Меню

Li ion аккумулятор даташит

Li ion аккумулятор даташит

В чём разница у 18650: IMR, ICR, INR, отличия по химии, защите, цвету, составу, плюсу

Это полное руководство с описанием особенностей, маркировки, характеристик, составов, конструкции, химии — всему, чем отличаются аккумуляторы 18650 друг от друга.

Все ли аккумуляторы 18650 одинаковые?

Нет. На первый взгляд они похожи, но фактически имеют много отличий. Тип 18650 объединяет две вещи:

  • 1. батареи похожи внешне (имеют изолирующую оболочку, один положительный и один отрицательный разъём);
  • 2. обладают одинаковыми габаритными размерами: 18 мм в диаметре и 65 мм в длину (отсюда и название «18650»).

На этом все сходства закончились. Предлагаем подробно узнать, чем отличаются 18650 друг от друга по всем характеристикам и особенностям.

Содержание:

  • → В чем разница 18650 по характеристикам?
  • → — Состав 18650
  • → — Номинальное напряжение
  • → — Ёмкость
  • → — Ток разряда
  • → — Внутреннее сопротивление
  • → — Выбор цвета
  • → — Химический состав
  • → Маркировка аккумуляторов 18650
  • → — IMR 18650
  • → — ICR 18650
  • → — INR 18650
  • → — 18650 IFR
  • → — 18650 NCA/NCR
  • → Аккумуляторы 18650 без защиты и с защитой
  • → Чем у 18650 выпуклый плюс отличается от плоского?
  • → Почему у 18650 разновидностей так много?

В чём разница у 18650: IMR, ICR, INR, отличия по химии, защите, цвету, составу, плюсу

В чем разница 18650 по характеристикам?

Прежде, чем перейти к пониманию различий по маркировке и другим особенностям этого типа аккумуляторов, нужно разобраться, что вообще они собой представляют внутри. Мы даём упрощённую схему с учётом, что в целом вы уже знакомы с принципом работы батареи в принципе.

Состав 18650:

  • Анод (-) — кремний или графит;
  • Сепаратор — пористый полипропилен, который пропитывают электролитом;
  • Электролит — смешан в пропорциях из диметилкарбоната, этилметилкарбоната, этиленкарбоната, пропилацетата, виниленкарбоната;
  • Катод (+) — основное звено, чем отличаются 18650 и маркируются (приобретая уникальные электрохимические свойства).

Теперь предлагаем разобраться, каковы номинальные значения тех или иных приобретённых «свойств» в следствие изменения катода и состава 18650. Их следует различать по напряжению, ёмкости, току разряда, внутреннему сопротивлению (импедансу). Также добавим принципы выбора для оболочки 18650 цвета, а затем остановимся подробно на маркировке по химии.

Номинальное напряжение

Номинальное напряжение 18650 бывает трёх видов:

  • 3,2 В
  • 3,6 В
  • 3,7 В

Номинальное напряжение 3,2 В предназначено исключительно для химического состава LiFePO4 (литий-железо-фосфатный аккумулятор / IFR). Больше всего используются сейчас 3,6 В и 3,7 В.

Ёмкость

Ёмкость обозначает, сколько энергии она может удерживать и как долго расходовать её. Основная характеристика, по которой понимают отличия аккумуляторов 18650.

Ёмкость 18650 измеряется в миллиампер-часах (обозначение мА·ч, на латинице mAh или часто встречается «мАч») или, редко, в ампер-часах (А·ч соответственно).

Почему литий-ионные аккумуляторы в телефонах (и 18650 в частности) имеют обозначение в мА·ч, а не в А·ч, мы рассказывали здесь.

Какой ёмкости бывают 18650: от 1000 мА·ч (1 А·ч) до 3500 мА·ч (3,5 А·ч). Последнюю предлагает, например, LG MJ1.

Встречается выражение ёмкости в качестве «плотности энергии», которая измеряется в ватт-часах (Вт·ч, Wh или «Втч») и бывает трёх видов:

  • простые ватт-часы (основанные на ёмкости в А·ч или мА·ч, умноженной на напряжение и затем деленной на 1000);
  • объёмная плотность энергии (записывается как Вт·ч/л, что даёт показатель ватт-часов на литр активного материала);
  • гравиметрическая плотность энергии (записывается как Вт·ч/кг — то есть мера ватт-часов на кг активного материала).

Ток разряда

Ток разряда (токоотдача, скорость разряда, рейтинг разряда) — это максимальный ток, который батарея может обеспечить непрерывно до нижнего предела напряжения, измеряемого в Амперах.

Как узнать ток разряда 18650? Он всегда указывается в заводском паспорте аккумулятора. Либо попробуйте найти его в интернете самостоятельно для вашей батареи/элемента (ищите именно «discharge rating» в рамках PDF-файла), либо напишите нам запрос, и мы с радостью поделимся этими сведениями.

Внутреннее сопротивление (импеданс)

Внутреннее сопротивление или «импеданс» — это фактор, который определяет, насколько легко или «быстро» батарея может расходовать свою энергию. В англоязычной документации обозначается как «IR» (Internal Resistance).

Внутреннее сопротивление измеряется в Омах (Ом, Ohm, Ω) или миллиомах (мОм, mOhm, mΩ).

Чем выше внутреннее сопротивление 18650, тем медленнее его саморазряд, быстрее падение напряжения под нагрузкой при большом токе и тем больше времени требуется на заряд. Как правило, чем выше ток разряда батареи, тем ниже емкость и тем ниже будет внутреннее сопротивление. На примере аккумулятора 18650 Sanyo NCR18650B (6,7 А) имеет заводское значение импеданса менее 100 мОм, когда как у Sony VTC5A (25 А) в datasheet показан допустимый диапазон 7-15 мОм (измеренный переменный ток 1 кГц).

Выбор цвета

Цвет 18650 не имеет особого значения при выборе аккумулятора. В качестве примера приведём зависимость от выбора производителей (она не всегда работает):

  • зелёный цвет оболочки всегда используют Sony и Murata (на данный момент во всех текущих продуктах);
  • красный — Sanyo;
  • светло-зелёный с чёрными полосками — Panasonic;
  • серый — Molicel;
  • разноцветные — LG и Samsung (раньше компания старалась выбирать цвет в соответствии с ёмкостью, но сейчас это не так).

Как видите, какой-то устоявшейся определённой зависимости оттенков оболочки и характеристик, либо производителя не существует. Производители выбирают цвет 18650 по своему разумению и не руководствуясь некими правилами.

