Меню

Какие блоки питания можно переделать

Какие блоки питания можно переделать

Самый лучший вариант это приобретение и использование качественного блока питания. Но если нет возможности и/или есть желание усовершенствовать уже имеющийся у вас блок, то неплохие результаты можно получить и при доработке дешевого (бюджетного) блока питания. Китайские проектировщики, как правило, делают печатные платы по критерию максимальной универсальности, т. е. таким образом, чтобы в зависимости от количества установленных элементов можно было бы варьировать качеством и, соответственно, ценой.

Поэтому, если установить те детали, на которых сэкономил производитель, и еще кое-что поменять – получится блок средней ценовой категории. Конечно, его нельзя сравнивать с дорогими экземплярами, где топология печатных плат, схемотехника, и все детали изначально рассчитывалась для получения высокого качества.
Но для среднестатистического компьютера это вполне приемлемый вариант.

Все, что вы будете делать со своим БП – вы делаете на свой страх и риск!

Если Вы не обладаете достаточной квалификацией, то не читайте, что здесь написано и тем более ничего не делайте!

Прежде всего, нужно открыть БП и оценить размер самого большого трансформатора, если он имеет бирку, на которой вначале идут цифры 33 или выше и имеет размеры 3х3х3 см и больше – имеет смысл возиться. В противном случае у вас вряд ли получиться добиться приемлемого результата.

На фото 1 — трансформатор нормального блока питания, на фото 2 — трансформатор откровенного китайца.

Еще следует обратить внимание на габариты дросселя групповой стабилизации. Чем больше размеры сердечников трансформатора и дросселя, тем больше запас по токам насыщения.
Для трансформатора попадание в насыщение чревато резким падением КПД и вероятностью выхода из строя высоковольтных ключей, для дросселя — сильным разбросом напряжений в основных каналах.

Рис. 1 Типичный китайский блок питания ATX, сетевой фильтр отсутствует.

Наиболее критическими деталями в БП являются:
•Высоковольтные конденсаторы
•Высоковольтные транзисторы
•Высоковольтные выпрямительные диоды
•Высокочастотный силовой трансформатор
•Низковольтные диодные выпрямительные сборки

Доработка:
1.Для начала надо заменить входные электролитические конденсаторы, меняем на конденсаторы большей емкости, способные поместиться на посадочные места. Обычно в дешевых блоках их номиналы 220µF x 200V или в лучшем случае 330µF x 200V. Меняем на 470µF x 200V или лучше на 680µF x 200V.Эти конденсаторывлияют на способность блока держать кратковременное пропадание сетевого напряжения и на мощность выдаваемую Блоком Питания.

Рис. 2 Входные электролитические конденсаторы и высоковольтная часть блока питания, включающая выпрямитель, полумостовой инвертор, электролиты на 200V (330µF, 85 градусов).

Далее необходимо поставить все дроссели в низковольтную часть БП идроссель сетевого фильтра (место для его установки).
Дроссели можно намотать самому на ферритовом кольце диаметром 1- 1,5 см медным проводом с лаковой изоляцией сечением 1,0-2,0 мм 10-15 витков. Можно так же взять дроссели от неисправного БП. Еще нужно распаять сглаживающие конденсаторы в пустующие места низковольтной части. Емкость конденсаторов следует выбирать максимальной, но так чтобы он мог поместиться на штатное место.
Обычно достаточно поставить конденсаторы 2200µF на 16V серияLow ESR 105 градусов, в цепи +3.3V, +5V, +12V.

В выпрямительных модулях вторичных выпрямителей заменяем все диоды на более мощные.
Энергопотребление компьютеров в последние время, в большей степени возрастало по шине + 12V (материнские платы и процессоры), поэтому в первую очередь нужно обратить внимание наэтот модуль.


Типичный вид выпрямительных диодов:

1. — Диодная сборка MBR3045PT (30А) — Устанавливаются в дорогих блоках питания;

2. — диодная сборка UG18DCT (18А) — менее надежные;

3. — диоды вместо сборки (5А) — самый ненадежный вариант, подлежащий обязательной замене.

Канал +5V Stby — Диод дежурного режима FR302 меняем на 1N5822. Там же ставим недостающий фильтрующий дроссель, а первый конденсатор фильтра увеличиваем до 1000μF.

Канал +3,3V — сборку S10C45 меняем на 20C40 (20A/40V), к имеющейся емкости 2200uF/10V, добавляем еще 2200uF/16V и недостающий дроссель. Если канал +3,3V реализован на полевике, то ставим транзистор мощностью не менее чем на 40А/50V (IRFZ48N).

Канал +5V — Диодную сборку S16C45 меняем на 30C40S. Вместо одногоэлектролита 1000uF/10V, ставим 3300uF/10V + 1500uF/16V.

Канал +12V — Диодную сборку F12C20 меняем на две в паралель UG18DCT (18А/200V) или F16C20 (16A/200V) . Вместо одного конденсатора 1000uF/16V, ставим — 2шт 2200μF/16V.

Канал -12V — Вместо 470μF/16V, ставим 1000μF/16V.

Итак, ставим 2 или 3 диодные сборки MOSPEC S30D40 (цифра после D – напряжение – чем больше, тем нам спокойнее) или F12C20C – 200V и аналогичные по характеристикам, 3 конденсатора 2200 μF х 16вольт, 2 конденсатора 470μF х 200V. Электролиты, ставить только низкоимпедансные из серии 105 градусов! — 105*С.

