Меню

Компараторе для зарядного устройства



Компараторе для зарядного устройства

Качели для зарядки свинцово-кислотных аккумуляторов.

Автор: Барсик
Опубликовано 15.09.2011
Создано при помощи КотоРед.
2011

Начитавшись в Интернете всякого про SLA (VRLA) аккумуляторы, решил испробовать алгоритм заряда стабильным током. Выглядит он так. Сначала идёт заряд стабильным током, величиной 0,1C. (где C — номинальная ёмкость аккумулятора в ампер-часах) Как только напряжение на аккумуляторе повысится до 14,5 вольт, зарядный ток выключается. Напряжение на аккумуляторе начинает самопроизвольно уменьшаться. Как только оно уменьшится до 13,1 вольта, снова начинается заряд током 0,1C и продолжается до тех пор, пока напряжение снова не повысится до 14,5 вольт. Зарядный ток выключается и остаётся выключенным, пока напряжение не понизится до 13,1 вольта. Затем зарядный ток включается опять, и т.д. Таким образом, получается бесконечный цикл заряд-пауза. Напряжение на аккумуляторе «качается» между 13,1 и 14.5 вольтами. Такой алгоритм давно известен и используется, например, в специализированной микросхеме, которую выпускают «Техасские Инструменты»: https://www.ti.com/lit/ds/symlink/bq2031.pdf У них этот алгоритм называется «Pulsed Current Algorithm».

Отмазка. Аффтар не несёт никакой ответственности за возможные последствия применения этих схем. Угробите аккумулятор — сами виноваты!

Схема зарядного устройства для SLA аккумулятора на 12V 7Ah приведена на рисунке.

Описание схемы.
На транзисторах VT2 и VT3 собран стабилизатор зарядного тока. Для управления стабилизатором тока используется счетверённый компаратор LM339 (DA2). Компараторы DA2-1 и DA2-2 следят за напряжением на аккумуляторной батарее GB1. DA2-1 отслеживает нижний уровень напряжения (13,1 вольта), а DA2-2 — верхний (14,5 вольта). Резисторы R1 — R6 образуют делители напряжения. Напряжение с выходов делителей сравнивается с опорным напряжением. Источник опорного напряжения сделан на параллельном стабилизаторе напряжения TL431 (DA1). Источник опорного напряжения имеет термокомпенсацию, чтобы с повышением температуры пороговые напряжения уменьшались из расчёта 5 милливольт на градус на банку. Датчиком температуры являются четыре диода 1N4007 (VD1 — VD4), соединённые последовательно. На компараторах DA2-3 и DA2-4 собран RS триггер, который запоминает последовательность переключения компараторов DA2-1 и DA2-2. Транзистор VT1 применяется для преобразования уровня напряжения на выходе компаратора DA2-4 в управляющее напряжение стабилизатора тока. Светодиоды HL1 и HL2 служат для индикации состояния зарядного устройства. Когда идёт заряд, светится HL2. Во время паузы светится HL1.

