье блога, самовозгорание литий-ионного аккумулятора на борту нового Boeing 787 Dreamliner, вызванное перегревом, привело к отстранению от полётов всех самолётов Dreamliner. В прошлом году Design News сообщили о перегреве литий-ионных аккумуляторов внутри автомобилей Мицубиси (прочитать об этом можно здесь).

Два разных заголовка затрагивают одну общую проблему — влияние нагрева на безопасность и долговечность литий-ионных аккумуляторов.

Как нагрев воздействует на литий-ионные аккумуляторы?

Чтобы решить эту проблему, важно понять ее предпосылки.

Давайте начнём с конструкции аккумулятора. Литий-ионный аккумулятор состоит из двух электродов и неводного электролита, который позволяет ионам перемещаться. Во время зарядки, ионы лития двигаются с катода по электролиту и затем их захватывает кристаллическая структура анода на основе углерода. Когда аккумулятор разряжен, происходит процесс обратный описанному и эти ионы перетекают назад, приводя к противоположному потоку электрического тока. Кроме того они приводят и схему устройства в действие.

Согласно этому процессу, который похож на течение электрического тока по проводу, появляется внутреннее сопротивление в электролите, что приводит к Джоулеву нагреву. В проектировании литий-ионного аккумулятора важно то, что это тепло достаточно быстро распространяется, так что ячейка не нагревается настолько сильно, чтобы распадаться. Как отмечено в этом отчёте о моделировании литий-ионного аккумулятора, реакция распада является экзотермической. Это значит, что когда процесс начинается, температура будет продолжать расти и питать реакцию распада – явление известно как тепловой разгон аккумулятора. Это распространение тепла может быть потенциальным источником пожарной опасности.

Усовершенствование конструкции литий-ионного аккумулятора посредством имитационного моделирования

С помощью пакета COMSOL Multiphysics вы можете визуализировать и лучше разобраться в распределение температуры внутри литий-ионного аккумулятора. Модель Тепловое моделирования цилиндрического литий-ионного аккумулятора из модуля Аккумуляторы и топливные элементы объединяет теплопередачу с химией литий-ионного аккумулятора и потоком ионов. Интерфейс Сопряжённой теплопередачи используется для исследования охлаждения воздуха этой трехмерной тепловой модели литий-ионного аккумулятора.

Геометрия литий-ионного аккумулятора.

Составляющие термальной модели.

Модель ниже показывает температуру аккумулятора и направления потока после 1500 секунд зарядки. Наивысшая температура сосредоточена в активном веществе аккумулятора около торца, который является термически изолированным. Таким образом, эта область ячейки более склонна к старению и деградации.

Модель показывает температуру и поток в литий-ионном аккумуляторе.

Распределение температуры внутри литий-ионного аккумулятора.

Заключительные мысли — теперь ваша очередь

Имитационное моделирование является полезным инструментом в оптимизации проектирования литий-ионных аккумуляторов. По мере анализа того как тепло распространяется во время работы аккумулятора, исследователи и производители могут улучшить характеристики аккумулятора и найти путь к более безопасной и долговечной технологии.

Источник

Как на транзисторах сделать блок балансировки на любое количество литий-ионных аккумуляторов

Литий-ионные аккумуляторы крайне чувствительны к перезарядке. И стоит только немного перезарядить батарею, как она тут же выходит из строя. Чтобы аккумуляторы равномерно заряжались в последовательной цепи, применяют схемы балансовой защиты, исключающие перезарядку.

Собрать такой контроллер самому на транзисторах довольно не сложно.

Понадобится

Для изготовления одной ячейки контроллера балансировки потребуются следующие детали:

  • Стабилизатор TL431 — http://alii.pub/5mclsi
  • Транзистор BD140 — http://alii.pub/5p9tso
  • 4 диода 1N4007 — http://alii.pub/5m5na6
  • Светодиод — http://alii.pub/5lag4f
  • Резисторы 330 Ом, 1 кОм, 20 кОм — 2 шт. — http://alii.pub/5h6ouv
  • Переменный резистор 20 кОм — http://alii.pub/5o27v2

Печатная плата в Sprint Layout:

Схема и работа контроллера BMS на примере одной ячейки

Схема подключается паралельно аккумулятору и контролирует напряжение на нем. При достижения, во время зарядки, напряжения выше 4,2 В блокирует дальнейшее повышение.