Рис. 3 Низковольтная часть блока питания. Выпрямители, электролитические конденсаторы и дроссели, некоторые отсутствуют.

Если радиаторы блока питания выполнены в виде пластин с прорезанными лепестками, разгибаем эти лепестки в разные стороны, чтобы максимально повысить их эффективность.

Рис. 5 Блок питания ATX с доработанными радиаторами охлаждения.

Дальнейшая доработка БП сводится к следующему. Как известно в БП каналы +5 вольт и +12 вольт стабилизируются и управляются одновременно. При установленном +5 вольт реальное напряжение на канале +12 составляет 12,5 вольт. Если в компьютере сильная нагрузка по каналу +5 (система на базе AMD), то происходит падение напряжения до 4,8 вольт, при этом напряжение по каналу +12 становится равным 13 вольтам. В случае с системой на базе Pentium сильнее нагружается канал +12 вольт и там все происходит наоборот. В силу того, что канал +5 вольт в БП выполнен гораздо качественнее, то даже дешевый блок будет без особых проблем питать систему на основе AMD. Тогда как энергопотребление Pentium гораздо больше (особенно по +12 вольтам) и дешевый БП нужно обязательно дорабатывать.
Завышенное напряжение по каналу 12 вольт очень вредно для жестких дисков. В основном нагрев HDD происходит по причине повышенного напряжения (больше чем 12,6 вольт). Для того чтобы уменьшить напряжение 13 вольт достаточно в разрыв желтого провода, питающего HDD, впаять мощный диод, например КД213. В результате напряжение уменьшится на 0.6 вольт и составит 11.6 – 12,4V, что вполне безопасно для жесткого диска.

В результате модернизировав, таким образом, дешевый блок питания ATX, можно получить неплохой БП для домашнего компьютера, который к тому же будет гораздо меньше греться.

Источник



Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Часто при модернизации компьютера вполне исправный блок питания остается не у дел. Его мощности недостаточно для запитки новых комплектующих. У тех, кто занимается апгрейдом железа, таких устройств может накопиться много. Встает дилемма: утилизировать БП или найти для них практическое применение. Одним из способов дать источнику питания компьютера вторую жизнь – сделать из него лабораторный блок питания с регулируемым выходным напряжением и настраиваемым ограничением по току. Выполнить такую переделку можно своими руками.

Маркировка проводов блока питания компьютера

С потребителями внутри корпуса компьютера БП соединяется с помощью жгутов с разъемами. Принят стандарт, по которому маркировка каждого питающего напряжения производится проводником с соответствующим цветом изоляции.

Цвет провода Напряжение, В
Черный 0 В (земля, общий провод)
Красный +5
Оранжевый +3,3
Желтый +12
Белый -5
Синий -12

Кроме силовых цепей, в жгутах присутствуют проводники с сигналами управления (их можно найти на разъеме, идущем к материнской плате).

Цвет провода Название Функция Уровень напряжения
Зеленый Power_ON Сигнал от материнской платы – разрешение на включение +5 вольт в отсутствие разрешения, 0 вольт при получении сигнала на подачу напряжения
Серый Power_good, Power_OK Сигнал на материнскую плату — все напряжения в норме +5 вольт
Фиолетовый Stand by Дежурное напряжение, присутствует всегда, если на БП подано 220 вольт +5 вольт, служит для питания цепей включения ПК и питания схемы ШИМ внутри БП
Коричневый Sense Регулировка напряжения 3,3 вольта 3,3 вольта

Большинство цепей для переделки в ЛБП не понадобятся, в процессе работы их надо будет обрезать.

Что понадобится для изготовления

Более 90% комплектующих для лабораторника в компьютерном блоке питания уже есть. Оставшиеся придется подбирать под конкретную схему (элементы недорогие и их будет немного), но обязательно понадобятся:

  • два потенциометра для регулировки напряжения и тока;
  • несколько оксидных конденсаторов на напряжение не ниже 35 вольт (лучше 50+) емкостью, соответствующей штатной емкости элементов канала +12 вольт (или больше, если уместятся по габаритам);
  • клеммы для подключения нагрузки (удобно использовать красную для плюсового вывода и черную для минусового);
  • вольтметр и амперметр для измерения выходных параметров (можно использовать аналоговые приборы, можно цифровые, а удобнее применять сдвоенный блок вольтметр-амперметр).

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Из приборов обязательно понадобится мультиметр. Не будет лишним и осциллограф – проверить наличие выходных импульсов на микросхеме ШИМ и ее реакцию на управляющее воздействие, если что-то пойдет не так. Также нужен будет паяльник с комплектом расходников и мелкий слесарный инструмент (набор отверток, кусачки и т.п.).

Схема для лабораторного БП

Для переделки ненужного блока питания компьютера в лабораторный источник с регулируемым выходным напряжением хорошо подходят БП стандарта ATX (но можно и AT), выполненные по схеме с ШИМ на микросхеме TL494 или ее аналогах.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Хотя они все построены по одной структурной схеме и работают по схожему принципу, физически реализованы источники питания могут быть по-разному. Потому первое, с чего надо начать – попытаться найти принципиальную схему от фактически имеющегося блока.