Как это всё работает.
Когда напряжение на аккумуляторе меньше чем нижний порог (13,1 вольта), то напряжения на входах компараторов 6 и 9, больше, чем на входах 7 и 8. ( Напряжение отсчитывается относительно общего провода GND ) Соответственно, на выходе DA2-1 устанавливается низкий уровень, а на выходе DA2-2 — высокий. На выходе DA2-3 устанавливается высокий уровень, а на выходе DA2-4 — низкий. Между выходом DA2-4 и плюсом питания Vcc начинает протекать ток через HL2, R15 и переход эмиттер-база VT1. HL2 начинает светиться, а транзистор VT1 открывается. Через открытый транзистор напряжение питания поступает на резисторы R13 и R16. Через резистор R16 напряжение поступает на затвор полевого транзистора VT3. VT3 начинает открываться. Когда ток через транзистор VT3 (и аккумулятор) достигнет примерно 700 мА, начнёт открываться транзистор VT2 и шунтировать цепь затвор — исток, что приведёт к снижению тока через полевой транзистор. Таким образом, установится стабильное значение зарядного тока. Стабилитрон VD7 защищает цепь затвор — исток от повышенного напряжения, и, при нормальной работе стабилизатора, ток не проводит. Диод VD8 предотвращает разряд аккумулятора при выключенном питании через транзистор VT3 и резисторы R18, R19.
По мере заряда аккумулятора, напряжение на нём возрастает. Как только оно достигнет нижнего порога, компаратор DA2-1 изменит своё состояние. На его выходе должен бы появиться высокий уровень, но фиг он там появится, поскольку на выходе DA2-4 низкий уровень и диод VD5 открыт. Поэтому, триггер на компараторах DA2-3 и DA2-4 сохраняет своё состояние, и заряд продолжается. Напряжение на аккумуляторе продолжает возрастать. Когда оно достигнет верхнего порога, компаратор DA2-2 изменит своё состояние. На его выходе появится низкий уровень, который изменит состояние триггера на противоположное. HL2 погаснет, транзисторы VT1 и VT3 закроются и заряд прекратится. Начнёт светиться HL1. С течением времени, напряжение на аккумуляторе самопроизвольно уменьшается. Как только оно уменьшится ниже верхнего порога, компаратор DA2-2 изменит своё состояние. Но высокий уровень на его входе не появится из-за того, что на выходе DA2-3 низкий уровень и диод VD6 открыт. Триггер сохранит своё предыдущее состояние. Снижение напряжения на аккумуляторе будет продолжаться. Как только напряжение достигнет нижнего порога, состояние компаратора DA2-1 изменится. На выходе появится низкий уровень, который изменит состояние триггера на противоположное. Снова включится заряд, и цикл повторится. Источник опорного напряжения имеет напряжение 4,8 вольта при комнатной температуре. Значение этого напряжения выбрано примерно равным напряжению двух банок кислотного аккумулятора. Кремниевые диоды датчика температуры имеют температурный коэффициент напряжения около 2 мВ на градус каждый. Таким образом, четыре диода должны обеспечить температурный коэффициент источника опорного напряжения равным 4 мВ на градус на банку. (на самом деле, получилось 5) Ток через диоды определяется резистором R8 и выбран равным 100 мкА.

Зарядное устройство питается от любого нестабилизированного источника питания, который может обеспечить ток 0,7 — 0,8 А. Напряжение питания Vcc должно быть не меньше 16 вольт. А с учётом пульсаций источника питания и нестабильности сети, где-нибудь около 18 — 19 вольт. Но не больше 35 вольт. Чем больше будет напряжение, тем больше мощность, рассеиваемая транзистором VT3.
Если планируется заряжать аккумулятор при комнатной температуре, то термокомпенсация не нужна. Вместо термодатчика из четырёх диодов надо включить резистор на 20 кОм.
Схема выдерживает непродолжительную переплюсовку аккумулятора. При этом светится светодиод HL2, как будто идёт заряд. На самом деле аккумулятор РАЗРЯЖАЕТСЯ током около 700 мА. При этом, на транзисторе VT3 рассеивается повышенная мощность. Будьте внимательны при подключении аккумулятора, а то ему (а может и транзистору тоже) настанет кирдык. И не говорите потом, что я вас не предупреждал.

Конструкция и детали.
Транзисторы VT1, VT2 — любые кремниевые, соответствующей структуры. Транзистор VT3 — любой относительно мощный полевик MOSFET с N каналом. Минимальное сопротивление канала роли не играет — он всё равно работает в линейном режиме. Транзистор VT3 должен быть обязательно установлен на радиатор. Какой величины радиатор — зависит от напряжения питания. Стабилитрон VD7 — любой, с напряжением стабилизации от 8 до 15 вольт. Диод VD8 — любой, который не сильно греется при токе 0,7 А. Лучше, чтобы он был ампера на 3. Остальные диоды опять же любые, кремниевые. Резистор R18 должен иметь мощность не менее 1 Вт. Компараторы DA2 могут быть любыми, но обязательно должны иметь выход с открытым коллектором. Использовать вместо них операционные усилители недопустимо! Конструкция датчика температуры — любая, но лучше, чтобы диоды были в герметичной упаковке. Схема собрана на универсальной плате. Печатная плата не разрабатывалась.