В основе стоит микросхема регулируемого стабилизатора TL431. Которая управляет ключом на транзисторе. Транзистор через цепочку диодов блокирует превышение напряжения путем открывания и пропускания лишнего тока через себя. Светодиод служит для индикации и при загорании свидетельствует о полной зарядке батареи.

Если использовать данную схему для каждого элемента, то заряжать их можно последовательно в неограниченном количестве, без перезарядки

Источник

Как сделать аккумулятор из готовых элементов

Столкнулся я тут с проблемой, что нужно было подобрать аккумуляторную батарею для мощного светодиодного фонарика.

Предыдущая готовая аккумуляторная батарея с оранжево-желтого ресурса быстро погибла, причем проработала она совсем немного.

Читайте также:  Дистиллированная вода для аккумуляторов состав

Покупать новую батарею у наших продавцов было просто разорением. Можно было бы отдать денежку за услугу сборки (читай как «купить собранную батарею»), но сколько я не искал готовую собранную батарею –то нужных характеристик нет, то используют самые дешевые и поганые элементы, которые дохнут за пару месяцев (а берут за них наши умельцы как за оригинальные элементы от Samsung).

Все мысли пришли к тому, что нужно сделать батарею самому. Благо навыки для этого есть.

Если вы уже собирали батарею самостоятельно, то смело закрывайте эту статью 🙂…Ничего нового вы тут уже не найдете. Но если делаете аккумулятор первый раз в жизни, то читайте дальше, информация обязательно пригодится.

Речь пойдет про Li-ion аккумуляторы. Правда используемая логика подойдет и при сборке батарей любой химии.

Как устроено большинство аккумуляторных батарей?

Все они состоят из элементов, которые объединены в ячейки, а ячейки собраны в готовую аккумуляторную систему.

Ячейка – это несколько параллельно соединенных элементов.

Для того, чтобы получить требуемые характеристики, нужно поиграть со смешанным соединением проводников (использовать параллельные и последовательные соединения) с целью получить нужные значения.

Элементы в данном случае (в случае li-ion аккумулятора) – это банки 18650. Каждая банка обладает характеристиками.

Она имеет ёмкость, допустимый ток разряда и вольтаж. Ёмкость и вольтаж элемента всегда указаны на самой банке (элементе). Но вот допустимые разрядные токи обычно не указаны и зависят от типа элемента. Обычно если изделие не совсем «паленое», эта информация есть в подробных характеристиках.

Если вы работаете с Li-ion аккумулятором, то допустимый разрядный ток – это два значения ёмкости элемента.

Лучше выдерживать примерно 1,7 от значения емкости. Например, если емкость одной банки составляет 1700 мАч, то разряжать её можно примерно на 2,9 А. Важно, чтобы именно такие разрядные токи приходились на один элемент. Правда существуют и элементы с высокими токами разряда, но это отдельная песня.

Параметр этот зависит от химии аккумулятора и если бы вы использовали кислотно-свинцовый аккумулятор, то там эти цифры значительно выше. У литий-железофосфатных тоже другое значение. Но вернемся к нашим баранам.

Вы уже узнали, что одна банка вашего аккумулятора имеет емкость пусть 1700 мАч и способна выдавать 3,7 В. Нужно понять, как объединить эти элементы в систему и сколько нужно элементов.

Количество элементов определяется исходя из необходимой мощности батареи и допустимых разрядных токов на один элемент.

Давайте разберем всё это на простом примере.

Предположим, что есть у нас некоторый мнимый потребитель, мощность которого составляет 100 Вт, а для работы ему нужно 24 Вольта. Эти характеристики обычно указаны на корпусе самого объекта, который нужно запитать.

Вспомним, что такое параллельное и последовательное соединения проводников. (Если забыли, то был у меня урок на этот счёт)

При параллельном соединении U = U1 = U2 и I = I1 + I2, а при последовательном всё наоборот.

Ещё нужно помнить формулу расчёта электрической мощности P = U*I.

Известно, что наш потребитель кушает 100 Вт и работает при 24 В.

1. Сила тока, которую нам нужно обеспечить в цепи составляет 100 Вт / 24 В = 4,2 Ампера (I = P/U). Дальше известно, что каждый элемент даёт нам по 3,7 В.

Чтобы выйти на нужные значения по напряжению, мы сначала должны «раскидать» 24 Вольта по элементам.

2. Очевидно, что элементы по 3,7 Вольта нужно соединять последовательно, чтобы выйти на суммарный показатель. Ведь при последовательном соединении напряжения складываются.

