Меню

Лабораторный блок питания для паяльника

Лабораторный блок питания для паяльника

Паяльная станция построена на картриджах Hakko T12. Имеет два паяльника по 70 Ватт, вытяжку дымоуловитель, блоки питания для внешних потребителей. Бюджет составил около 10-15$.

Начало эпопеи было несколько месяцев назад когда пришло купленное на пробу жало Hakko T12-KU. Собранный для пробы паяльник «паяльник на жале Т12» оказался вполне удобным, также сами картридж жала порадовали своей работой. Было заказано еще одно более массивное жало, и я решил сделать законченную паяльную станцию.

Функции паяльной станции:

Два паяльника по 70вт управляемых по отдельным каналам. При выпайке деталей, часто удобней пользоваться двумя паяльниками одновременно. Да и при монтаже не надо терять время на смену жала. Плюс в моей конструкции паяльника замена жал не предусмотрена, для тех кто хочет иметь сменные жала в качестве одного из паяльников нужно поставить покупную ручку.

Вытяжка с фильтром. Дышать флюсом и припоем особо не хочется и лишнего места на столе, как правило нет, а тут одним блоком заменил два.

Блок питания 24в с отдельным выключателем, можно подключить дрель или других потребителей. Дополнительно также экономится место, поскольку не надо держать блок питания для дрели или постоянно перенастраивать лабораторный блок питания.

Блок питания 5в, два разъема USB, для питания самих устройств. Я последнее время на все платы с питанием от 5в распаиваю в качестве питания мини USB разъемы или для совсем мелких плат кидаю шнурок с USB разъемом на конце.

Warning

Сначала несколько предупреждений.

Первое.

В случае отсутствия качественной земли крайне не рекомендую использовать для питания паяльников блок построенный на основе компьютерного блока питания. Т.е. не желательно их использовать в старых домах где не проведена централизованно шина заземления. Использовать в качестве заземления трубы центрального отопления также нельзя поскольку сейчас массово в квартирах заменяются трубы на пластиковые и нельзя быть уверенным в электрическом соединении батареи с землей.

Если вы предполагаете возможность использования паяльной станции при отсутствии качественного заземления, то следует блок питания строить на основе классического трансформатора. (Схемы регуляторов температуры не требуют стабилизированного источника питания, единственное желательно, что бы напряжение лежало в пределах от 19 до 24 в, иначе мощность паяльника значительно упадет. т.е. можно обойтись после трансформатора просто выпрямителем с конденсаторным фильтром)

Второе.

Я не заземлял жало. Предполагаю при пайке особо чувствительных элементов просто бросать провод с крокодилом на жало. Если вы часто паяете маломощные полевые транзисторы и другие элементы, особо чувствительные к пробою, то рекомендую заземление заложить сразу. Единственное по соображениям безопасности жало как и браслет следует заземлить через резистор более 100 кОм (рекомендуется через резистор 1МОм).

Третье.

Как говорится не все йогурты одинаково полезны.

Второе жало купленное за $2.76 имеет заметные недостатки.

Перечислю по возрастанию проблемы.

1. При работе регулятора от жала слышны звуки, щелчки при включении циклов нагрева. Скорее всего при заливке нагревателя остались пустоты, как это скажется на долговечности не понятно.

2. Термопара занижает показания. Если у вас такое жало будет использоваться вместе с нормальными придется проводить постоянно перекалибровку, смешение довольно большое около 100гр. А для аналоговой схемы регулировки перекалибровка представляет не тривиальную задачу.

3. Самый главный недостаток. При протекании тока похоже нагревается холодный спай термопары, что нарушает нормальную работу регулятора.

Привожу осциллограммы работы регулятора со старым жалом (стоило оно около 4$) и нового.

Со старым жалом регулятор нормально функционирует, цикл нагрева и длинная пауза пока набранная температура не упадет до пороговой.

Жало за 2.76$ кардинально отличается в поведении. Как я предполагаю происходит нагрев холодного спая током протекающим во время разогрева. И после цикла нагрева при измерении температуры происходит ошибка и схема снова уходит в нагрев, пока температура горячей части не превысит температуру на которую нагрелся холодный спай протекающим током. После пачки циклов нагрева порог все таки превышается и регулятор уходит в длинную паузу. Холодный спай быстро остывает (менее 100мс) и температура меряется близко к правильной. В итоге фактически удлиняется цикл нагрева и мы получаем колебания температуры жала, для относительно массивного жала на конце они оказались на уровне нескольких градусов, что не фатально влияет на работу. Как подобные жала будут работать с ПИД регуляторами затрудняюсь сказать, но думаю результаты будут более плачевные и добиться устойчивой работы регулятора не получится.

Основной блок

Паяльная станция построена на базе блока питания АТХ с 12см вентилятором. Взял для переделки вот такого махрового китайца. Заявленная мощность совершенно не соответствует начинке, реально блок ватт на 200. Но для наших целей вполне сойдет потребление в пике двух паяльников не превысит 140 Вт.