Читайте также:  Usb type c схема зарядного устройства

Налаживание.
Аккумулятор не подключать. Подать питание. Проверить источник опорного напряжения. Напряжение между анодом и катодом DA1 (TL431) должно быть 4,8 вольта при комнатной температуре. Требуемое напряжение подбирается резистором R3. Движок подстроечного резистора R2 установить в верхнее по схеме положение (максимальное напряжение верхнего порога). Движок подстроечного резистора R5 установить в нижнее по схеме положение (минимальное напряжение нижнего порога). Если всё собрано правильно, светодиоды HL1 и HL2 должны начать попеременно мигать с частотой несколько герц. Проверить работу стабилизатора тока. Вместо аккумулятора подключить эквивалент нагрузки — мощный резистор сопротивлением 10 — 12 Ом и мощностью 6 — 10 ватт. Светодиод HL2 должен светиться непрерывно, а HL1 должен погаснуть. Убедиться, что ток через эквивалент нагрузки примерно равен 600 — 700 мА. Подбором резистора R19 установить ток равным 700 мА. Точное значение тока устанавливать не имеет смысла. Точность +/- 50 мА вполне достаточна. Убедиться, что при изменении сопротивдения — эквивалента нагрузки, ток не меняется. Подключить аккумулятор, а к аккумулятору вольтметр. Лучше, если аккумулятор уже заряженный — не придётся долго ждать, пока напряжение на нём достигнет 14,5 вольта. Как только напряжение станет равным 14,5 вольта, поставить движок подстроечного резистора R2 в такое положение, чтобы светодиод HL2 погас, а HL1 засветился. Напряжение на аккумуляторе начнёт уменьшаться. Как только оно уменьшится до 13,1 вольта, поставить движок подстроечного резистора R5 в такое положение, чтобы светодиод HL1 погас, а HL2 засветился. Проследить, в каких пределах качается напряжение, и подстроить пороги поточнее. Собственно, всё.

То, что получилось у меня, показано на фотографии.

Да. Некоторые граждане коты, конечно возмутятся и скажут: «Хочу схему не с общим плюсом питания, а с общим минусом!». Пожалуйста. Их есть у меня. Только придётся поискать полевик с P каналом. Схема на рисунке. Но я её ещё не макетировал. Но должна работать точно так же.

И в заключение. В Интернете говорят, что с помощью зарядника типа «качели», можно уменьшить сульфатацию. Для этого параллельно аккумулятору вешают нагрузку, которая отъедает от него ток в размере 0,05C. Поскольку зарядник даёт ток 0,1C, заряд таки происходит током 0,05C, а в паузе происходит разряд таким же током. Может, соотношение зарядного и разрядного тока должно быть иным. Не знаю. Не пробовал. Нету у меня засульфатированного аккумулятора.

Источник

Особенности компаратора напряжения

21 декабря 2019

Время на чтение:

Слово «компаратор» произошло от латинского «comparare» и в буквальном русском переводе означает «сравнивать». Он производится в разнообразных модификациях, которые востребованы современной электронной промышленностью. Самые простые конструкции для сравнения контролируемых данных обладают 2-мя входами аналогового типа и одним цифровым. Базу его функционирования обеспечивает дифференциальный каскад, имеющий мощные усилительные характеристики. Компаратор напряжения довольно востребованное устройство и используется в областях, связанных с измерениями либо которые используют превращение сигнала из аналогового в цифровой.

Что такое компаратор напряжения

Принцип функционирования компаратора напряжения (КН) можно сравнить с весами рычажного типа. Когда на одну чашу весов укладывается эталонная гиря, а на другую — измеряемый продукт. В то время, когда вес продукта будет одинаковым с массой контрольного веса, чаша с эталонным весом поднимается выше, после чего процесс взвешивания заканчивается.