Процедуру переделки можно рассмотреть на примере модели LC-250ATX. Поняв принцип, можно будет работать и с другими подобными блоками.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

В основу работы LC-250ATX положен принцип ШИМ, реализованный на стандартной для таких схем микросхеме TL494. Она формирует импульсы, которые усиливаются ключами на транзисторах Q6,Q7, далее через трансформатор T2 ключами на транзисторах Q1, Q2 создаются импульсы на первичной обмотке трансформатора T1. Эти импульсы трансформируются через вторичные обмотки и подаются на выпрямители различных напряжений, из которых для переделки интересен лишь канал +12 вольт.

Схема дежурного напряжения собрана на транзисторе Q3, трансформаторе T3 и интегральном стабилизаторе 7805. Этот участок также понадобится для будущей конструкции. На операционном усилителе LM339 собрана схема формирования сигнала PWR_OK и запуска БП сигналом от материнской платы.

Процесс переделки

Перед изготовлением лабораторного блока питания из компьютерного надо открыть его корпус и очистить плату и внутреннее пространство от пыли. Лучше делать это пылесосом, при этом счищая загрязнения мягкой кистью.

Далее следует отрезать (или выпаять) от блока питания все провода, кроме одного черного и одного желтого. Если они разной толщины, то надо оставить самые толстые. Или можно оставить по два провода, соединив их параллельно.

После выпайки проводника в зеленой изоляции, освободившуюся контактную площадку надо соединить перемычкой с полигоном общего провода. Сделать это удобнее на плате по кратчайшему пути. После этой операции БП будет запускаться после подачи сетевого напряжения.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Следующий этап – удаление лишних элементов на плате.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Надо удалить все элементы выпрямителей ненужных в дальнейшем напряжений. Схему формирования сигнала PWR_OK и запуска БП, обведенную синим, можно оставить, а можно удалить. В последнем случае соединять зеленый провод с нулем не надо.

В цепи вывода питания (12) TL494 может быть цепочка из диода и резистора D73R25 (есть не во всех БП). Ее надо выпаять и обойти перемычкой. В цепи вывода 1 надо удалить все лишние резисторы, оставить один – идущий к шине +12 вольт. От четвертого вывода TL494 надо отключить все, кроме резистора. Между 4 и 13-14 ногами надо установить конденсатор (если его по факту нет) емкостью 1..10 мкФ, он обеспечит мягкий пуск. Все остальные соединения от выводов 13-14 надо отключить. Также надо полностью освободить выводы 15 и 16. От 2 и 3 выводов микросхемы надо отключить все, кроме частотозадающей RC-цепочки. Сглаживающий конденсатор в цепи 12 вольт (выделен зеленым кругом) надо заменить на другой, емкостью не ниже 1000 мкФ и напряжением не менее 35 В (можно выше по емкости и по напряжению, насколько позволит место). Также желательно увеличить сопротивление нагрузочного резистора в выходных цепях +12 вольт примерно в два раза. В итоге схема должна прийти к такому виду.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Важно! Обязательно надо оставить схему дежурного напряжения – от нее питается микросхема ШИМ. От нее впоследствии надо будет запитать вентилятор охлаждения, так как штатная схема его питания будет переделана.

Следующим шагом надо создать схему ограничения тока. Для этого ток надо сначала измерить. Для этого потребуется шунт от амперметра – измеряя падение напряжения на нем, можно судить о токе. Шунтовые сопротивления бывают в виде пластины или в виде проволочной спирали. Вторые удобнее – их проще монтировать в условиях ограниченного места.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Включается шунт в разрыв соединения средней точки выходного трансформатора и земляной шины. Параллельно ему включается амперметр, заодно показана схема подключения вольтметра для измерения выходного напряжения.

Далее цепь измерения тока через резистор подключается к выводу 15 микросхемы, его величина подбирается для необходимого ограничения тока. Начинать подбор надо с минимума.

Читайте также:  Стандарты блоков питания для серверов

Для регулировки ограничения тока устанавливается потенциометр сопротивлением 1..15 кОм. Такой же потенциометр устанавливается для регулировки уровня выходного напряжения.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Необходимость установки элементов, выделенных сними цветом, определяется в процессе наладки. Перед ее проведением надо:

  • временно выпаять резистор сопротивлением 24 кОм между выводом 1 микросхемы и шиной +12 вольт;
  • включить в разрыв сетевого провода блока питания лампу накаливания на 220 вольт (подобно предохранителю).

При наличии проблем в силовых цепях БП, лампа будет гореть в полный накал и ограничит ток. Если все в порядке, лампа гореть не будет или будет слабо светиться. В процессе наладки также желательно использовать такое включение.

Если лампа не загорелась, можно продолжать процедуру настройки. В отсутствие резистора R24 контур регулирования разомкнут, поэтому блок питания выдаст максимально возможное напряжение. Если оно недостаточно для дальнейшей эксплуатации, надо собрать выпрямитель по мостовой схеме, используя сборки или отдельные диоды на соответствующий ток и напряжение. Если все ОК, то вместо резистора надо впаять потенциометр или подстроечник сопротивлением 30..50 кОм. Вращая движок, надо добиться на выходе уровня примерно 0,85..0,9 от максимально возможного. Запас необходим для реализации стабилизации по току и напряжению. Получившееся сопротивление надо замерить и впаять в плату постоянный резистор с наиболее близким номиналом.

Резистор от шунта (по схеме 270 Ом) надо подобрать для получения максимального тока. При увеличении его сопротивления, верхняя граница тока тоже увеличивается. Задать ток можно с помощью нагрузки из автомобильных ламп накаливания соответствующей мощности.