С верху разместил два регулятора температуры, отдельно для каждого паяльника. И три выключателя позволяющие раздельно включать каждый паяльник и внешнюю нагрузку 24в. Общее включение блока оставил на штатном выключателе блока АТХ. Кабель питания также подключается к штатному разъему. Дополнительно вывел разъемы питания 24в и колодку USB для подключения нагрузки 5в.

12см вентилятор помимо обдува блока, использую для вытяжки дыма. Для увеличения воздушного потока помимо вентилятора внутри корпуса установлен еще один вентилятор на наружной стороне. Желательно использовать вентиляторы мощностью более 4Вт. Мне попался вентилятор 12см 220В 8Вт который я использовал как внешний. Для питания вентилятора 12в используется линейный стабилизатор КРЕН8Б установленный через изолирующую прокладку на радиатор низковольтных диодов. Он понижает напряжение 24В до 12, одновременно он вместе с вентилятором служит нагрузкой блока питания на холостом ходу. При использовании 2 мощных вентиляторов 12В желательно использовать импульсный понижающий стабилизатор (стоимость готовой платы на ток около 2А на али около 1$). В крайнем случае, при использовании линейного стабилизатора установите его на отдельный радиатор. На внешний вентилятор спереди закреплена решетка от вентилятора блока питания, по верх которой размешен воздушный фильтр. Использовал кусок фильтра от кухонной вытяжки, он в составе волокна имеет отсорбент. Можно также поискать и чисто угольные фильтры, мне к сожалению пока не попался подходящих размеров.

Подробно останавливаться на переделке блока АТХ не буду поскольку доработка зависит от модели блока питания. Мой блок был построен на базе микросхемы 3845. Я убрал все все элементы не 12в каналов и все элементы штатных фильтров и конденсаторов вторичного питания. Распаял новый фильтр используя более высоковольтные конденсаторы. Мне повезло, что в максимуме блок выдавал 29в, и для получения 24в пришлось только подобрать сопротивление резисторов в цепи стабилизации, и заблокировать цепи защиты по напряжению.

На задней решётке видны клеммы 24 в и планка с USB взятая от старого корпуса. Отверстия проделывал просто выкусывая элементы решётки.

Конструкция паяльников

Конструкцию рассматривал и в предыдущей статье. Сейчас повторно и более подробно покажу этапы изготовления.

Подключения проводов на скрутке и термоусадках.

А также относительно прошлого раза несколько изменил склейку бумаги. Я в этот раз увеличение площади слоев сделал постепенной, что облегчило склейку.

Сверху обжал термоусадку.

Сзади для увеличения жесткости залил клеем.

Ручка паяльника получается легкая 26 гр. Расстояние от жала не большое всего 4.5 см.

Такую конструкцию можно использовать как минимум для второго паяльника, например сделав его на основе жала T12-K или T12-KF, которые удобны для выпаивания компонентов и микросхем.

Также в сети встречал такой вариант: человек припаивали провода к контактам, а ручку делал из дерева.

Схема регулятора температуры

В этот раз сделал схему на основе LM324. (схема на основе LM358 приведена в прошлый раз).

Китайский вариант схемы взятый за основу должен быть тоже работоспособным, единственное надо параллельно конденсатору С4 поставить защитный диод типа 1N4148, как в схеме на LM358, и полевой транзистор должен иметь разрешённое напряжение по затвору более 25 в.

Основное отличие этой схемы, от схемы на LM358, это то что напряжение с термопары сначала усиливается, а лишь затем подается на компаратор. Моя схема представляет компиляцию предыдущего устройства на LM358 и китайской схемы на LM324.

Плату рисовал в Sprint-Layout версии 5. Переменный резистор ВСП4-1 0.5вт, СМД резисторы и керамические конденсаторы типоразмера 0805, кроме R3 размера 2512 и R8 размера 1206, конденсатор С7 типо размера В. Разводка платы не идеально но мне нужно было что бы по размерам и посадке она совпадала с предыдущей платой. Диод D3 служит для зашиты от неправильного включения и в принципе он не нужен если плата не используется автономно, но я в процессе отладки умудрился включить плату неправильно по полярности в итоге через несколько секунд рванул конденсатор С5, а остальная плата осталась цела. Резистор R3 можно заменить просто перемычкой. Резисторы R1 и R2 вместе с подстроечным резистором определяют диапазон регулировки температуры, к сожалению разброс дрейфа нуля операционного усилителя не позволяет точно подобрать номиналы этих резисторов. У меня диапазон регулировки настроен от 200 до 400 градусов.

Плату делал на двух стороннем текстолите одна из сторон используется под землю. В контакты обозначенные на схеме как с металлизацией впаиваются перемычки остальные зенкуются. Но плату можно сделать и используя односторонний текстолит, тогда со всех точек обозначенных металлизацией бросаются перемычки проводами на точку расположенную рядом с отрицательным выводом электролита С5 (желательно внести изменения в плату добавив там дополнительных площадок). Я обрезаю плату до нужного размера после травления сверловки и лужения, поскольку на краях где резал ножницами фольга деформированна и плохо зачищается.

Читайте также:  Блок питания сертификат 80 plus gold

После распайки СМД деталей отмыл плату, а уже затем распаял переменный и подстроечный резистор, а также ДИП детали с проводами. Это позволяет при пайке СМД меньше ограничиваться в выборе флюсов.