Химический состав

Все элементы 18650 содержат литий (Li) в различных количествах. Возможности аккумулятора с точки зрения ёмкости и тока разрядки определяют все остальные химические компоненты (а также их различные количества и смеси).

На последнем пункте (химический состав) предлагаем остановиться подробнее. Тем более, что в этом плане производители показали себя куда лучше, чем с выбором цвета. Все поставщики аккумуляторов 18650 используют точное разграничение по маркировкам.

В чём разница у 18650: IMR, ICR, INR, отличия по химии, защите, цвету, составу, плюсу

Маркировка аккумуляторов 18650: чем отличаются и как выбирать?

Предлагаем вашему вниманию подробное пояснение ко всем маркировкам 18650, которые обозначают тип используемых химических компонентов аккумулятора. Если у вас есть вопросы, то укажите их в комментарии в конце статьи или напишите нам Вконтакте, чтобы мы добавили новый или редкий вид маркировки.

IMR 18650 (литий-марганец)

Химия IMR — это один из самых стабильных и наиболее эффективных химикатов, не требующий продвинутых схем защиты. Такие аккумуляторы 18650 не греются, когда разряжаются при высоком токе. Самая низкая рабочая температура в сопоставимых тестах делает IMR намного безопаснее, чем более старая технология ICR (смотрите ниже).

  • • Катод (материал) — LiMn2O4 (LMO);
  • • Температура (max) — 250°C;
  • • Ток разряда — 10C;
  • • Циклы (до снижения ёмкости на 30%) — от 300 до 700;
  • • Напряжение (max) — 4,25В;
  • • Напряжение (номинал) — 3,6В, либо 3,7В, либо 3,8В;
  • • Напряжение (min) — 2,5В (глубокий разряд менее 2,0В).

Интересно, что многие китайские продавцы переупаковывают батареи с нанесением маркировки I M R, когда как на самом деле они I N R (смотрите ниже).

ICR 18650 (литий-кобальт)

Химия ICR — это химикат для достижения высокой плотности энергии с низким уровнем стабильности (даже критически опасным в бытовом применении). Без надёжной PCB-платы защиты (желательно сертифицированной по примеру компании Trustfire) использовать не рекомендуется. Широко распространены в ноутбуках.

  • • Катод (материал) — LiCoO2 (LCO);
  • • Температура (max) — 150°C;
  • • Ток разряда — 1C;
  • • Циклы (до снижения ёмкости на 30%) — от 500 до 1000;
  • • Напряжение (max) — 4,25В;
  • • Напряжение (номинал) — 3,6В, либо 3,7В;
  • • Напряжение (min) — 2,5В или 2,75В.

Вы можете купить ICR на Aliexpress или eBay, но на практике они бесполезны для обычных мастеров и любителей собирать электронику в стиле «сделай сам»/DIY.

Приведём пример для вейперов. Аккумулятор 18650 Samsung 26F (чаще всего используется в аккумуляторах ноутбуков) имеет корпус того же цвета, что и Samsung 30Q — их очень легко спутать. 26F представляет собой элемент на 5,2 А (заводские характеристики), который практически не используется в вейпинге. Поместите один из них в вейп-устройство и запустите его на мощности выше 20 Вт, и вам гарантированно будет нехорошо.

INR 18650 (литий-марганец-никель)

Химия INR — это похожая на IMR 18650 основа с добавлением никеля в целях увеличения эффективности. Сочетает в себе безопасность и низкое сопротивление марганца с высокой удельной энергией никеля.

  • • Катод (материал) — Li(NiCoMn)O2 (NCM);
  • • Температура (max) — 210°C;
  • • Ток разряда — 1C или 2C;
  • • Циклы (до снижения ёмкости на 30%) — от 1000 до 2000;
  • • Напряжение (max) — 4,25В или 4,35В;
  • • Напряжение (номинал) — 3,6В или 3,7В;
  • • Напряжение (min) — 2,5В.

Обозначение INR для аккумуляторов 18650 говорит об их увеличенной ёмкости, высоком выходном токе и, что особенно важно, «кусачей» стоимости.

Аккумуляторы INR 18650 широко распространены в фонарях, вейпинге, аккумуляторных электроинструментах, мобильных устройствах. Производители прилагают сейчас максимум усилий к этой химии, которая представлена такими известными аккумуляторами, как Samsung 25R, LG HE2, Sony VTC4 и VTC5 (последние две для вейп-устройств не рекомендуются!).

18650 IFR (литий-фосфат)

Химия IFR — придаёт аккумулятору 18650 способность разряжаться с очень высокой скоростью (в 30 раз больше своей ёмкости — ток разряда 30C). Имеет низкое напряжение (3,2В), высокий саморазряд и редко встречается на практике. Популярности не сыскал из-за лучших достижений с другими типами химии.

  • • Катод (материал) — LiFePO4 (LCO);
  • • Температура (max) — 270°C;
  • • Ток разряда — от 25C (длительно) до 40C (на две секунды);
  • • Циклы (до снижения ёмкости на 30%) — от 1000 до 2000;
  • • Напряжение (max) — 3,65В;
  • • Напряжение (номинал) — 3,2В, либо 3,3В;
  • • Напряжение (min) — 2,0В.

Ёмкость 18650 IFR составляет в среднем 1200 мАч, но встречаются как на 1500 мАч экземпляры, так и намного меньших значений.

Ячейка IFR с током разрядки 30C может быть разряжена до 30 x 1100 мАч, то есть 33 А! Разве что продлится это недолго. Применяется в солнечных панелях, телекоммуникационном оборудовании, инструментах, электрических транспортных средствах, портативных пуско-зарядных устройствах и так далее.

18650 NCA/NCR (литий-алюминий)

Химия NCA (или NCR) — аккумуляторы с катодом из никелата лития и кобальта сопоставимы по химическому составу с INR, но гораздо менее распространены, так как вместо марганцевого элемента на изоляторе применяется алюминий. Токоотдача меньше, чем у ячейки INR, но взамен обеспечивает намного более длительные время работы от одной подзарядки и срок службы (не менее 500 циклов до потери 30% ёмкости).

  • • Катод (материал) — Li(NiCoAl)O2 (NCA);
  • • Температура (max) — 150°C;
  • • Ток разряда — 1C;
  • • Циклы (до снижения ёмкости на 30%) — от 500;
  • • Напряжение (max) — 4,25В;
  • • Напряжение (номинал) — 3,6В;
  • • Напряжение (min) — 2,5В или 2,75В.