Если наблюдается нестабильная работа под нагрузкой или при регулировке (прослушиваются свист, потрескивание и т.п.), надо попытаться устранить эти неприятные явления установкой элементов, выделенных синим цветом. Иногда добиться успеха получается без резистора 33 кОм, а иногда он нужен обязательно. В некоторых случаях помогает такой же резистор, включенный последовательно с конденсатором между 3 и 15 ножками микросхемы.

Завершающий этап – расположение органов управления и измерительных приборов на корпусе блока питания. Их можно закрепить на передней панели, оформив ее в соответствии с фантазией и возможностями, но необязательно. Если удобно, можно, например, расположить настроечные органы на одной панели корпуса, а измерительные приборы – на другой.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Чтобы получить двухполярный лабораторник, лучше изготовить два ЛБП по приведенной методике и соединить их последовательно. Общая точка соединения будет служить нулевым проводом. Ток и напряжение каналов можно будет регулировать раздельно.

Переделка компьютерного блока питания в лабораторный с регулировкой напряжения

Процесс переделки блоков питания стандарта AT осуществляется по тому же принципу, но для их запуска не нужен сигнал с материнской платы, поэтому соединения зеленого провода с землей не потребуется в любом случае. В остальном надо лишь разобраться в схеме БП.

В завершении для наглядности рекомендуем серию тематических видеороликов.

Источник

Мощный блок питания путем модернизации блоков меньшей мощности

C ежегодным апгрейдом процессора, материнки, памяти, видео, я давно смирился, как с неизбежным. Но апгрейд блока питания меня почему-то здорово нервирует. Если железо прогрессирует кардинально, то в схемотехнике блока питания таких принципиальных изменений практически нет. Ну, транс побольше, провода на дросселях потолще, диодные сборки помощнее, конденсаторы. Неужели нельзя купить блок питания помощнее, так сказать на вырост, и жить хотя бы пару лет спокойно. Не задумываясь о такой относительно простой вещи, как качественное электропитание.

Казалось чего бы проще, купи блок питания самой большой мощности, какую найдешь, и наслаждайся спокойной жизнью. Но не тут то было. Почему-то все работники компьютерных фирм уверены, что 250-ти ваттного блока питания хватит вам с избытком. И, что бесит больше всего, начинают безапелляционно поучать и безосновательно доказывать свою правоту. Тогда на это резонно замечаешь, что знаешь, чего хочешь и готов за это платить и надо побыстрее достать то, чего спрашивают и заработать законную прибыль, а не злить незнакомого человека своими бессмысленными, ничем не подкрепленными уговорами. Но это только первое препятствие. Идем дальше.

Допустим, вы все же нашли мощный блок питания, и тут вы видите, например, такую запись в прайсе

  • Power Man PRO HPC 420W – 59 уе
  • Power Man PRO HPC 520W – 123 уе

При разнице в 100 ватт цена выросла вдвое. А уж если брать с запасом, то нужно 650 или больше. Сколько это будет стоить? И это еще не все!

реклама

В подавляющем большинстве современных блоков питания используется микросхема SG6105. А схема включения ее, имеет одну очень неприятную особенность – она не стабилизирует напряжения 5 и 12 вольт, а на ее вход подается среднее значение этих двух напряжений, полученное с резисторного делителя. И стабилизирует она это среднее значение. Из-за этой особенности часто происходит такое явление, как «перекос напряжений». Ранее использовали микросхемыTL494, MB3759, KA7500. Они имеют ту же особенность. Приведу цитату из статьи господина Коробейникова.

«. Перекос напряжений возникает из-за неравномерного распределения нагрузки по шинам +12 и +5 Вольт. Например, процессор запитан от шины +5В, а на шине +12 висит жёсткий диск и CD привод. Нагрузка на +5В во много раз превышает нагрузку на +12В. 5 вольт проваливается. Микросхема увеличивает duty cycle и +5В приподнимается, но ещё сильнее увеличивается +12 – там меньше нагрузка. Мы получаем типичный перекос напряжений. «

На многих современных материнских платах процессор питается от 12 вольт, тогда происходит перекос наоборот, 12 вольт понижается, а 5 повышается.

И если в номинальном режиме компьютер нормально работает, то при разгоне потребляемая процессором мощность увеличивается, перекос усиливается, напряжение уменьшается, срабатывает защита блока питания от понижения напряжения и компьютер отключается. Если не происходит отключения, то все равно пониженное напряжение не способствует хорошему разгону.

Так, например, было у меня. Даже написал на эту тему заметку – «Лампочка оверклокера» Тогда у меня в системнике работали два блока питания – Samsung 250 W, Power Master 350 W. И я наивно верил, то 600 ватт более чем достаточно. Достаточно может и достаточно, но из-за перекоса все эти ватты бесполезны. Этот эффект я по незнанию усилил тем, что от Power Master подключил материнку, а от Samsung винт, дисководы и т.д. То есть вышло – с одного блока питания берется, в основном 5 вольт, с другого 12. А другие линии «в воздухе», что и усилило эффект «перекоса».

После этого я приобрел 480 ваттный блок питания Euro case. Из-за своего пристрастия к тишине, переделал его в безвентиляторный, о чем тоже писал на страницах сайта. Но и в этом блоке стояла SG6105. При его тестировании я тоже столкнулся с явлением «перекоса напряжений». Только что приобретенный блок питания непригоден для разгона!