Остальные детали и провода паяю используя спиртоканифоль или последнее время чаще безотмывочный флюс. (Из за проблем с жалом во время отладки и пока не понял причин немного замучил плату перепайками.)

В целом схема на LM324 немного лучше работает чем на LM358, хотя при пайке различия не особо заметны. Схема на LM358 при подходе к температуре стабилизации примерно на секунду частит светодиодом, т.е. подход происходит плавно с падением мощности отдаваемым в нагреватель вблизи температуры стабилизации. Схема на LM324 выходит на режим стабилизации более резко почти сразу переходя на медленное мигание светодиодом. Какую схему выбрать для реализации скорее должно определятся какие детали под рукой, как я говорил при пайке особой разницы я не заметил, хоть схема на LM324 и ведет себя лучше.

Или что хотел сделать и пока не реализовал, как говорится, в мире нет ничего более постоянного чем сделанное временно.

Подумываю поставить разъемы для паяльников. Чтобы можно было сделать еще паяльников под другие жала и в случае необходимости менять подключенные паяльники. Сейчас на корпусе есть два мини джека, но я опасаюсь их использовать для тока в три ампера.

Поставит предохранитель на внешние разъемы 24в и возможно также для USB выходов.

Ну и надо искать, чем заменить старый фильтр вытяжки, а то он уже грязный, и воздух проходит с трудом.

Также хорошо бы сделать какую то новую подставку под оба паяльника.

На вентилятор необходимо установить небольшой козырек, что бы направлять потоки воздуха и улучшить всасывание дыма.

Как продолжения идеи козырька подумываю туда же прикрепить увеличительное стекло с подсветкой, но это совсем из далеких планов.

Источник



Топ 5 лучших лабораторных блоков питания

Топ 5 лучших лабораторных блоков питания

Приветствую тебя, искатель лучшего лабораторного блока питания для ремонта электроники. На днях я задумался какой бы мне источник постоянного напряжения прикупить для нужд ремонта и поиска неисправностей бытовой техники. Перелопатил кучу информации, соединил со своим опытом и вот так родился этот Топ 5 лучших лабораторных блоков питания для ремонта смартфонов, ноутбуков, мониторов и т.д.

Топ 5 лучших лабораторных блоков питания

Почему лабораторный?

Их так называют, потому что предназначены для эксплуатации в условиях лаборатории. То есть даже на выездной ремонт такие блоки питания брать нежелательно. Не говоря уже об эксплуатации в авто или на улице. Плюс ко всему под словом лабораторный подразумевается некая регулировка параметров и точность установки значений величин тока и напряжения.

К слову, я решил разделить импортные и отечественные источники питания в разные рейтинги по причине разной целевой аудитории. Импортные источники напряжения, применяемые для ремонта в сервисных центрах в основном имеют китайское происхождение и не имеют поверительных документов. Остается надеяться на внутренний контроль производителя. Чаще всего тут встают вопросы удобства эксплуатации и наличие защиты от короткого замыкания.

Отечественные источники тока и напряжения чаще всего имеют сертификаты и периодически поверяются для проведения регулярных измерений в инженерных целях при разработке и эксплуатации оборудования. Это накладывает на стоимость содержания приборов дополнительные расходы. Для таких блоков питания важна погрешность установки значений и надежность работы.

1 место — Long Wei LW-K3010D

По моему это лучший лабораторный блок питания среди оптимальных по соотношению цена/качество/размер. Источник питания сделан в вертикальном форм-факторе и имеет минимум регулировок: кнопка включения и две ручки регулировки напряжения и ограничения тока. Среди импульсных блоков питания можно лучше и не искать.

1 место в рейтинге блок питания

  • Установка напряжения 0 — 30 В;
  • Пульсации по напряжению до 50 мВ;
  • Установка тока 0 — 10 А;
  • Пульсации по току до 20 мА;
  • Точность установки значений ±0,5 %;
  • КПД равно 85 %;

Кстати, диапазоны изменения напряжения от 0 до 30 В и тока от 0 до 10 А считаются весьма широкими, особенно для такого малютки. Внутренности охлаждаются вентилятором, так что со временем он может загудеть. Но такая система охлаждения установлена на 90 % аналогов.

  • Отсутствует градуировка ограничения по току.
  • Оптимальное соотношение цена/качество/размер;
  • Занимает мало места на рабочем столе;
  • Большой диапазон регулировки напряжения и тока;
  • Большие цифровые индикаторы;
  • Есть защита от короткого замыкания;
  • Контакты под штекер и под зажим.

Стоимость источника питания LongWei LW-K3010D составляет около 50 $ , что согласитесь немного при нынешних ценах.