Применение компараторов

В КН вместо гирь функционирует основное напряжение, а продукт заменяет входящий сигнал. Когда образуется логическая «1» на выходе компаратора, начинается процесс сопоставления значений напряжения. Для проверки такого прибора не потребуется выполнения трудозатратной схемы. Достаточно подключить выходной вольтметр, а на вводы — регулируемое напряжение. При смене входных параметров на вольтметре будет видима функциональность КН, параметры настройки задаются схемой.

Принцип работы компаратора

Самым простым прибором считается компаратор, который сопоставляет напряжение, поступающее на один из входов, с базовым показателем, присутствующим на ином входе. Примитивный компаратор напряжения на операционном усилителе (ОУ) — без обратной связи.

Принцип работы

КН выполнен в виде электронной схемы с 2-мя входящими напряжениями и может устанавливать большее значение. Просто выполнить модели КН из ОУ, так как полярность выходящей электроцепи операционного усилителя исходит от полярности разности показателей напряжения на 2-х входах.

Представим, что существует фотоэлемент, который производит 0.5 В под воздействием солнечного света, и необходимо применять данный фотоэлемент в роли измерителя для установления периода дневного освещения. В таких случаях лучший вариант — применять КН, чтобы сопоставить напряжение от фотоэлемента с контролируемым показателем 0.5 В.

В цепи КН, первоначальное опорное напряжение поступает на инвертирующем вводе (U -), после напряжение, которое будут сравнивать с опорным, поступает на неинвертирующий ввод. Выходное значение исключительно зависит от входного размера по отношению к опорному напряжению.

  • Менее эталонного — отрицательный;
  • равноправный опорному — «0»;
  • более эталонного значения — положительный.

ОУ компаратора сравнивает один уровень аналогового напряжения с другим уровнем аналогового напряжения или каким-либо опорным напряжением, и выдает выходной сигнал на основе этого сравнения напряжения. Другими словами, компаратор напряжения ОУ сопоставляет данные 2-х входов и определяет наибольший, простота и эффективность этой схемы проверена на практике и реализована в многих бытовых приборах.

Положительная обратная связь

Компараторы напряжения либо используют положительную обратную связь, либо вообще не используют ее в режиме разомкнутого контура. Затем выходной сигнал КН подается полностью на его положительную шину питания + Ucc или на отрицательную шину питания —Ucc, при приложении переменного входного сигнала, который проходит некоторое предварительно установленное пороговое значение.

КН (-) обратной связью

Параметры прибора

На самом деле, прибор можно расценивать как простейший вольтметр. КН, подобно цифровому прибору, обладает рядом эксплуатационных качеств, подразделяемые на 2 разновидности: статические и динамические.

Параметры прибора

Первые обладают следующими характеристиками:

  • Максимальная чувствительность по отношению к пороговым размерам сигнала, которые КН устанавливает на входе и заменяет потенциал выхода устройства на логический «0» либо «1».
  • Размер смещения устанавливается передаточным фактором прибора в отношении установленного образцового положения.
  • Входной ток — предельное значение, способное протекать с использованием любого вывода, при этом, не нанеся повреждение прибору.
  • Выходной ток — размер тока, во время перехода измерителя в положение «1».
  • Разность токов — результат, определяемый при вычитании токовых данных.
  • Гистерезис — разница в уровнях входящего сигнала, которая приводит к изменению стабильного выходного состояния.
  • Коэффициент понижения сигнала рассчитывается по отношению к дифференциальному сигналу, которые приводят к смене варианта функционирования измерителя.
  • Наименьшая и наибольшая номинальная температура — интервал, в котором технологические характеристики прибора не будут изменяться.

Гистерезис компаратора

Обратите внимание! Все основные параметры КН изображаются в форме параметров переходного типа. Это диаграмма, где по оси Х обозначается время, а Y — напряжение в вольтах.