Применение 18650 NCA (NCR) обосновано в тех устройствах, где не требуется большой ток, а ёмкость и длительный срок службы востребованы. На данный момент — это отрасль электротранспорта, включая гироскутеры, электросамокаты, электровелосипеды и даже электромобили.

Читайте также:  Садится аккумулятор зимой причины

В чём разница у 18650: IMR, ICR, INR, отличия по химии, защите, цвету, составу, плюсу

Аккумуляторы 18650 без защиты и с защитой — в чем разница?

Аккумуляторы 18650 без защиты — это в целом безопасные перезаряжаемые элементы питания, если вы сможете самостоятельно контролировать их разряд так, чтобы напряжение не снижалось менее 2,75В (варьируется между 2,5В и 2,8В). Разряд ниже этого уровня нанесёт непоправимый ущерб химическому составу 18650 (вплоть до полного отказа).

Часто производители мелких устройств (фонарики и лазеры, например) не используют какую-либо защиту от чрезмерного разряда, потому что она обычно встроена в схему внешнего зарядного устройства.

Аккумуляторы 18650 с защитой (PCB) — это те же самые перезаряжаемые элементы питания, но уже оснащённые специальной круглой печатной платой (примерно 17 мм в диаметре) в области отрицательной части корпуса (снизу батареи) с протяжкой никелевой полоски (тонкий провод) к положительной части корпуса (вверху батареи). Так вы можете понять, 18650 аккумулятор защищённый или нет.

Цель защиты аккумулятора 18650 — контроль напряжения во время использования (если оно достигнет нижних пороговых значений, то происходит отключение питания, а затем достаточно просто зарядить батарею).

Поэтому у аккумуляторов 18650 отличие с защитой и без сводится к наличию внешних признаков. Так, у аккумуляторов с платой защиты (PCB) ещё и увеличена длина с 65 мм до 66-67 мм (на 1-2 мм).

Внимание! В силу своих электрохимических свойств, аккумуляторы 18650 IMR в защитной плате не нуждаются, когда как 18650 ICR без неё попросту опасно использовать!

В чём разница у 18650: IMR, ICR, INR, отличия по химии, защите, цвету, составу, плюсу

Чем у 18650 выпуклый плюс отличается от плоского?

У крупных производителей оригинального оборудования (Samsung, LG, Sony, Panasonic, Sanyo и другие) аккумуляторы 18650 выпуклый плюс не имеют — все они плоские. Это связано с тем, что они создают промышленные элементы, которые никогда не предназначались для использования потребителями в быту.

Выпуклый плюс 18650 говорит о том, что аккумулятор создан для бытовых задач, а плоский — для промышленных целей.

Промышленным применением может быть что угодно — хоть единичная батарея в портативном радио или зубной щётке, хоть ряд из нескольких тысяч ячеек в электромобилях. В последнее время на рынке появляется всё больше и больше устройств, для которых требуется батарея 18650 с «бытовым» выпуклым плюсом. Ярким примером являются чрезвычайно популярные в настоящее время видеодомофоны китайского производства.

Выпуклый плюс 18650 на некоторых китайских экземплярах посажен на самоклеящуюся основу — держитесь подальше от этого!

Да, практически во всех случаях выпуклый плюс 18650 — это доработка (нештатная конструкция). Зачастую он просто приварен к батарее точечной сваркой. Как известно, паять их нельзя, а сварка обеспечивает долговечное, прочное и электрически исправное соединение.

Почему у 18650 разновидностей так много?

Причина в изобилии коммерческих продуктов (от фонариков и вейп-устройств до электромобилей и беспилотных летательных аппаратов), которые функционируют на аккумуляторах типа 18650. Они имеют в корне отличающиеся требования к электрическим характеристикам источника питания.

Небольшие устройства требуют ток менее 1А и как можно более длительное время работы от одной подзарядки (например, видеозвонки). Более мощные и крупные устройства нуждаются в высочайшей токоотдаче для достижения необходимой мощности (например, создания крутящего момента в электромобилях или электроинструменте).

Создать какой-то один универсальный аккумулятор 18650 на все случаи жизни пока невозможно.

Все ограничения определяют законы физики. Их стремится покорить электрохимическая отрасль уже более 30 лет кряду. Пока человечество не найдёт или не изобретёт новые «ингредиенты», которые можно использовать вместо существующих, границы так и не будут расширены.

О текущих достижениях в мире аккумуляторов 18650 и о том, какие из них лучше сейчас покупать читайте в нашем следующем материале по ссылке ниже.

Оставляйте вопросы в комментарии или отправьте сообщение нам ВКонтакте @NeovoltRu.

Подпишитесь на нашу группу, чтобы узнавать новости из мира автономности гаджетов, об их улучшении и прогрессе в научных исследованиях аккумуляторов. Подключайтесь к нам в Facebook и Twitter. Мы также ведём насыщенный блог в «Дзене» и на Medium — заходите посмотреть.

Источник



Li-ion и Li-polymer аккумуляторы в наших конструкциях

«С» значит Capacity

Часто встречается обозначение вида «xC». Это просто удобное обозначения тока заряда или разряда аккумулятора с долях его ёмкости. Образовано от английского слова «Capacity» (вместимость, ёмкость).
Когда говорят о зарядке током 2С, или 0.1С, обычно имеют в виду, что ток должен составлять (2 × емкость аккумулятора)/h или (0.1 × емкость аккумулятора)/h соответственно.
Например, аккумулятор емкостью 720 mAh, для которого ток заряда составляет 0.5С, надо заряжать током 0.5 × 720mAh/h = 360 мА, это относится и к разряду.

Основные характеристики литиевых аккумуляторов

Есть два основных типа литиевых аккумуляторов: Li-ion и Li-polymer.
Li-ion — литий-ионная батарея, Li-polymer — литий-полимерная батарея.
Отличие их в технологии изготовления. Li-ion имеют жидкий или гелевый электролит, а Li-polymer — твердый.
Это отличие повлияло на диапазон рабочих температур, немного на напряжение и на форму корпуса, которую можно придать готовому изделию. Ещё — на внутреннее сопротивление, но тут много зависит от качества изготовления.
Li-ion: -20 … +60°C; 3,6 V
LI-polymer: 0 .. +50°С; 3,7 V
Для начала надо разобраться, что это за вольты такие.
Производитель пишет нам 3,6 V, но это среднее напряжение. Обычно в даташитах пишут диапазон рабочих напряжений 2,5 V … 4,2 V.
Когда я первый раз столкнулся с литиевыми аккумуляторами, то долго изучал даташиты.
Ниже представлены их графики разряда при разных условиях.