Аналоги:

  1. YiHua PS-1501A по цене около 30 $ (15 В, 1 А, маломощный, для любителей смотреть на стрелки, шумовые пульсации около 1 мВ);
  2. MCH-K305D стоимостью 60 $ (30 В, 5 А, измененный дизайн передней панели и дисплея, контакты только для подключения штекеров);
  3. Wanptek GPS3010D за смешные 70 $ (30 В, 10 А, закругленный корпус и наклонные цифры индикатора);
  4. Wanptek KPS-3010DF по цене 75 $ (30 В, 10 A, имеет дополнительные ручки точной установки напряжения и тока + комплект разъемов для ноутбуков и крокодилы);
  5. МЕГЕОН 303010 за приличные 150 $ в России (30 В, 10 А, полный клон лидера рейтинга с другой наклейкой).

2 место — Yaogong 1502DD

Этот блок питания имеет внутри тяжелый медный трансформатор, который значительно снижает пульсации. Вес при этом 3,5 кг, против 1,5 кг у первого места. За счет качества напряжения и тока источник имеет полное право называться лабораторным.

2 место в рейтинге лабораторных блоков питания

  • Установка напряжения 0 — 15 В;
  • Пульсации по напряжению до 1 мВ RMS;
  • Установка тока 0 — 2 А;
  • Пульсации по току до 3 мА RMS;
  • Точность установки значений ±0,01 %.
  • Имеет целых 3 ручки регулировки напряжения и 1 ручку регулировки ограничения по току;
  • Уменьшенный диапазон напряжения и тока.
  • Хорошее соотношение цена/качество;
  • Очень маленькие пульсации;
  • Большие цифровые индикаторы;
  • Есть защита от короткого замыкания;
  • Контакты под штекер и под зажим.

Стоимость источника питания Yaogong 1502DD всего-то 40 $ . Но внимательно смотрите на доставку таких посылок. Из-за большого веса доставка может стоить немалых денег.

Аналоги:

  1. YIHUA 1502DD всего за 35 $ (15 В, 2 А, очень популярная модель у ремонтников телефонов и смартфонов);
  2. ELEMENT 305D 15305 при стоимости 70 $можно приобрести в России (30 В, 5 А, полный аналог китайских клонов с другой этикеткой);
  3. Hong Sheng Feng PS-305 по цене 70 $ (30 В, 5 A, имеет дополнительные ручки точной установки напряжения и тока);
  4. Korad KD3005D по цене около 100 $ (30 В, 5 А, приятный дизайн, пульсации 10 мВ и 1 мА, смотрите стоимость доставки);
  5. Zhaoxin KXN-3020D стоимостью 120 $ (30 В, 20 А, расширенный диапазон по току, внушительные габариты, удобные ручки);

3 место — Long Wei PS-3010DF

Этот лабораторный блок питания также содержит внутри трансформатор для уменьшения шумов. Дополнительные опции, за которые приходится платить: дисплей для отображения потребляемой мощности и USB-разъем на передней панели.

Long Wei PS-3010DF

  • Установка напряжения 0 — 30 В;
  • Пульсации по напряжению до 10 мВ RMS;
  • Установка тока 0 — 10 А;
  • Пульсации по току до 20 мА.
  • Повышенная цена по сравнению с предыдущими вариантами;
  • Уменьшенный диапазон напряжения и тока.
  • Хорошее соотношение цена/качество;
  • Малые пульсации;
  • Большие цифровые индикаторы, в том числе потребляемая мощность;
  • Есть защита от короткого замыкания;
  • Дополнительно USB-разъем;
  • Контакты под штекер и под зажим;
  • Ручка для переноски.

Стоимость источника питания Long Wei PS-3010DF около 90 $ .

Аналоги:

  1. KORAD KA3005D по цене 110 $ (30 В, 5 А, пониженные пульсации 10 мВ и 1 мА, есть память предустановок + режим мультиметра);
  2. QJE QJ3005N по цене 80 $ (30 В, 5 A, одна большая ручка для грубой и точной установки напряжения и тока, пульсации 2 мВ и 3 мА);

МЕГЕОН 31305 за нескромные 200 $ в России (30 В, 5 А, полный клон предыдущего источника от KORAD).

4 место — Gophert CPS-3205II (NPS-1601)

Кто-то скажет — почему 4 место? Это же бест-селлер? Ну вот так, не лежит у меня душа к кнопочным блокам питания.

бест селлер блок питания для ремонта

Этот импульсный блок питания конечно не имеет трансформатора внутри. Поэтому имеет не очень удобное в использовании кнопочное управление. Все это сделано в угоду низкой стоимости. Хотя вот корпус очень хорош — с ребрами охлаждения.

  • Установка напряжения 0 — 32 В;
  • Пульсации по напряжению до 2 мВ RMS;
  • Установка тока 0 — 5 А;
  • Пульсации по току до 10 мА p-p;
  • Точность установки значений ±0,3 %.
  • Кнопочное управление;
  • Нет отдельного разъема для заземления.
  • Хорошее соотношение цена/качество;
  • Малые пульсации напряжения;
  • Большой набор дополнительных разъемов для ноутбуков;
  • Есть защита от короткого замыкания;
  • Контакты под штекер и под зажим;
  • Корпус с ребрами теплоотвода.

Стоимость лабораторного блока питания Gophert CPS-3205II с набором штекеров питания равна 60 $ .