Читайте также:  Зарядное устройство для аккумуляторов орион pw 270

Как обозначается компаратор на схемах

На схемах компаратора и в электротехнических схемах графическое обозначение измерителя выполняется в форме треугольника, имеющего три выхода. Они обозначаются символами «+» и «-», соответствующих неинвертирующим/инвертирующим показателям, также представляется выходной маркирующий знак «Uout».

Когда (+) на входе микрочипа, степень сигнала станет больше, чем конкретно на инверсном ( — ), то на выводе будет образовываться устойчивое значение. Исходя из схемотехнической базы компаратора, это число имеет возможность принимать вариант логического «0» либо «1». В цифровых электронных устройствах за «12» принимается сигнал, степень напряжения которого имеет 5В, а за «0» установлено его отсутствие. Другими словами, положение выхода измерителя устанавливается как высокое либо низкое. Хотя обычно на практике за логический «0» принимают разность потенциалов до 2.7 В.

Где применяется компаратор напряжения

Часто КН применяют в градиентном реле — схема, которая реагирует на скорость изменения сигнала, например, фотореле. Такое устройство может использоваться в тех ситуациях, когда освещение меняется довольно стремительно. Например, в охранных установках либо датчиках контроля выпущенных изделий на конвейерах, где прибор станет реагировать на прерывание светового потока.

Еще одна часто используемая схема — датчик измерения температуры и изменения «аналогового» сигнала в «электронный». Оба измерителя преобразовывают амплитуду входящего сигнала в ширину выходящего импульса. Такое превращение довольно часто применяется в разнообразных цифровых схемах. Преимущественно, в измерительных устройствах, блоках питания импульсного типа, электронных усилителях.

Конструкция компаратора

КН нашли обширную область применения в радиоэлектронике разнообразной направленности. В магазинах радиотоваров можно увидеть огромное количество разнообразных микросхем. Но особенно часто применяемыми микросхемами у пользователей считаются:

  • LM No 339;
  • LM No 311;
  • MAX No 934;
  • К554СА3.

Они легкодоступны в торговой сети и имеют довольно бюджетную цену. Такие КН выделяются обширным спектром входных параметров. К выходу КН способна присоединяться разнообразная токовая нагрузка, как правило, не превосходящая 50.0 мА. Это могут быть микрореле, варистор, световой диод, оптрон либо абсолютно разные исполнительные модули, однако с предельными по току компонентами.

Фотореле контроля

Подобное реле выпускается методом навесного монтажа. Его применяют в охранных контролирующих системах либо для контролирования степени света. Входящее напряжение попадает на делитель R1 и фотодиод VD3. Их объединенная точка сочетания использует ограничивающие диоды VD1/ VD2, подключенные к входам DA1. В итоге входящая разность потенциалов КН будет отсутствовать, а следовательно, и восприимчивость измерителя станет максимальной.

Чтобы выходящий сигнал смог инвертироваться, потребуется обеспечить входную разницу в 1 мВ. По той причине, что к входу подсоединены С1 и сопротивление R1, размер U на нем станет увеличиваться с незначительной задержкой, равноправной периоду заряда С1.

Зарядный блок

Такой блок питания принимается функционировать непосредственно после сборки. Его базовые опции сводятся к установлению рабочего зарядного тока и порогов, по которым срабатывает КН. При подключении прибора зажигается световой диод, позиционирующий подачу напряжения. На протяжении процесса зарядки обязан непрерывно гореть алый световой диод, который погаснет после того, как аккумуляторная батарея будет полностью заряжена

Зарядный блок

Подводимое напряжение от питающего блока настраивается R2, а зарядный ток устанавливается с применением R4. Наладка выполняется с применением сопротивления на 160 Ом, подключающегося в параллель к контактам, которые держат батарейку. Транзистор VT1 размещается на радиаторе, взамен его можно применять КТ814Б. Подобную схему надо будет комплектовать на плате с размером не более 50×50 мм.