И это еще не все! Мне все хотелось приобрести второй компьютер, а старый оставить «для опытов», но элементарно «давила жаба». Недавно я эту зверюгу все же уговорил и приобрел железо для второго компа. Это конечно отдельная тема, но я для него купил блок питания – PowerMan Pro 420 W. Решил проверить его на предмет «перекоса». А так как новая мать питает процессор по шине 12 вольт, то по ней я и проверил. Как? Узнаете, если дочитаете статью до конца. А пока скажу, что при нагрузке 10 ампер, двенадцать вольт провалилось до 11.55. Стандарт допускает отклонение напряжений плюс-минус 5 процентов. Пять процентов от 12 это 0.6 вольта. Иными словами при токе 10 ампер напряжение упало почти до предельно допустимой отметки! А 10 ампер соответствует 120-ти ваттам потребления процессора, что при разгоне вполне реально. В паспорте к этому блоку по шине 12 вольт заявлен ток 18 ампер. Я думаю, не видать мне этих ампер, так как от «перекоса» блок питания выключится гораздо раньше.

Итого – четыре блока питания за два года. И надо брать пятый, шестой, седьмой? Нет, хватит. Надоело платить за то, что заранее не нравится. Что мне мешает самому сделать киловаттный блок питания и пожить спокойно пару лет, с уверенностью в качестве и количестве питания своего любимца. К тому же я затеял изготовление нового корпуса. Корпус я начал делать преогромный и блок питания, нестандартного размера, должен поместиться там без проблем. Но и обладателям стандартных корпусов может пригодиться такое решение. Всегда можно сделать внешний блок питания, тем более прецеденты уже есть. Кажется, Zalman выпустил внешний блок питания.

Конечно, делать блок питания такой мощности «с нуля» — сложно, долго, да и хлопотно. Поэтому и появилась идея собрать один блок из двух фабричных. Тем более они уже есть и, как выяснилось, в теперешнем виде непригодны для разгона. На эту мысль меня натолкнула все та же статья господина Коробейникова.

«. Для введения раздельной стабилизации нужен второй трансформатор и вторая микросхема ШИМ, так и делается в серьёзных и дорогих серверных блоках. «

реклама

В компьютерном блоке питания существует три сильноточные линии с напряжением 5, 12 и 3.3 вольта. У меня есть два стандартных блока питания, пусть один из них вырабатывает 5 вольт, а другой, помощнее, 12 и все остальные. Напряжение 3.3 вольта стабилизируется отдельно и явления перекоса не вызывает. Линии вырабатывающие -5, -12 и т.д. – маломощны и эти напряжения можно взять с любого блока. А для осуществления этого мероприятия, использовать принцип, изложенный в той же статье г. Коробейникова – отключать ненужное напряжение от микросхемы, а нужное подрегулировать. То есть, теперь SG6105 будет стабилизировать только одно напряжение и, следовательно, явление «перекоса напряжений» не будет.

Так же облегчается режим работы каждого блока питания. Если посмотреть силовую часть, типовой схемы блоков питания (Рис.2), то видно, что обмотки 12, 5 и 3.3 вольта представляют собой одну общую обмотку с отводами. И если с такого транса брать не сразу все три, а только одно напряжение, то мощность трансформатора останется прежней, но на одно напряжение, а не на три.

К примеру, блок по линиям 12, 5, 3.3 вольта выдавал 250 ватт, то теперь практически эти же 250 ватт мы получим по линии, например, 5 вольт. Если раньше общая мощность делилась между тремя линиями, то теперь всю мощность можно получить на одной линии. Но на практике для этого нужно заменить диодные сборки на используемой линии на более мощные. Или включить параллельно дополнительные сборки, взятые с другого блока, на котором эта линия использоваться не будет. Так же максимальный ток будет ограничивать сечение провода дросселя. Может сработать и защита блока питания от перегрузки по мощности (хотя этот параметр можно подрегулировать). Так что полностью утроенную мощность мы не получим, но прибавка будет, да и греться блоки будут гораздо меньше. Можно, конечно, перемотать дроссель проводом большего сечения. Но об этом позже.

Перед тем, как приступить к описанию модификации, нужно сказать несколько слов. Очень непросто писать о переделках электронного оборудования. Не все читатели разбираются в электронике, не каждый читает принципиальные схемы. Но в то же время есть читатели, занимающиеся электроникой профессионально. Как ни напишешь – окажется, что для кого-то непонятно, а для кого-то раздражающе примитивно. Я все же попытаюсь написать так, что бы было понятно подавляющему большинству. А специалисты, думаю, меня простят.

Так же необходимо сказать, что все переделки оборудования вы производите на свой страх и риск. Любые модификации лишают вас гарантии. И естественно, автор, за любые последствия ответственности не несет. Не лишним будет сказать, что человек, берущийся за такую модификацию, должен быть уверен в своих силах, и иметь соответствующий инструмент. Данная модификация выполнима на блоках питания собранных на основе микросхемы SG6105 и немного устаревших TL494, MB3759, KA7500.

Для начала пришлось поискать datasheet на микросхему SG6105 – это оказалось не так уж сложно. Привожу из datasheet нумерацию ног микросхемы и типовую схему включения.

Рис. 2. Типовая схема включения.