Аналоги:

  1. Gophert CPS-3205 по цене 60 $ (32 В, 5 А, предыдущая модель, разъемы для подключения у нее сзади);
  2. Gophert NPS-1602 за скромные 50 $ (60 В, 3 А, аналог NPS-1601 с расширенным диапазоном напряжений);
  3. Gophert CPS-6017 по цене 180 $ (60 В, 17 A, повышенная мощность, пульсации 30 мВ и 30 мА).

5 место — UNI-T UTP3303

Встречайте серьезный прибор — двухканальный источник питания.

двухканальный источник напряжения UNI-T UTP3303

Такой блок питания удобно использовать при сложном ремонте блоков питания. материнских плат и смартфонов, когда на плату нужно подать два независимых напряжения. Если задействован только один канал, то второй можно нагрузить зарядкой для другого аппарата через набор переходников .

  • Установка напряжения 0 — 32 В;
  • Пульсации по напряжению до 1 мВ RMS;
  • Установка тока 0 — 3 А;
  • Пульсации по току до 3 мА RMS;
  • Точность установки значений ±0,1 %.
  • Большая масса и габариты;
  • Высокая стоимость.
  • Хорошее соотношение цена/качество;
  • Малые пульсации напряжения;
  • Дополнительный выход 5 В 3 А;
  • Есть защита от короткого замыкания, переполюсовки и перенапряжения;
  • Контакты под штекер и под зажим.

Стоимость двухканального лабораторного источника питания UNI-T UTP3303 равна 270 $ .

Аналоги:

  1. Zhaoxin RXN-305D-II имеет стоимость около 180 $ (30 В, 5 А, дополнительный выход 5 В 3 А);
  2. YIHUA 3005D-II по цене 230 $ (30 В, 5 А, популярная модель, уже появились отзывы о покупках);
  3. ATTEN TPR3003T-3C стоит около 250 $ (30 В, 3 А, пульсации 1 мВ и 3 мА);
  4. MCH 305DII по цене 400 $ (30 В, 5 A, дополнительный выход 5 В 2 А);

МЕГЕОН 32303 за волшебные 270 $ в России (30 В, 3 А, полный клон Zhaoxin RXN-305D-II с поправкой на ток).

Отечественные источники питания

Среди признанных народных блоков питания из наследия советского союза можно отметить аналоговый Б5-71/3м. Также мне приходилось использовать цифровые Б5-71мм и Б5-71/1мс по цене около 500 $. Все они находятся в Госреестре средств измерений РФ. У каждого из них есть свои недостатки.

Топ 5 лучших лабораторных блоков питания

Например у Б5-71/3м со временем выходит из строя регулировочный двухосевой потенциометр, который найти можно, но сложно.

Топ 5 лучших лабораторных блоков питания

Импульсные источники питания Б5-71/1мс и Б5-71мм отличаются тем, что от перепадов напряжения питания 220 В могут выставить другое напряжение на выходе, например 50 В. Поэтому для ответственных работ я их не использую.

Применение старых источников питания Made in USSR и самоделок оставляю в стороне. Только помните о технике безопасности при работе с ними.

Возможно, со временем этот рейтинг блоков питания будет добавляться Hi-End источниками от Agilent, Rohde&Schwarz, а также нашими Актаком и китайскими Rigol, Atten, Uni-T, Siglent и т. д.

Источник

Мощный источник лабораторного питания на основе доступных модулей

Продолжаю тему самодельных мощных и точных источников питания для ремонта и разработки электроники.

Брендовые модели с поверкой и сертификатом Госреестра избыточны для дома. Вы же не будете покупать Keysight только для того, чтобы залить скетч в Ардуино. А вот недорогие модели с Алиэкспресс и местных радиомагазинов могут быть вполне востребованы. Я постараюсь показать как сделать лабораторный источник питания (ЛБП) своими руками из доступных комплектующих.

Для начала определитесь с требованиями к готовому ЛБП и его функциям: мощности/напряжения/токи на выходе, параметры стабилизации (CV/CC), необходимые защиты выхода от перегрузки (OVP/OCP/OPP), необходимость удаленного управления, калибровки, точность удерживания параметров, а также дополнительные функции: калькуляторы энергии и возможность заряда батарей. Если с суммарной мощностью определились, тогда есть смысл подобрать подходящий источник питания. На фото представлены несколько типовых источников на 350W, 500W и 1000W. Не маловажно и выходное напряжение, так как для преобразователей серий DPH/DPS/DPX требуются источники на 48. 60 Вольт. Можно взять на 48В и «слегка» поднять напряжение на выходе подстройкой «ADJ».

Модулей для управления источниками питания множество, они отличаются по выходным параметрам и по функционалу, подробнее посмотреть можно в статье: «Как сделать лабораторный источник питания своими руками». В основном отличаются величиной стабилизируемого напряжения и тока, но все имеют ограничения по мощности. Так что заранее прикидывайте требуемую выходную мощность ЛБП. Преобразователи небольшой мощности (150-250 Вт) помещаются в компактном корпусе, а повышенной — имеют отдельную плату с пассивным или активным охлаждением.

Я не рекомендую экономить на мощный источниках питания, тем более, питающих точную технику. На дешевых китайцы уже сэкономили на защите, так что берите с хорошими отзывами или проверенные.