Кварцевый генератор

Этот генератор ортогональных импульсов выполняется с использованием российского компаратора K544C3, функционирующего на тактовой гармонике 32.768 Гц. Схема станет рабочей в спектре входящего напряжения 7-11В с частотой установленной кварцем ZQ1. Тем не менее, для эксплуатации такого девайса сверх 50.0 кГц потребуется понизить значение R5-R6.

Генератор

При замыкании другого вывода с 0-проводом КН становится подсоединённым по варианту с незакрытым коллектором, а R7 становится нагрузкой. Подстраивание частотности производится совместно, с применением C1. С применением R4 выполняется автозапуск генератора. Меняя значение R2, изменяется импульсная характеристика.

Дополнительная информация! Выбирая конденсаторы С1 или С2, генератор сможет применяться в виде бесконтактного жидкостного датчика. В роли детектора для этой цели потребуется применять микроконтроллер с ПО. Однако возможно использовать и ещё дополнительно компаратор, который станет фиксировать деформации напряжения.

Отсюда следует, что компаратор способен предназначать действия по уровням значений на собственных вводах. Когда они отличаются, то, исходя от дельты U, выход прибора меняет качественное положение. Именно такие их качества используют создатели, разрабатывая самые разные электроприборы с операционным усилителем.

Источник

Зачем нужен цифровой и аналоговый компаратор

Для управления электронными схемами применяются различные устройства, которые помогают настраивать и разветвлять сигналы. Для сравнения двух разных импульсов часто используется компаратор с однополярным питанием.

Обозначение и технические характеристики

Компаратор – это устройство, которое сравнивает два разных напряжения и силу тока, выдает конечный силовой сигнал, указывая на большее из них, одновременно производя расчет соотношения. У него есть две аналоговые вводные клеммы с положительным и отрицательным сигналом и один двоичный цифровой выход, как и у АЦП. Для отображения сигнала используется специальный индикатор.

УГО отображение компаратора выглядите следующим образом:

Изначально использовался только интегрированный компаратор напряжения (MAX 961ESA, PIC 16f628a), который известен как высокоскоростной. Он требует определенного дифференциального напряжения в определенном диапазоне, который существенно ниже, чем напряжение сети питания. Эти приборы не допускают никаких других внешних сигналов, которые находятся вне диапазона напряжения сети.

Сейчас гораздо чаще используется аналоговый цифровой компаратор (Attiny/ Atmega 2313), у которого транзисторный ввод. У него вводный потенциал сигнала находится в диапазоне менее 0,3 Вольт и не поднимается выше. Устройство может быть также ультра быстрого типа (стереокомпаратор), благодаря чему входной сигнал меньше обозначенного диапазона, к примеру, 0,2 Вольта. Как правило, используемый диапазон ограничивается только конкретным входным напряжением.

Помимо простого прибора, также существует видеоспектральный компаратор на ОУ (операционном усилителе). Это прибор, у которого очень тонко сбалансирована разница входа и высокого сопротивления сигнала. Благодаря такой характеристики, операционный компаратор используется в низкопроводимых схемах с небольшим вольтажем.

В теории, частотный операционный усилитель работает в конфигурации с открытым контуром (без отрицательной обратной связи) и может быть использован в качестве компаратора низкой производительности. Но при этом, не инвертирующий вход (+ V) находится на более высоком напряжении, чем на инвертирующий (V-). Высокое усиление, выходящее из операционного усилителя, провоцирует выход низкого напряжения на входе в устройство.

Когда неинвертирующий вход падает ниже инвертирующего входа, выходной сигнал насыщается при отрицательном уровне питания, то он все равно может проводить импульсы. Выходное напряжение ОУ ограничивается только напряжением питания. Принципиальная электрическая схема ОУ работает в линейном режиме с отрицательной обратной связью, с помощью сбалансированного сплит-источника питания (питание от ± V S ). Многие приборы, работающие с компаратором, также имеют свойство фиксировать полученные данные при помощи видео-, фото- или документальной записи. Эти электронные принципы не работают в системах, где используются разомкнутые контуры и низкопроводящие элементы.