Соедини мы их параллельно, общее напряжение батареи составило бы всего 3,7 В. Этого недостаточно.

Сколько нужно раз взять по 3,7 В, чтобы получить 24 Вольта?

Разделим 24 В (рабочее напряжение нашего потребителя из примера, смотрим его на корпусе устройства)/ 3,7 В (напряжение нашего элемента).

Получили 6,5. Округлим до 7.

Итак, нужно соединить 7 элементов по 3,7 В последовательно, чтобы обеспечить вольтаж.

3. Теперь нужно «проверить емкость».

Известно, что каждый элемент может отдавать 1,7 А в течение одного часа.

Значит, в батарее с 7 последовательно соединенными элементами мы имеем силу тока 1,7 А. Ведь элементы соединены последовательно, а значит I=I1=I2.

Наш потребитель кушает 4,2 ампера в час (нашли значение в пункте 1).

Время работы имеющейся аккумуляторной системы сейчас составит 1,7 ампера/ 4,2 ампера = 0,4 часа. Маловато будет. Да и разрядный ток на один элемент сейчас составляет 2,47, что на 0,47 больше, чем две емкости одного элемента. Банки будут сами себя губить.

4. Добавим в нашу сборку дополнительно к каждому последовательно соединенному элементу по одному параллельному элементу.

Образуем бОльшую ячейку.

Что получаем? Напряжение на выходе ячейки постоянное, а вот емкость подрастает. Теперь каждая ячейка отдает вместо 1,7А*ч по 1,7 * 2 = 3,4 А*ч.

Проверим время работы такого аккумулятора с нашим стоваттным потребителем.

3,4 А / 4,2 А = 0,8 часа.

Уже интереснее. Проверим, не убьются ли элементы.

4,2 А разделим на 3,4 А = 1,23 А. Сравниваем с емкостью одного элемента – у нас 1,7 А*ч, а получили 1,23 А.

Замечательно. Элементы проживут долго, так как мы не вышли за границу 2С.

5. Остается подогнать значение под нужное время работы. Делается это также. Добавляем в каждую ячейку параллельную банку. Можно заложить в расчёт хоть 500 часов автономной работы 🙂 Только аккумулятор будет заряжаться 300 лет и весить 500 кг.

После расчёта батареи и приобретения всех нужных элементов, нужно собрать аккумулятор.

На производстве элементы Li-ion аккумулятора соединяются с помощью специальной никелевой ленты. Мы же обойдемся обычным паяльником :)…

Банки аккумулятора можно смело спаивать друг с другом, используя обычные соединительные провода. Очень важно не перегревать элементы при пайке. Для быстрого и качественного их соединения уместно использовать паяльный флюс для алюминия.

Бытует мнение, что паяные аккумуляторы долго не служат. Но на своем опыте могу подтвердить обратное. Главное следить за температурой при пайке и прикасаться к торцам аккумулятора на самое минимальное время.

Сами же банки можно соединить любым удобным способом. Китайцы любят, например, закатывать всё в термоусадку и заливать по уши термоклеем.

Все аккумуляторные батареи из Li-ion элементов имеют контроллер заряда-разряда. Он называется плата BMS (Battery Monitoring System).

Её нужно купить отдельно, ориентируясь на характеристики нашего потребителя и химию аккумуляторов. В характеристиках всегда указан информация о максимальном количестве ячеек, с которыми плата сможет работать, максимальных разрядных токах, предельной мощности и вольтаже системы.

Плата позволит управлять зарядом вашей аккумуляторной системы и контролировать её разряд.

Сажаем её на вход аккумулятора и на каждую ячейку вешаем балансиры (это устройство для равномерного заряда всех ячеек. Выходы на них отмечены на плате. Нужно просто соединить каждую ячейку проводом с платой BMS) .

Ещё бывают платы BMS, интегрированные прямо в элементы аккумулятора. Такие элементы называют защищенными. Если в элементе уже есть плата BMS, то «общая» плата не нужна. Важно, чтобы BMS была в каждом элементе.

Заряжать полученную систему мы будем тем зарядником, который остался у нас от старого аккумулятора. Ну а если батарея новая, то проверьте мощность зарядника и допустимый ток заряда батареи. Напряжение выбираем по напряжению вашей батареи.

Таким образом, мы собрали аккумулятор из отличных элементов и сэкономили деньги. Помимо этого, наш аккумулятор гораздо лучше подходит под конкретные задачи. Надеюсь, статья будет полезна :).

Источник