Из проверенных можно брать MeanWell, например, серию LRS-350. В источник уже встроен вентилятор, обороты вращения которого управляются автоматически по датчику температуры.

Схемотехника типовая, базовые защиты присутствуют. Хотя источник питания бюджетный, о чем свидетельствуют пустые (не распаянные) места на плате.

Для сборки и управления источником нам потребуется программируемый преобразователь питания RD6006 (в наличии, доставка IML) или аналогичный. Версия RD6006W имеет возможность удаленного управления через Wi-Fi.

Преобразователь предназначен для монтажа в приборный корпус и, фактически, представляет собой лицевую панель лабораторного источника питания. Помимо небольшого цветного дисплея имеется клавиатурно-цифровой блок с функциональными клавишами и энкодером. Подключение осуществляется стандартными клеммами типа Banana-plug.

Внутри установлен мощный преобразователь-стабилизатор питания с контроллером. Есть даже модуль часов точного времени.

Монтаж элементарный, со сборкой можно справиться без специальных навыков или инструментов. Подключаем вход блока питания к сети, выход — к преобразователю.

У модуля RD6006 для подключения предназначена разъемная клемма, которая облегчает монтаж корпус и сборку в общем.

Подключаем и проверяем.

При подаче питания отображается заставка RIDEN RD6006.

Перфекционисты могут прикупить отдельно корпус или напечатать его на 3D принтере. Модели можно найти в свободном доступе.

Дисплей отображает множество параметров: текущий ток-напряжение и мощность, есть указание об системных установках: V-SET, I-SET, а также об ограничительных параметрах OVP/OCP. Присутствует калькулятор энергии и системное время.

Управление простое, энкодером, плюс функциональные клавиши. Версия RD6006W может управляться с компьютера или смартфона. Клавиша «SHIFT» активирует вторую функцию. Есть и ячейки памяти для хранения комбинаций установок.

Для примера — простая нагрузка на 50W. Устанавливаем ровно 12В.

Для контроля — мультиметр HP890CN (можно проверять и другим мультиметром для контроля). Параметры совпадают, на фото отклонение 10 мВ.

Увеличиваю нагрузку до 100 Вт: 18В и 6А.

Просадки напряжения не наблюдается, преобразователь тянет нагрузку спокойно.

Аналогично и с малыми напряжениями — на фото 5В.

Максимум на RD6006 можно установить 60 Вольт. У меня на входе 60.09В, можно слегка поднять входное напряжение, тогда получится ровно 60В с источника.

При выборе источника питания обращайте внимание, что входное напряжение должно превышать выходное примерно на 10%, для учета КПД преобразователя.

Таким образом, за относительно небольшие деньги и за один вечер можно собрать для собственных нужд источник питания с регулировкой и приличной мощностью, с высокой точностью стабилизации выходных параметров. Подобными источниками можно реанимировать и тренировать аккумуляторные батареи и сборки, в режиме стабилизации тока — проводить гальваническое осаждение металлических покрытий (анодирование, хромирование и т.п.). Да и большой диапазон регулировки крайне удобен для домашних экспериментов.

В любом случае, это вполне рабочий вариант. Тем более, если есть готовый приборный корпус (или корпус от старой аппаратуры) или мощный источник: трансформатор, драйвер светодиодных лент, ноутбучный адаптер, блок питания от компьютера и т.п. Тем более, что модули RIDEN DPSxxxx и 6006 далеко не новинка и про них существует множество полезной информации и примеров.

Источник

Самодельная паяльная станция 5 в 1

Паяльная станция построена на картриджах Hakko T12. Имеет два паяльника по 70 Ватт, вытяжку дымоуловитель, блоки питания для внешних потребителей. Бюджет составил около 10-15$.

Начало эпопеи было несколько месяцев назад когда пришло купленное на пробу жало Hakko T12-KU. Собранный для пробы паяльник «паяльник на жале Т12» оказался вполне удобным, также сами картридж жала порадовали своей работой. Было заказано еще одно более массивное жало, и я решил сделать законченную паяльную станцию.

Функции паяльной станции:

Два паяльника по 70вт управляемых по отдельным каналам. При выпайке деталей, часто удобней пользоваться двумя паяльниками одновременно. Да и при монтаже не надо терять время на смену жала. Плюс в моей конструкции паяльника замена жал не предусмотрена, для тех кто хочет иметь сменные жала в качестве одного из паяльников нужно поставить покупную ручку.

Вытяжка с фильтром. Дышать флюсом и припоем особо не хочется и лишнего места на столе, как правило нет, а тут одним блоком заменил два.

Блок питания 24в с отдельным выключателем, можно подключить дрель или других потребителей. Дополнительно также экономится место, поскольку не надо держать блок питания для дрели или постоянно перенастраивать лабораторный блок питания.

Блок питания 5в, два разъема USB, для питания самих устройств. Я последнее время на все платы с питанием от 5в распаиваю в качестве питания мини USB разъемы или для совсем мелких плат кидаю шнурок с USB разъемом на конце.

Warning

Сначала несколько предупреждений.

Первое.