Читайте также:  Зарядное устройство для мизинчиковых аккумуляторов ааа

Но у компараторного усилителя существует несколько существенных недостатков:

  1. Операционные усилители предназначены для работы в линейном режиме с отрицательной обратной связью. Но при этом, ОУ имеет более длительный режим восстановления;
  2. Почти все операционные усилители имеют конденсатор внутренней компенсации, который ограничивает скорость нарастания выходного напряжения для высокочастотных сигналов. Исходя из этого, данная схема немного задерживает импульс;
  3. Компаратор не имеет внутреннего гистерезиса.

Из-за этих недостатков, компаратор для управления различными схемами, в большинстве случаев, используется без усилителя, исключением является генератор.

Компаратор предназначен для производственных процессов с ограниченным выходным напряжением, которое легко взаимодействует с цифровой логикой. Поэтому его часто используются в различных термических приборах (терморегулятор, реле температуры). Также его применяют для сравнения сигналов и сопротивлений таких устройств, как таймер, стабилизатор и прочая схемотехника.

Источник

Устройство автоматической зарядки аккумуляторных элементов

В настоящее время широко применяются устройства для автоматической зарядки аккумуляторов напряжением 6 и 12 В. В [1] было опубликовано простое устройство для заряда двух аккумуляторных элементов с общим напряжением 2,5 В. Опыт эксплуатации аккумуляторов показывает целесообразность раздельной и независимой зарядки аккумуляторных элементов (напряжением 1,25 В каждый). Действительно, в природе нет абсолютно одинаковых по параметрам аккумуляторов. Даже аккумуляторы одной серии и партии отличаются друг от друга, особенно через некоторое время эксплуатации. Индивидуальная зарядка позволяет наиболее полно восстанавливать емкость каждого аккумулятора [2]. Только за счет индивидуальной зарядки аккумуляторных элементов срок их эксплуатации возрастает на 50-100%.

Однако описанное в [2] устройство имеет недостатки. Так, после прекращения зарядного цикла не происходит полного отключения аккумуляторных элементов от зарядного устройства — через аккумуляторы продолжает протекать ток. Экспериментально установлено, что остаточный ток значительно превышает необходимый ток дозаряда аккумуляторов. Этот недостаток устранен в предлагаемой схеме, показанной на рисунке.

Другое существенное отличие схемы от прототипа — использование двух компараторов вместо четырех. Казалось бы, для этого достаточно включить светодиоды индикации режима ожидания непосредственно с выходов компараторов на корпус. Однако сразу же возникают проблемы: напряжение на выходе компараторов при работе изменяется от нулевого во время зарядки аккумуляторов до половины напряжения источника питания микросхем в режиме ожидания заряда. При этом, естественно, ток заряда аккумуляторов полностью не прекращается, а только незначительно уменьшается. Замена микросхемы аналогичной или подбор ее типа не приводят к устранению этого явления.

Задачу удалось решить, изменив схему включения светодиодов ожидания даже при использовании в схеме слаботочных компараторов. Упростилась и схема зарядного устройства: вместо микросхемы счетверенного компаратора LT339 применена менее дефицитная и более дешевая микросхема сдвоенного компаратора LT393. При желании радиолюбители могут попробовать использовать микросхемы бытовых сдвоенных операционных усилителей, например, серии 1458 или К157УД2.

Сетевое напряжение понижается трансформатором Т1, выпрямляется мостовым выпрямителем VD1-VD4 и сглаживается конденсаторами С1, С2/ Два конденсатора, соединенные параллельно, применены с целью миниатюризации платы по высоте. Для работы схемы достаточно одного конденсатора. Интегральный стабилизатор напряжения DA2 типа TL431 обеспечивает опорное напряжение на инвертирующих входах микросхемы DA1. Дальнейшая часть схемы представляет собой два независимых канала заряда двух аккумуляторов GB1 и GB2. Возможна зарядка одного аккумулятора, при этом другой к устройству не подключают.