Рис. 3. Схема включения SG6105

Опишу сначала общий принцип модернизации. Сначала модернизация блоков на SG6105. Нас интересуют выводы 17(IN) и 16(COMP). К этим выводам микросхемы и подключен резисторный делитель R91, R94, R97 и подстроечный резистор VR3. На одном блоке отключаем напряжение 5 вольт, для этого выпаиваем резистор R91. Теперь подстраиваем величину напряжения 12 вольт резистором R94 грубо, а переменным резистором VR3 точно. На другом блоке наоборот, отключаем 12 вольт, для этого выпаиваем резистор R94. И подстраиваем величину напряжения 5 вольт резистором R91 грубо, а переменным резистором VR3 точно.

Провода PC – ON всех блоков питания соединяются между собой и подпаиваются к 20-ти контактному разъему, который потом подключаем к материнке. С проводом PG сложнее. Я взял этот сигнал с более мощного блока питания. В дальнейшем можно реализовать несколько более сложных вариантов.

Читайте также:  Блок питания мощность 900

Рис. 4. Схема распайки разъема

Теперь об особенностях модернизации блоков на основе микросхемы TL494, MB3759, KA7500. В этом случае сигнал обратной связи с выходных выпрямителей напряжений 5 и 12 вольт подается на вывод 1 микросхемы. Поступаем немного по-другому – перерезаем дорожку печатной платы около вывода 1. Другими словами отключаем вывод 1 от остальной схемы. И на этот вывод подаем нужное нам напряжение через резисторный делитель.

Рис 5. Схема для микросхем TL494, MB3759, KA7500

В этом случае номиналы резисторов одинаковы и для стабилизации 5 вольт и для 12. Если вы решили использовать блок питания для получения 5-ти вольт, то резисторный делитель подключаете к выходу 5В. Если для 12, то к 12.

реклама

Наверно хватит теории и пора приступать к делу. Сначала надо определиться с измерительными приборами. Для измерения напряжений я применю одни из самых дешевых мультиметров DT838. Точность измерения напряжения у них 0.5 процента, что вполне приемлемо. Для измерения тока использую стрелочный амперметр. Токи нужно мерить большие, поэтому придется самому изготовить амперметр из стрелочной измерительной головки и самодельного шунта. Готовый амперметр с фабричным шунтом приемлемого размера я найти не смог. Нашел амперметр на 3 ампера, разобрал его. Вытащил из него шунт. Получился микроамперметр. Дальше была небольшая сложность. Для изготовления шунта и калибровки амперметра, сделанного из микроамперметра, был нужен образцовый амперметр, способный мерить ток в пределах 15-20 ампер. Для этих целей можно было бы применить токовые клещи, но у меня таковых не оказалось. Пришлось искать выход. Выход я нашел самый простой, конечно, не очень точный, но вполне. Шунт я вырезал из стального листа толщиной 1мм, шириной 4мм и длиной 150 мм. К блоку питания через этот шунт подключил 6 лампочек 12V, 20W. По закону Ома через них потек ток равный 10 амперам.

Один провод от микроамперметра соединил с концом шунта, а второй двигал по шунту, пока стрелка прибора не показала 7 делений. До 10 делений не хватило длины шунта. Можно было подрезать шунт потоньше, но из-за нехватки времени решил оставить, как есть. Теперь 7 делений этой шкалы соответствуют 10 амперам.

Фото 1 Бюджетный стенд для подбора шунта.

Фото 2. Стенд с включенными 6-ю лампочками 12вольт 20 ватт.

реклама

На последней фотографии видно, как просело напряжение 12 вольт при токе 10 ампер. Блок питания PowerMan Pro 420 W. Минус 11.55 показывает из-за того, что я перепутал полярность щупов. На самом деле конечно плюс 11.55. Этот же стенд я буду использовать как нагрузку для регулировки готового блока питания.

Новый блок питания я буду делать на основе PowerMaster 350 W, он будет вырабатывать 5 вольт. Согласно наклейке на нем, он по этой линии должен давать 35 ампер. И PowerMan Pro 420 W. С него я буду брать все остальные напряжения.

В этой статье я покажу общий принцип модернизации. В дальнейшем я планирую переделать полученный блок питания в пассивный. Возможно, перемотаю дроссели проводом большего сечения. Доработаю соединительные кабели на предмет уменьшения наводок и пульсаций. Сделаю мониторинг токов и напряжений. И возможно многое другое. Но это в будущем. Все это описывать в данной статье я не буду. Цель статьи – доказать возможность получения мощного блока питания, путем модернизации двух-трех блоков меньшей мощности.

Немного о технике безопасности. Все перепайки производятся, естественно, при выключенном блоке. После каждого выключения блока, перед дальнейшими работами, разряжайте большие конденсаторы. На них присутствует напряжение 220 вольт, и заряд они накапливают очень приличный. Не смертельный, но крайне неприятный. Электрический ожог заживает долго.

Начну с PowerMaster. Разбираю блок, вынимаю плату, отрезаю лишние провода.

реклама

Фото 3. Блок PowerMaster 350 W

Нахожу микросхему ШИМ, она оказалась TL494. Нахожу вывод 1, осторожно перерезаю печатный проводник и подпаиваю к выводу 1 новый резисторный делитель (см. Рис5). Подпаиваю вход резисторного делителя к пятивольтовому выходу блока питания (обычно это красные провода). Еще раз проверяю правильность монтажа, это никогда не бывает лишним. Подключаю модернизированный блок к своему бюджетному стенду. На всякий случай, спрятавшись за стул, включаю. Взрыва не произошло и это даже вызвало легкое разочарование. Для запуска блока соединяю провод PS ON с общим проводом. Блок включается, лампочки загораются. Первая победа.