Рис. 1. При температуре +20°C

Рис. 2. При разных температурах эксплуатации

Из графиков становится понятно, что рабочее напряжение при разряде 0,2С и температуре +20°C составляет 3,7 V … 4,2 V. Безусловно, батареи можно соединить последовательно и получить нужное нам напряжение.
На мой взгляд очень удобный диапазон напряжений, который подходит под многие конструкции, где используется 4,5V — они прекрасно работают. Да и соединив их 2 шт. получим 8,4 V, а это почти 9 V. Я их ставлю во все конструкции, где идёт батарейное питание и уже забыл, когда последний раз покупал батарейки.

Есть у литиевых аккумуляторов нюанс: их нельзя заряжать выше 4,2 V и разряжать ниже 2,5 V. Если разрядить ниже 2,5 V, восстановить не всегда удается, а выкидывать жалко. Значит, нужна защита от сверхразряда. Во многих батареях она уже встроена в виде мелкой платы, и её просто не видно в корпусе.

Схема защиты аккумулятора от сверхразряда

Бывает, попадаются аккумуляторы без защиты, тогда приходится собирать самому. Сложности это не представляет. Во-первых есть ассортимент специализированных микросхем. Во-вторых, кажется есть собранные модули у китайцев.

А в-третьих, мы рассмотрим, что можно собрать по теме из подножных материалов. Ведь не у всех есть в наличии современные чипы или привычка отовариваться на АлиЭкспресс.
Я пользуюсь вот такой суперпростой схемой многие годы и ни разу аккумулятор не вышел из строя!

Рис. 3.
Конденсатор можно не ставить, если нагрузка не импульсная и стабильно потребляющая. Диоды любые маломощные, их количество надо подобрать по напряжению отключения транзистора.
Транзисторы я применяю разные, в зависимости от наличия и тока потребления устройства, главное чтоб напряжение отсечки было ниже 2,5 V, т.е. чтоб он открылся от напряжения аккумулятора.

Настраивать схему лучше на монтажке. Берём транзистор и подавая на затвор напряжение через резистор сопротивлением 100 Ом … 10 К, проверяем напряжение отсечки. Если оно не более 2,5 V, то экземпляр годен, далее подбираем диоды (количество и иногда тип), чтобы транзистор начинал закрываться при напряжении примерно 3 V.
Теперь подаем напряжение от БП и проверяем чтобы схема срабатывала при напряжении примерно 2,8 — 3 V.
Иными словами, если напряжение на аккумуляторе опустится ниже порогового, которые мы установили, то транзистор закроется и отключит нагрузку от питания, предотвратив тем самым вредный глубокий разряд.

Особенности процесса зарядки литиевого аккумулятора

Что ж, наш аккумулятор разрядился, теперь пора его безопасно зарядить.
Как и с разрядкой, с зарядкой тоже не всё так просто. Максимальное напряжение на банке должно быть не более 4,2 V ±0.05 V! При превышении этого значения литий переходит в металлическое состояние и может произойти перегрев, возгорание и даже взрыв аккумулятора.

Заряд аккумуляторов осуществляется по достаточно простому алгоритму: заряд от источника постоянного напряжения 4.20 Вольт на элемент, с ограничением тока в 1С.
Заряд считается завершенным, когда ток упадет до 0.1-0.2С. После перехода в режим стабилизации напряжения при токе в 1С, аккумулятор набирает примерно 70-80% емкости. Для полной зарядки необходимо время около 2-х часов.
К зарядному устройству предъявляются достаточно жесткие требования по точности поддержания напряжения в конце заряда, не хуже ±0.01 Вольт на банку.

Обычно схема ЗУ имеет обратную связь — автоматически подбирается такое напряжение, чтобы ток, проходящий через аккумулятор, был равен необходимому. Как только это напряжение становится равно 4.2 Вольтам (для описываемого аккумулятора), больше поддерживать ток в 1С нельзя — далее напряжение на аккумуляторе возрастёт слишком быстро и сильно.

В этот момент аккумулятор заряжен обычно на 60%-80%, и для зарядки остальных 40%-20% без взрывов ток требуется снизить. Проще всего это сделать, поддерживая постоянное напряжение на аккумуляторе, и он сам возьмет такой ток, который ему необходим.
При снижении этого тока до 30-10 мА аккумулятор считается заряженным.

Для иллюстрации всего вышеописанного привожу график заряда, снятый с подопытного аккумулятора:

Рис. 4.
В левой части графика, подсвеченной синим, мы видим постоянный ток 0.7 А, в то время как напряжение постепенно поднимается с 3.8 В до 4.2 В.
Также видно, что за первую половину заряда аккумулятор достигает 70% своей емкости, в то время как за оставшееся время — всего 30%.

Зарядные устройства для литиевых аккумуляторов

У китайцев можно заказать по почте с бесплатной доставкой модули зарядных устройств. Модули контроллера зарядки TP4056 с гнездом мини-USB и защитой можно взять очень недорого.

А можно сделать самому простое или не очень простое зарядное устройство, в зависимости от вашего опыта и возможностей.

Схема простого зарядного устройства на LM317

Рис. 5.
Схема с применением LM317 обеспечивает достаточно точную стабилизацию напряжения, которое устанавливается потенциометром R2.
Стабилизация тока не столь критична, как стабилизация напряжения, поэтому достаточно стабилизировать ток с помощью шунтирующего резистора Rx и NPN-транзистора (VT1).

Необходимый ток зарядки для конкретного литий-ионного (Li-Ion) и литий-полимерного (Li-Pol) аккумулятора выбирается путём изменения сопротивления Rx.
Сопротивление Rx приблизительно соответствует следующему отношению: 0,95/Imax.
Указанное на схеме значение резистора Rx соответствует току в 200 мА, это примерное значение, зависит так же от транзистора.

LM317 надо снабдить радиатором в зависимости от тока заряда и входного напряжения.
Входное напряжение должно быть выше напряжения аккумулятора минимум на 3 Вольта для нормальной работы стабилизатора, что для одной банки составляет?7-9 V.

Схема простого зарядного устройства на LTC4054

Рис. 6.
Можно выпаять контролер заряда LTC4054 из старого сотового телефона, к примеру, Samsung (C100, С110, Х100, E700, E800, E820, P100, P510).