В случае отсутствия качественной земли крайне не рекомендую использовать для питания паяльников блок построенный на основе компьютерного блока питания. Т.е. не желательно их использовать в старых домах где не проведена централизованно шина заземления. Использовать в качестве заземления трубы центрального отопления также нельзя поскольку сейчас массово в квартирах заменяются трубы на пластиковые и нельзя быть уверенным в электрическом соединении батареи с землей.

Если вы предполагаете возможность использования паяльной станции при отсутствии качественного заземления, то следует блок питания строить на основе классического трансформатора. (Схемы регуляторов температуры не требуют стабилизированного источника питания, единственное желательно, что бы напряжение лежало в пределах от 19 до 24 в, иначе мощность паяльника значительно упадет. т.е. можно обойтись после трансформатора просто выпрямителем с конденсаторным фильтром)

Второе.

Я не заземлял жало. Предполагаю при пайке особо чувствительных элементов просто бросать провод с крокодилом на жало. Если вы часто паяете маломощные полевые транзисторы и другие элементы, особо чувствительные к пробою, то рекомендую заземление заложить сразу. Единственное по соображениям безопасности жало как и браслет следует заземлить через резистор более 100 кОм (рекомендуется через резистор 1МОм).

Третье.

Как говорится не все йогурты одинаково полезны.

Второе жало купленное за $2.76 имеет заметные недостатки.

Перечислю по возрастанию проблемы.

1. При работе регулятора от жала слышны звуки, щелчки при включении циклов нагрева. Скорее всего при заливке нагревателя остались пустоты, как это скажется на долговечности не понятно.

2. Термопара занижает показания. Если у вас такое жало будет использоваться вместе с нормальными придется проводить постоянно перекалибровку, смешение довольно большое около 100гр. А для аналоговой схемы регулировки перекалибровка представляет не тривиальную задачу.

3. Самый главный недостаток. При протекании тока похоже нагревается холодный спай термопары, что нарушает нормальную работу регулятора.

Привожу осциллограммы работы регулятора со старым жалом (стоило оно около 4$) и нового.

Со старым жалом регулятор нормально функционирует, цикл нагрева и длинная пауза пока набранная температура не упадет до пороговой.

Жало за 2.76$ кардинально отличается в поведении. Как я предполагаю происходит нагрев холодного спая током протекающим во время разогрева. И после цикла нагрева при измерении температуры происходит ошибка и схема снова уходит в нагрев, пока температура горячей части не превысит температуру на которую нагрелся холодный спай протекающим током. После пачки циклов нагрева порог все таки превышается и регулятор уходит в длинную паузу. Холодный спай быстро остывает (менее 100мс) и температура меряется близко к правильной. В итоге фактически удлиняется цикл нагрева и мы получаем колебания температуры жала, для относительно массивного жала на конце они оказались на уровне нескольких градусов, что не фатально влияет на работу. Как подобные жала будут работать с ПИД регуляторами затрудняюсь сказать, но думаю результаты будут более плачевные и добиться устойчивой работы регулятора не получится.

Основной блок

Паяльная станция построена на базе блока питания АТХ с 12см вентилятором. Взял для переделки вот такого махрового китайца. Заявленная мощность совершенно не соответствует начинке, реально блок ватт на 200. Но для наших целей вполне сойдет потребление в пике двух паяльников не превысит 140 Вт.

С верху разместил два регулятора температуры, отдельно для каждого паяльника. И три выключателя позволяющие раздельно включать каждый паяльник и внешнюю нагрузку 24в. Общее включение блока оставил на штатном выключателе блока АТХ. Кабель питания также подключается к штатному разъему. Дополнительно вывел разъемы питания 24в и колодку USB для подключения нагрузки 5в.

12см вентилятор помимо обдува блока, использую для вытяжки дыма. Для увеличения воздушного потока помимо вентилятора внутри корпуса установлен еще один вентилятор на наружной стороне. Желательно использовать вентиляторы мощностью более 4Вт. Мне попался вентилятор 12см 220В 8Вт который я использовал как внешний. Для питания вентилятора 12в используется линейный стабилизатор КРЕН8Б установленный через изолирующую прокладку на радиатор низковольтных диодов. Он понижает напряжение 24В до 12, одновременно он вместе с вентилятором служит нагрузкой блока питания на холостом ходу. При использовании 2 мощных вентиляторов 12В желательно использовать импульсный понижающий стабилизатор (стоимость готовой платы на ток около 2А на али около 1$). В крайнем случае, при использовании линейного стабилизатора установите его на отдельный радиатор. На внешний вентилятор спереди закреплена решетка от вентилятора блока питания, по верх которой размешен воздушный фильтр. Использовал кусок фильтра от кухонной вытяжки, он в составе волокна имеет отсорбент. Можно также поискать и чисто угольные фильтры, мне к сожалению пока не попался подходящих размеров.

Подробно останавливаться на переделке блока АТХ не буду поскольку доработка зависит от модели блока питания. Мой блок был построен на базе микросхемы 3845. Я убрал все все элементы не 12в каналов и все элементы штатных фильтров и конденсаторов вторичного питания. Распаял новый фильтр используя более высоковольтные конденсаторы. Мне повезло, что в максимуме блок выдавал 29в, и для получения 24в пришлось только подобрать сопротивление резисторов в цепи стабилизации, и заблокировать цепи защиты по напряжению.