Переменным резистором R1 на малой нагрузке блока питания (две лампочки по 12V, 20W и спот 35W) выставляю выходное напряжение 5 вольт. Напряжение замеряю непосредственно на выходном разъеме.

Фотоаппарат у меня не самый лучший, мелкие детали не видит, поэтому прошу прощения за качество снимков.

реклама

Блок питания на непродолжительное время можно включать без вентилятора. Но нужно следить за температурой радиаторов. Будьте осторожны, на радиаторах некоторых моделей блоков питания присутствует напряжение, иногда высокое.

Не выключая блок, начинаю подключать дополнительную нагрузку – лампочки. Напряжение не меняется. Блок стабилизирует хорошо.

На этой фотографии я подключил к блоку все лампочки, какие были в наличии – 6 ламп по 20w, две по 75 w, и спот 35w. Ток, текущий через них по показаниям амперметра в пределах 20 ампер. Никакого «проседания», никаких «перекосов»! Полдела сделано.

Теперь берусь за PowerMan Pro 420 W. Так же разбираю его.

реклама

Нахожу на плате микросхему SG6105. За тем отыскиваю нужные выводы.

Принципиальная схема, приведенная в статье г. Коробейникова, соответствует моему блоку, нумерация и номиналы резисторов те же. Для отключения 5-ти вольт выпаиваю резистор R40 и R41. Вместо R41 впаиваю два переменных резистора соединенных последовательно. Номинал 47 кОм. Это для грубой регулировки напряжения 12 вольт. Для точной регулировки используется резистор VR1 на плате блока питания

Рис 6. Фрагмент схемы блока питания PowerMan

реклама

Опять достаю свой примитивный стенд и подключаю к нему блок питания. Сначала подключаю минимальную нагрузку – спот 35W.

Включаю, подстраиваю напряжение. Затем, не выключая блок питания, подключаю дополнительные лампочки. Напряжение не меняется. Блок прекрасно работает. По показаниям амперметра ток достигает 18 ампер и никакого «проседания» напряжения.

Второй этап закончен. Теперь осталось проверить, как будут работать блоки в паре. Перекусываю провода красного цвета идущие от PowerMan к разъему и молексам, изолирую их. А к разъему и молексам подпаиваю пятивольтовый провод от PowerMaster 350 W, так же соединяю общие провода обоих блоков. Провода Power On блоков питания объединяю. PG беру с PowerMan. И подключаю этот гибрид к своему системному блоку. На вид он несколько странен и если кому-то захочется узнать о нем поподробнее, прошу на ПС.

  • Мать Epox KDA-J
  • Процессор Athlon 64 3000
  • Память Digma DDR500, две планки по 512Mb
  • Винт Samsung 160Gb
  • Видео GeForce 5950
  • DVD RW NEC 3500

Включаю, все прекрасно работает.

Опыт удался. Теперь можно приступать к дальнейшей модернизации «объединенного блока питания». Перевод его на пассивное охлаждение. На фотографии видна панель с приборами – это все будет подключено к данному блоку. Стрелочные приборы – мониторинг токов, цифровые приборы в круглых отверстиях под стрелочными – мониторинг напряжений. Ну и тахометр, и все такое, об этом я уже писал на своей персоналке. Но это в дальнейшем.

Влияние «объединенного блока питания» на дальнейший разгон я не проверял. Доделаю, тогда и проверю. Процессор уже разогнан до 2.6 гигагерц по шине, при напряжении на проце 1.7 вольта. Гнал я его на безвентиляторном блоке питания, но при таком разгоне 12 вольт на нем проседали до 11.6 вольта. А гибрид выдает ровно 12. Так что, возможно, еще немного мегагерц я из него выжму. Но это будет другая история.

Перечень используемой литературы:

  1. datasheet на микросхему SG6105
  2. Статья г. Коробейникова
  3. Журнал «Радио». – 2002.-№ 5, 6, 7. «Схемотехника блоков питания персональных компьютеров» авт. Р. Александров

Ждём Ваших комментариев в специально созданной ветке конференции.

Источник

Переделываем блок питания в картинках

Доброе время суток обитателю хабрахабра!
Довело меня увлечение электроникой до момента, когда дешевого китайского паяльника стало мало. Было принято волевое решение собрать паяльную станцию своими руками. Но вот беда, оказалось что в городе достать трансформатор на 24 вольта просто невозможно. Благодаря этому прискорбному факту и родилась статья.

В закромах нашлись несколько старых блоков питания ATX, и начался долгий и тернистый путь к получению заветных 24 вольт.

Как известно у ATX есть линия, выдающая -12 вольт с силой тока около 0,5 ампер, так почему бы её не усилить? Но первый блин, как известно, комом: при попытке запитать чудо паяльник блок питания сделал «БЗЗЗ» и ушел на покой.

Второй попыткой было решено сделать удвоитель напряжения. Но удвоителю на вход нужен переменный ток, который можно взять от трансформатора. Но, как оказалось, и этот путь не привел к успеху…
Продолжение истории под катом (осторожно: много картинок)

Из вооружения был только дешевый мультиметр, который показал, что на трансформаторе около 10 вольт переменного тока. Ну чтож, можно идти в бой! На макетке был собран удвоитель. К сожалению, его фотография сохранилась только одна, так сказать, в боевом режиме

Какого же было удивление, когда мультиметр показал на выходе все 50 вольт! Опровержением постулатов физики заниматься не захотелось, поэтому была приобретена тяжелая артиллерия в виде осциллографа. Картинка на выводах трансформатора получилась следующая

Это с пред делителем 1:10 на щупе и цена деления в 1 вольт. Оказывается трансформатор и выдает заветные 24 вольта, только очень страшной формы (не удивительно, что китайский мультиметр не справился с задачей).