Читайте также:  Замена аккумулятору nokia bl 5c

Рис. 7. У этого мелкого 5-ногого чипа маркировка «LTH7» или «LTADY»

Вдаваться в мельчайшие подробности работы с микросхемой я не буду, всё есть в даташите. Опишу только самые необходимые особенности.
Ток заряда до 800 мА.
Оптимальное напряжение питания от 4,3 до 6 Вольт.
Индикация заряда.
Защита от КЗ на выходе.
Защита от перегрева (снижение тока заряда при температуре больше 120°).
Не заряжает аккумулятор при напряжении на нём ниже 2,9 V.

Ток заряда задается резистором между пятым выводом микросхемы и землей по формуле
I=1000/R,
где I — ток заряда в Амперах, R — сопротивление резистора в Омах.

Индикатор разрядки литиевого аккумулятора

Вот простая схема, которая зажигает светодиод, когда батарея разряжена и её остаточное напряжение близко к критическому.

Рис. 8.
Транзисторы любые маломощные. Напряжение зажигания светодиода подбирается делителем из резисторов R2 и R3. Схему лучше подключать после блока защиты, чтоб светодиод не разрядил аккумулятор совсем.

Нюанс долговечности

Производитель обычно заявляет 300 циклов, но если заряжать литий всего на 0,1 Вольта меньше, до 4.10 В, то количество циклов возрастает до 600 и даже более.

Эксплуатация и меры предосторожности

Можно с уверенностью сказать, что литий-полимерные аккумуляторы самые «нежные» аккумуляторы из существующих, то есть требуют обязательного соблюдения нескольких несложных, но обязательных правил, из-за несоблюдения которых случаются неприятности.
1. Не доспускается заряд до напряжения, превышающего 4.20 Вольт на банку.
2. Не доспускается короткое замыкание аккумулятора.
3. Не доспускается разряд токами, превышающими нагрузочную способность или нагревающими аккумулятор выше 60°С. 4. Вреден разряд ниже напряжения 3.00 Вольта на банку.
5. Вреден нагрев аккумулятора выше 60°С. 6. Вредна разгерметизация аккумулятора.
7. Вредно хранение в разряженном состоянии.

Невыполнение первых трех пунктов приводит к пожару, остальных — к полной или частичной потере ёмкости.

Из практики многолетнего использования могу сказать, что ёмкость аккумуляторов изменяется мало, но увеличивается внутреннее сопротивление и аккумулятор начинает работать меньше по времени при больших токах потребления — создаётся впечатление, что ёмкость упала.
По этому я обычно ставлю ёмкость побольше, какую позволяют габариты устройства, и даже старые банки, которым лет по десять, работают вполне прилично.

Для не очень больших токов подходят старые аккумуляторы от сотовых.

Из старой ноутбучной батареи можно вытащить много вполне рабочих аккумуляторов формата 18650.

Где я применяю литиевые батареи

Давно переделал шуруповерт и электроотвертку на литий. Пользуюсь этими инструментами нерегулярно. Теперь даже через год неиспользования они работают без подзарядки!

Маленькие батареи ставлю в детские игрушки, часы и т.д., где с завода стояли 2-3 «таблеточных» элемента. Там где нужно ровно 3V добавляю один диод последовательно и получается как раз.

Ставлю в светодиодные фонарики.

В тестер вместо дорогой и малоёмкой «Кроны 9V» установил 2 банки и забыл все проблемы и лишние затраты.

Вообще ставлю везде, где получается, вместо батареек.

Где я покупаю литий и полезности по теме

Продаются батареи всех видов, ёмкостей и форм-факторов в Китае. По этой же ссылке найдёте модули зарядок и пр. полезности для самодельщиков.

На счёт ёмкости китайцы обычно врут и она меньше написанной.

Честные Sanyo 18650
А вот аккумуляторы Sanyo 18650 подороже, зато и ёмкость честная и качество на высоте — менял в ноутбуке.

Контроллеры заряда на TP4056 с USB-разъёмом настолько малы, что можно встраивать их непосредственно в устройство и заряжать от USB ПК или от USB-зарядки для телефона.

А есть отдельно чипы-контроллеры TP4056 SO-8 для встраивания на свою плату.

Малогабаритные литий-полимерные аккумуляторы, разной ёмкости и размеров. Выводы сделаны проводами, что для нас очень удобно. Обычно есть защита.

Файлы

В архиве даташиты на некоторые аккумуляторы и чип LTC4054.

Источник

Как устроен Li-Ion аккумулятор?

Автономную работу всевозможных устройств,отмобильных гаджетов до персонального электротранспорта, обеспечивают аккумуляторы. С учетом необходимых значений емкости и напряжения, они объединяются в аккумуляторные батареи. Ключевые характеристики АКБ – емкость, напряжение, масса, время восполнения заряда, допустимый температурный режим – зависят от типа используемой химии.

Для автономного питания современной техники успешно используются литий-ионные аккумуляторы. Они имеют большой циклический ресурс, малый саморазряд, широкий температурный диапазон и солидную удельную емкость. Катод у таких элементов выполнен из производных лития, а заряд переносят ионы Li. Далее мы подробнее рассмотрим устройство Li-ion аккумуляторов и принцип их работы.

Как устроена литий-ионная батарея?

В основе конструкции литий-ионного аккумулятора– 2 составляющие: анод, выполненный из пористого углерода на фольге из меди, и катод – из оксида лития на фольге из алюминия. Их разделяет пористый сепаратор из полипропилена, обильно пропитанный электролитом, который выполняет функции проводника. Система находится в герметичном корпусе. Электроды подключены к токосъемникам. Некоторые аккумуляторы дополнительно имеют клапан-предохранитель для сброса внутреннего давления.

Пластины из меди и алюминия, смазанные электролитом и разделенные пористой прослойкой, обычно сворачиваются в рулон. В итоге получается элемент цилиндрической формы. При другом способе укладки пластин получаются изделия в форме призм и пакетов. Состав катода бывает разным: LiMn2O4, LiFePO4, LiCoO2,LiMnO2, LiMnRON, LiC6, LiNiO2и т.д.