На задней решётке видны клеммы 24 в и планка с USB взятая от старого корпуса. Отверстия проделывал просто выкусывая элементы решётки.

Конструкция паяльников

Конструкцию рассматривал и в предыдущей статье. Сейчас повторно и более подробно покажу этапы изготовления.

Подключения проводов на скрутке и термоусадках.

А также относительно прошлого раза несколько изменил склейку бумаги. Я в этот раз увеличение площади слоев сделал постепенной, что облегчило склейку.

Сверху обжал термоусадку.

Сзади для увеличения жесткости залил клеем.

Ручка паяльника получается легкая 26 гр. Расстояние от жала не большое всего 4.5 см.

Такую конструкцию можно использовать как минимум для второго паяльника, например сделав его на основе жала T12-K или T12-KF, которые удобны для выпаивания компонентов и микросхем.

Также в сети встречал такой вариант: человек припаивали провода к контактам, а ручку делал из дерева.

Схема регулятора температуры

В этот раз сделал схему на основе LM324. (схема на основе LM358 приведена в прошлый раз).

Китайский вариант схемы взятый за основу должен быть тоже работоспособным, единственное надо параллельно конденсатору С4 поставить защитный диод типа 1N4148, как в схеме на LM358, и полевой транзистор должен иметь разрешённое напряжение по затвору более 25 в.

Основное отличие этой схемы, от схемы на LM358, это то что напряжение с термопары сначала усиливается, а лишь затем подается на компаратор. Моя схема представляет компиляцию предыдущего устройства на LM358 и китайской схемы на LM324.

Плату рисовал в Sprint-Layout версии 5. Переменный резистор ВСП4-1 0.5вт, СМД резисторы и керамические конденсаторы типоразмера 0805, кроме R3 размера 2512 и R8 размера 1206, конденсатор С7 типо размера В. Разводка платы не идеально но мне нужно было что бы по размерам и посадке она совпадала с предыдущей платой. Диод D3 служит для зашиты от неправильного включения и в принципе он не нужен если плата не используется автономно, но я в процессе отладки умудрился включить плату неправильно по полярности в итоге через несколько секунд рванул конденсатор С5, а остальная плата осталась цела. Резистор R3 можно заменить просто перемычкой. Резисторы R1 и R2 вместе с подстроечным резистором определяют диапазон регулировки температуры, к сожалению разброс дрейфа нуля операционного усилителя не позволяет точно подобрать номиналы этих резисторов. У меня диапазон регулировки настроен от 200 до 400 градусов.

Плату делал на двух стороннем текстолите одна из сторон используется под землю. В контакты обозначенные на схеме как с металлизацией впаиваются перемычки остальные зенкуются. Но плату можно сделать и используя односторонний текстолит, тогда со всех точек обозначенных металлизацией бросаются перемычки проводами на точку расположенную рядом с отрицательным выводом электролита С5 (желательно внести изменения в плату добавив там дополнительных площадок). Я обрезаю плату до нужного размера после травления сверловки и лужения, поскольку на краях где резал ножницами фольга деформированна и плохо зачищается.

После распайки СМД деталей отмыл плату, а уже затем распаял переменный и подстроечный резистор, а также ДИП детали с проводами. Это позволяет при пайке СМД меньше ограничиваться в выборе флюсов.

Остальные детали и провода паяю используя спиртоканифоль или последнее время чаще безотмывочный флюс. (Из за проблем с жалом во время отладки и пока не понял причин немного замучил плату перепайками.)

В целом схема на LM324 немного лучше работает чем на LM358, хотя при пайке различия не особо заметны. Схема на LM358 при подходе к температуре стабилизации примерно на секунду частит светодиодом, т.е. подход происходит плавно с падением мощности отдаваемым в нагреватель вблизи температуры стабилизации. Схема на LM324 выходит на режим стабилизации более резко почти сразу переходя на медленное мигание светодиодом. Какую схему выбрать для реализации скорее должно определятся какие детали под рукой, как я говорил при пайке особой разницы я не заметил, хоть схема на LM324 и ведет себя лучше.

Или что хотел сделать и пока не реализовал, как говорится, в мире нет ничего более постоянного чем сделанное временно.

Подумываю поставить разъемы для паяльников. Чтобы можно было сделать еще паяльников под другие жала и в случае необходимости менять подключенные паяльники. Сейчас на корпусе есть два мини джека, но я опасаюсь их использовать для тока в три ампера.

Поставит предохранитель на внешние разъемы 24в и возможно также для USB выходов.

Ну и надо искать, чем заменить старый фильтр вытяжки, а то он уже грязный, и воздух проходит с трудом.

Также хорошо бы сделать какую то новую подставку под оба паяльника.

На вентилятор необходимо установить небольшой козырек, что бы направлять потоки воздуха и улучшить всасывание дыма.

Как продолжения идеи козырька подумываю туда же прикрепить увеличительное стекло с подсветкой, но это совсем из далеких планов.

Источник