Компараторы напряжения DA1.1 и DA1.2 управляют работой зарядных устройств. Напряжение на инвертирующих входах компараторов является эталонным для схемы и выставляется при настройке подстроечным резистором R3. Диоды VD5 и VD10 защищают микросхему DA1 при ошибочном подключении к устройству аккумуляторов в противоположной полярности. Если напряжение подключаемого аккумулятора меньше опорного напряжения инвертирующего входа компаратора, то на выходе компаратора устанавливается низкий потенциал — около 0,18 В. При этом через резистор R9 (R14) и стабилитрон VD6 (VD12) отпирается транзистор VT1 (VT2). Зажигается светодиод VD7 (VD15) зеленого цвета свечения, одновременно стабилизируя напряжение на базе транзистора. Резистор R11 (R17) в цепи эмиттера транзистора обеспечивает работу ключа в режиме стабилизации тока. Подбирая сопротивление этого резистора при настройке схемы, можно задать необходимый для данного типа аккумуляторов ток заряда. Диод VD8 (VD16) в цепи коллектора транзистора VT1 (VT2) препятствует разряду аккумулятора при отключении зарядного устройства от сети или перебоях в энергоснабжении. Как только аккумулятор зарядится, возрастет напряжение на неинвертирующем входе компаратора, и он переключится. реЗеленый светодиод гаснет, а красный светодиод VD11 (VD13) зажигается. Это происходит из.за того, что напряжение на выходе компаратора скачком возрастает почти до напряжения источника питания схемы.

Поскольку микросхемы компараторов маломощные, из.за нагрузки напряжение на их выходе возрастает не до напряжения питания микросхем, а менее этой величины на 1,5…2 В. При отсутствии стабилитронов VD6, VD14 это привело бы к неполному запиранию транзисторов VT1, VT2 и наличию существенного тока дозарядки аккумуляторов. При несвоевременном отключении устройства от сети появилась бы опасность перезаряда аккумуляторов. Резисторы R7, R12 обеспечивают гистерезис переключения компараторов. При увеличении сопротивлений резисторов гистерезис уменьшается. На гистерезис влияет также соотношение сопротивлений резисторов делителей напряжения в цепи неинвертирующих входов компараторов R6-R5 и R8-R13.

В режиме заряда аккумуляторов выходное сопротивление микросхем компараторов DA1 через диоды VD9, VD12 шунтирует светодиоды VD11, VD13, и они не светятся. Как только аккумулятор зарядится и компаратор перейдет в другое устойчивое состояние, напряжение на выходе компаратора скачком возрастает, красный светодиод уже не шунтируется и начинает светитьсяНастройку устройства проще всего осуществить по следующей методике. К зарядному устройству подключают предварительно полностью заряженный аккумулятор. Регулируя сопротивление подстроечного резистора R3, добиваются зажигания красного светодиода. Если теперь подключить разряженный аккумулятор, то красный светодиод погаснет, а зеленый загорится. Подбирая сопротивления резисторов R11 и R17, устанавливают необходимый ток заряда аккумуляторов, который, как правило, выбирают равным по величине 0,1 от емкости аккумулятора. Так, для аккумуляторов емкостью 0,6 Ач был установлен ток около 60 мАВ качестве R3 целесообразно использовать многооборотный подстроечный резистор типа СП5.2. Его сопротивление не критично. Можно применить, например, резистор на 6,8 кОм или более. Транзисторы VT1, VT2 в авторском варианте установлены на небольшие радиаторы. Практически все элементы схемы допускают разброс параметров до 30%. Подбор элементов при этом не проводился.

В заключение хотелось бы обратить внимание читателей на универсальность схемы. Добавив в нее незначительное количество переключателей или переменных резисторов, увеличив размеры радиаторов транзисторов можно заряжать и более мощные аккумуляторы с любым напряжением, например 2,5, 6, 12 В.

  1. Яковлев Е.Л. Низковольтное автоматическое зарядное устройство.- Радіоаматор. — 2005. — №7. — С.21
  2. Vit Krnavek, Nabijec alkalickych akumulatoru.- Prakticka electronika. — 2001. — №10.

Источник