Типы Li-ionаккумуляторов

В зависимости от используемого материала катода литиевые элементы бывают:

  1. Литий-марганцевые (LiMn2O4, LNO). Имеют меньшее внутреннее сопротивление, высокую мощность и умеренную емкость – 100–150 Вт·ч/кг. Стандартные токи заряда и разряда – до 1С, но есть модели с С-рейтингом зарядки до 3С и С-рейтингом разряда до 10С, а в импульсном режиме – до 50С. Ресурс – около 500 циклов. Применяются такие накопители в электроинструменте, силовых агрегатах, медицинском оборудовании.
  2. Литий-кобальтовые (LiCoO2, LCO). Имеют высокую энергоемкость (150–200 Вт·ч/кг), но уступают аналогам по термической стабильности и сроку службы (500–1000 циклов). Токи заряда и разряда для таких элементов не должны превышать 1С. Накопители энергии на основе кобальта встречаются все реже, но еще используются в мобильных телефонах, цифровых камерах, ноутбуках.
  3. Литий-никель-марганец-кобальт-оксидные (NMC, NCM). Обеспечивают высокую мощность и емкость – 150–220 Вт·ч/кг, выдерживают 1000–2000 циклов. Стандартные токи заряда и разряда – 1С. Используются в медицинском и промышленном оборудовании, электровелосипедах и других видах электротранспорта.
  4. Литий-никель-кобальт-алюминий-оксидные (NCA). Отличаются высокой удельной энергоемкостью – 200–260 Вт·ч/кг. Имеют ресурс около 500 циклов, зарядные токи 0,7С и разрядные 1С. Обеспечивают автономное питание промышленного и медицинского оборудования, электрических силовых агрегатов и других устройств, требующих высокой емкости.
  5. Литий-железо-фосфатные (LFP, LiFePO4). Отличаются большим ресурсом (более 2000 циклов), термической и химической стабильностью, высокой безопасностью эксплуатации и малым внутренним сопротивлением. Их удельная энергоемкость составляет 90–120 Вт·ч/кг, ток зарядки – 1С, ток разрядки – до 25С. Используются такие элементы питания в устройствах, для которых важна выносливость аккумов, способность работать на морозе и выдерживать высокие токи нагрузки.
  6. Литий-титанатные (LiTi). Отличаются низким номинальным напряжением (2,4 В) и удельной энергоемкостью 70–80 Вт·ч/кг, но быстро заряжаются, имеют широкий температурный диапазон и ресурс 3000–7000 циклов. Номинальные токи зарядки 1С, максимум – 5С. Допустимые разрядные токи – 10С, а при импульсной подзарядке – 30С. Литий-титанатные элементы считаются самыми безопасными. Используются они в уличном освещении, ИБП, электротранспорте.

Как работает литиевый аккумулятор?

Принцип работы Li-ion аккумуляторов идентичен для элементов всех типов, независимо от материала катода.Когда на электроды подается напряжение – «плюс» на оксид лития и «минус» на графит – положительно заряженные ионы лития отцепляются от молекул оксида и переходят на углеродную пластинку. В результате протекает окислительная реакция, и аккумулятор заряжается.

При работе литиевого аккумулятора под нагрузкой протекает обратный процесс. Ионы Li + возвращаются на пластинку из оксида лития, в свое стандартное состояние. Графитовая пластинка на фольге из меди становится «минусом», а оксид лития на фольге из алюминия – «плюсом».

Особенности зарядкиLi-ionэлементов

Литий-ионные элементы питания чувствительны к перезаряду. На поверхности анода при чрезмерном заряде осаждается металлический литий. Он выглядит как мелкий мшистый осадок и способен вступать в реакцию с электролитом. На катоде при перезаряде активно выделяется кислород. Внешне это может проявляться в виде интенсивного нагрева, роста давления и разгерметизации элемента.

Заряжаются Li-ionаккумуляторы в 2 этапа:

  1. При стабильном значении тока 0,2С–1С до рекомендованного производителем напряжения, обычно – 4,1–4,2 В. Длится эта стадия около 40 минут.
  2. При неизменном напряжении. Процесс зарядки завершается, когда значение зарядного тока уменьшается до величины, составляющей 3% от начального значения.

Быстрее происходит зарядка в импульсном режиме.Но для продления срока службы литиевых элементов их рекомендуется заряжать током, номинал которого составляет 50% от значения емкости, т.е. 0,5С.

Защита литиевых аккумуляторов

Элементы питания на основе лития защищены от коротких замыканийвнутри системы, например, с помощью 2-слойного сепаратора. Один из его слоев выполняется не из полипропилена, а из аналога полиэтилена. При риске короткого замыкания, к примеру, если дендриты лития прорастают к катоду, защитный слой локально нагревается, частично плавится, становится непроницаемым и блокирует последующее прорастание дендритов.

Для защиты от избыточного заряда и глубокого разряда накопители энергии снабжаются специальными ограничителями – платами защиты по току и напряжению. Они не допускают выхода напряжения за границы рекомендованного диапазона и в критических ситуациях автоматически отключают элемент от питания или нагрузки.

Поэтому для безопасной работы элементов и аккумуляторных батарей важно использовать BMSплаты. В противном случае высок риск повреждения аккумуляторов и их преждевременного выхода из строя. Такой контроллер зарядно-разрядного процесса может устанавливаться и на отдельные аккумуляторы, и на собранную из них батарею.

Производство литиевых элементов питания

Сырье для основных элементов в схеме Li-ion аккумуляторов – катода и анода – имеет вид мелкофракционного черного порошка. Чем мельче частицы, тем больше получается эффективная площадь электродов. Оптимальная форма частиц – сферическая, с гладкими краями, т.к. неровности чувствительны к токовым нагрузкам.

Производственный процесс состоит из следующих этапов:

  1. Порошковидные материалы наносятся в виде суспензии на фольгу. Аноды и катоды обычно производятся в различных цехах, чтобы обеспечить максимальную чистоту материалов. Металлическая фольга играет роль токоприемника.
  2. Фольга с нанесенными материалами сушится, разделяется на полоски и складывается в несколько слоев. Процесс сворачивания строго контролируется, т.к. любые дефекты способны привести к коротким замыканиям внутри системы.
  3. Между пластинами анода и катода зажимается сепаратор, обработанный электролитом.
  4. Пластинки сворачиваются рулоном или по другой схеме и помещаются в корпус.

Готовые изделия проходят тестирование – контролируемый цикл заряда-разряда. Подзарядку начинают с минимального напряжения и с постепенным его повышением.Протестированные изделия заряжаются до оптимального уровня, чтобы исключить риск значительного падения напряжения из-за саморазряда, и поставляются в продажу.

Предыдущая статья нашего блога посвящена сигнализации для электровелосипедов.

Источник

Японские Li-ion аккумуляторы формата 103450 от Panasonic и Maxell (тест на разряд)

Вы читаете пост в iXBT.Live — живом разделе iXBT.com. Тексты здесь пишут наши читатели. Присоединяйтесь к нашему сообществу, рассказывайте о вашей технике, получайте бонусы за интересные тексты!

Цилиндрические форматы 18650, 21700, 26650 знают наверно все, но кроме них есть еще и множество призматических форм-факторов. Я протестировал 2 японские Li-ion банки формата 103450 (10х34х50мм) от Panasonic (4.20В) и Maxell (4.35В), которые купил почти 7 месяцев назад. Для одной поделки мне понадобилась банка длиной до 55мм. 18650 не влез, 18500 у меня нет, а у 14500 емкость слишком маленькая, вот одна из этих призматических и пригодилась.

Читайте также:  Нужно ли разряжать аккумулятор iphone

Банки брал в составе большого набора из разных моделей у Queen Battery. Брал напрямую, не через али.

Методика тестирования и оборудование те же, что и раньше — можете ознакомиться в предыдущих обзорах (в случае с Maxell тестировал как при зарядке до 4.20В, так и при 4.35В). Единственное, в этот раз я сделал маленький апгрейд моего холдера — заменил одну из медных пластин более длинной составной. Это промежуточная версия, так сказать v2.5.

Перейдем к делу.

Panasonic NCA103450

Маркировка на красной термоусадке Panasonic 6402 C NCA103450 6323W2W8B.

Основные характеристки по даташиту:

Заявленная емкость: 2200мАч при разряде током в 0.44A при 20ºC

Минимальная емкость: 2270мАч при 0.454A / 25ºC

Типичная емкость: 2350мАч

Номинальное напряжение: 3.6В

Макс. продолжительный ток разрядки: 4.54A (тестировал при 5A)

Окончание разрядки: 2.75В

Стандартный ток зарядки: 1.589A

Окончание зарядки: 4.20В

Результаты тестов очень хорошие. При разряде током в 0.2C (0.45A) емкость выше «типичной», а при 5А, что выше максимально допустимого 4.54А, кривая получилась ровная, без просадок.

Maxell ICP103450AHR

Этот аккумулятор голый, т.е. без термоусадки. Маркировка выгравирована на металлической банке и ее видно очень плохо (на фотках вообще не видна): ICP 103450 AHR K2667 0717 HM MADE IN JAPAN K2.

Основные характеристки по даташиту:

Заявленная емкость: 2160мАч при разряде током в 0.432A при 25ºC

Номинальное напряжение: 3.8В

Макс. продолжительный ток разрядки: 3.24A

Окончание разрядки: 2.75В

Стандартный ток зарядки: 2.16A

Окончание зарядки: 4.35В

Обратите внимание на номинальное напряжение и на конечное напряжение при зарядке — 3.8 и 4.35В соответственно. Эту банку я протестировал и при 4.35В, и при 4.20В, чтоб сравнить результаты и прикинуть сколько теряем недозаряжая литиевые high voltage аккумуляторы.

Но сначала тест при 4.35В:

Результаты хорошие, при 0.2C емкость выше заявленной, но уже при 3.24А падение более чем заметное и просадка в самом начале разрядки тоже не радует глаз.

Перейдем к сравнению при 4.20 и 4.35В:

Разница при 2А довольно большая — около 900мВт⋅ч, но при 3.24А разница заметно меньше — около 400мВт⋅ч

Заключение

Как вы заметили, я не сравнивал эти две банки между собой, так как это бессмысленно — разница слишком большая. Оба аккумулятора соответствуют заявленным характеристикам, но они у Maxell гораздо скромнее даже с учетом 3.8В номинального напряжения.

Panasonic показал себя молодцом — уверенные, красивые кривые без просадок аж до 5А. Maxell же разочаровал, особенно в тесте при зарядке до 4.20В. Такой недозаряд поможет заметно увеличить количество циклов, но в данном случае потеря в емкости настолько существенная, что может стать причиной отказа от этой идеи или выбора другой модели.

Я тестировал голые банки (т.е. без защиты), но Queen Battery также продает Panasonic-и в версиях с защитой и с коннекторами.

Надеюсь обзор был интересным и полезным. Ну а в конце, как всегда, видеоверсия на английском:

Источник

Руководство по перезаряжаемым литиевым аккумуляторам для начинающих

Когда-то аккумуляторы были тяжёлыми и неуклюжими предметами, выдававшими смехотворно мало энергии для своего размера и веса. К счастью, со временем технологии улучшаются, и в 2020 году у нас есть прекрасные мощные литий-полимерные аккумуляторы, выдающие столько энергии, сколько может понадобиться вашему мобильному проекту. Однако при их использовании нужно учесть некоторые моменты – поэтому предлагаю вам прочесть руководство для начинающих о том, как правильно использовать LiPo в своём проекте.

Так много типов!

Первые коммерческие литий-ионные аккумуляторы вышли на рынок в 1991 году, и за прошедшие с тех пор почти 30 лет мы наблюдали быстрый их прогресс. В итоге у нас появилось множество различных технологий и типов аккумуляторов, делящихся по типу конструкции и используемых материалов. Чтобы правильно обращаться с аккумуляторами, важно знать, какой именно тип попал к вам в руки, и очень важно обратить на это внимание.


Литий-ионные элементы форм-фактора 18650 из ноутбука. Подобные наборы обычно соединяются точечной сваркой никелевых полосок.

Обычно литий-ионными, или Li-ion аккумуляторами называют всю технологию перезаряжаемых литиевых батареек целиком, однако часто так называют традиционные элементы с цилиндрическим металлическим корпусом. Один из вариантов – многоуважаемые 18650, однако вообще их существует множество вариантов и размеров. Их крепкие корпуса сделали их популярными для использования в средствах передвижения, так как последние испытывают значительные физические нагрузки.

Литий-полимерными, или Li-Po называют литий-ионные батарейки, использующие полимерный электролит вместо жидкого. Благодаря этому их можно делать в виде ёмкостей различной формы. Такая гибкость делает их полезными для таких применений, как смартфоны и планшеты, где требуется аккумулятор большой ёмкости и плоской формы. Также их часто используют в радиоуправляемых моделях, поскольку их небольшой вес даёт существенное преимущество летающим аппаратам.


Литий-полимерные пакетные аккумуляторы для использования в радиоуправляемых моделях.

Lithium-HV, или литиевые аккумуляторы высокого напряжения – это литий-полимерные батарейки, использующие специальную кремний-графеновую добавку на плюсовой клемме, благодаря которой она не повреждается высоким напряжением. Если заряжать большинство литиевых аккумуляторов до напряжения выше 4,2 В, они значительно потеряют в ёмкости, а их срок службы будет заметно уменьшаться. Используя эту добавку, можно заряжать элементы до 4,32 В без подобных негативных последствий. Повышение напряжения даёт примерно 10% прибавку к плотности энергии по сравнению с обычными литий-полимерными аккумуляторами.

Литий-железо-фосфатные аккумуляторы , или LiFePO4, используют немного изменённую химию, благодаря чему они могут выносить больше циклов заряда/разряда за счёт немного меньшей энергетической ёмкости. Лучше всего они работают в диапазоне от 3,0 В до 3,65 В, а не в типичном для стандартной химии литий-ионов диапазоне 3,0-4,2. Благодаря этому и очень плоской кривой разряда делает их идеальными для замены 12 В свинцовых батарей во многих случаях, а вместо оригинальных шести элементов используются четыре. Обычно они более стабильными, меньше подвержены саморазряду и потере ёмкости со временем.

Уважайте границы


Ошибка может привести к неприятным результатам

По сравнению с большинством типов аккумуляторов, литиевые элементы плохо переносят неправильное обращение. Разряд ниже нижнего предела приводит к формированию медных дендритов, из-за чего у них уменьшается ёмкость и может произойти короткое замыкание. Перезаряд может привести к повреждению анода отложениями лития, из-за чего могут образоваться литиевые дендриты, что часто приводит к короткому замыканию или самоподдерживающейся реакции с выделением тепла – аккумулятор начинает дымиться и гореть. Также каждый элемент в группе нужно поддерживать на том же уровне напряжения, что и все его соседи, чтобы элементы не слишком быстро деградировали.

Важно не заряжать литиевые элементы слишком быстро. Также на эффективность работы аккумуляторов сильно влияет окружающая температура. Литиевые аккумуляторы не любят температур ниже нуля, особенно при полном заряде. Их нельзя заряжать при отрицательной температуре. Поскольку металлический литий может отложиться на минусовом электроде, что может повредить элемент или вызвать короткое замыкание. В принципе, их можно заряжать при температуре до -5°C, однако это нужно делать очень медленно. Кроме того, аккумуляторы могут повредиться, если заряжать их при температурах выше 45°C.

При выходе за указанные пределы в лучшем случае вы просто убьёте аккумулятор, в худшем случае он загорится и взорвётся. Кроме того, эти элементы подвержены раздуванию, выделению газа, да и вообще кажутся не очень удобными в работе. Может показаться, что иметь с ними дело чересчур сложно. К счастью, современная электроника научилась справляться с их проблемами. Правильное оборудование и меры предосторожности дают возможность использовать литиевые аккумуляторы безопасно и эффективно. Однако все, кто работает с ними, должны уяснить себе потенциальные опасности. Боб Бэддели в прошлом ноябре опубликовал отличную статью на эту тему.

Работа с аккумуляторами

В случае использования отдельных элементов или их групп, к примеру, при использовании LiPo аккумуляторов в радиоуправляемых моделях, достаточно просто использовать специальное зарядное устройство для литиевых аккумуляторов. При зарядке нужно подключать провода для проверки балансировки [позволяют измерять напряжение на каждом из элементов по отдельности / прим. перев.], особенно если батарея разрядилась полностью. Наибольшей эффективности в работе батарей можно добиться при использовании умных зарядных устройств (особенно в случаях с LiFePO4 и элементами высокого напряжения). Убедитесь, что у вас есть способ остановить разрядку батарей в случае слишком сильного понижения напряжения – будь то предупреждающий световой индикатор, звуковой сигнал или просто автоматическое отключение.


Подобные модули отлично подходят для интеграции литиевых аккумуляторов в прототип

Если вашему устройству требуется интегрированный аккумулятор, вам подойдут специальные платы защиты и заряда. Существуют готовые модули и интегральные схемы, позволяющие без проблем контролировать работу литий-ионных батарей. В принципе их множество – от тех, которые просто разрывают контур при понижении напряжения, до комплексных решений по зарядке и защите. Такие компании, как Adafruit, продают модули, которые отлично подойдут для начинающих любителей электроники, желающих интегрировать удобное решение по заряду и контролю аккумуляторов без необходимости проектировать платы самостоятельно. Однако существуют открытые решения, которые будет легко интегрировать в собственную плату в будущем.


Система управления батареей (BMS) для аккумуляторов из 12 элементов, способного выдавать до 60 А.

Для более крупных проектов с самостоятельно собранными батареями хорошо подойдут системы управления батареей (BMS). BMS, по сути, не сильно отличается от микросхемы защиты, она просто разработана для более крупных задач. BMS обычно используется для аккумуляторов, состоящих из десятка или более элементов, и часто в таких проектах, как электровелосипеды и другие средства передвижения. BMS паяется непосредственно к аккумуляторам, и подсоединяется к каждому элементу в отдельности [к группе элементов, соединённых параллельно / прим. перев.]. Её задача – балансировка элементов, ограничение тока разрядки для безопасности, управление процессом зарядки. Опытные сборщики батарей часто интегрируют BMS в корпус или кожух самого аккумулятора, оставляя снаружи только коннектор. Это позволяет пользователю просто добавить готовый аккумулятор в свой проект, не беспокоясь о защите.

Если вашему проекту необходима особая устойчивость к воздействию окружающей среды, вам также придётся отслеживать температуру аккумулятора. Отслеживать температуру ячеек, в особенности во время зарядки – отличный способ защитить аккумулятор от повреждения. У лучших чипов и BMS есть функция отслеживания температуры. На таком уровне сборки вы уже будете делать батарею самостоятельно, внедряя термопары в нужные места во время сборки. Для аккумуляторов, выдающих большие токи, температуры нужно отслеживать в обязательном порядке. Практически во всех электровелосипедах и электромобилях есть оборудование для отслеживания температуры аккумуляторов и управляющих систем.

Литий-ионные батарейки могут быть опасными, но при правильном использовании они достаточно безопасны для большинства проектов. Главное – использовать правильное оборудование, чтобы убедиться, что вы не выйдете за пределы диапазонов напряжения и температуры, иначе может случиться беда. Надеюсь, что данная инструкция поможет вам в поисках информации по включению литиевых аккумуляторов в свой проект.

Источник