Новая задача — переделать удвоитель в выпрямитель. Заодно было решено перенести всю силовую часть будущей паяльной станции в блок питания. Схема получилась вот такая

Пояснение по схеме:
Диоды D2, D4 (Шоттки 30А 60В) образуют обычный диодный мост, на вход которого приходит 24 вольта ужасной формы, а на выходе — те же 24, но постоянного (стоит заметить, что на выходе ток практически ровный!)
Стабилизатор U1 (7805) понижает напряжение до 5 вольт
Конденсаторы С1 (1000uF, 60V) и С2 (220uF, 16V) — электролиты, выполняющие роль фильтра. В теории перед выходом еще надо поставить керамику, которая бы ловила высокочастотные помехи, но она будет стоять в паяльной станции.

На этом электронная часть закончена, осталось собрать все в корпусе.

Первым делом обрезаем все провода, они должны комфортно поместиться в корпус. Провода собраны в пары, чтобы выдерживать большую нагрузку, концы смотаны и залужены.

После этого, добавляем кнопку запуска блока питания. Для запуска ATX нужно замкнуть PS_ON (зеленый провод) на землю (любой из черных).На выключатель у меня ушло 3 провода — PS_ON, GND и один из +5 (красный провод). Последний нужен для питания светодиода внутри кнопки.

Ах, да, выключатель пришлось немного модифицировать, ибо внутри стояла галогенка, рассчитанная на 220 вольт. Пришлось вытащить потроха и заменить на светодиод () и резистор (511R).

К корпусу одного БП была применена грубая сила и он стал плоским (это будет дно конструкции).

На текущем этапе была собрана и запущена бета-версия вот такого вида

Срезаем все лишнее на корпусе с кулером. Так все выглядит в разобранном состоянии:

На корпусе размещаем 9 гнезд RCA и один молекс (выход для паяльной станции)

Внутри все выглядит ужасающе:

Внешне не многим лучше, но уже не так пугает:

Пришло время проверить как справляется наша «пристройка» со своими обязанностями
5 вольт (цена деления — 2 вольта, осциллограф немножко не откалиброван)

24 вольта (цена деления 1 вольт + пред делитель на щупе 1:10)

Как видно, справляется хорошо! Небольшой стресс тест в виде двухчасового кручения моторчика так же пройден успешно. наконец то можно приступать к созданию паяльной станции…

Уф, кажется все. Спасибо всем, кто осилил до конца. Буду рад критике конструкции (версии 2.0 однозначно быть) и текста.

Источник

Доработка блоков питания CODEGEN и других, JNC-подобных…

Доработка блоков питания CODEGEN и других, JNC-подобных…

Данная статья (первый вариант) была написана для моего собственного проекта, который в настоящее время находится в умирающем положении и будет перепрофилирован. Так как я считаю, что статья будет полезна многим людям (я сужу по многочисленным письмам, в том числе и от читателей Вашего ресурса), предлагаю Вам разместить вторую редакцию данного творения.

Надеюсь, это будет интересно Вам и Вашим читателям.

С уважением, Саша Черный.
Хорошая и стабильная работа компьютера зависит от многих факторов. Не в последнюю, а может и в первую очередь, это зависит от правильного и надежного блока питания. Обычный пользователь прежде всего озабочен выбором процессора, материнской платы, памяти и других комплектующих для своего компьютера. На блок питания внимание обращается мало (если вообще обращается). В результате основным критерием выбора БП является его стоимость и указанная на этикетке заявленная мощность. Действительно, когда на этикетке написано 300 вт – это конечно хорошо, и при этом цена корпуса с БП составляет 18 – 20$ — вообще замечательно… Но не все так просто.
И год и два и три назад цена на корпуса с БП не менялась и составляла те же 20$. А что же менялось? Правильно – заявленная мощность. Сначала 200вт потом 235 – 250 – 300 вт. В следующем году будет 350 – 400 вт… Произошла революция в БП-строении? Ничего подобного. Вам продают одни и те же БП только с разными этикетками. Причем, зачастую 5 летней давности БП с заявленной мощностью 200вт, выдаёт больше чем свежий 300 ваттник. Что поделаешь — удешевление и экономия. Если нам корпус с БП достается за 20$, то, сколько его реальная себестоимость с учетом транспортировки из Китая и 2-3 посредниками при продаже? Наверное, 5-10$. Вы представляете себе, какие туда детали засунул дядюшка Ляо за 5$? И вы ЭТИМ хотите нормально запитать компьютер стоимостью от 500$? Что же делать? Покупать дорогой блок питания за 60 – 80$ это, конечно, хороший выход, когда есть деньги. Но не самый лучший (деньги есть не у всех и не в достаточном количестве). Для тех, у кого нет лишних денег, а есть прямые руки, светлая голова и паяльник – предлагаю несложную доработку китайских БП с целью приведения их в чувство.

Читайте также:  Блок питания aerocool kcas 750w plus kcas 750m

Если посмотреть на схемотехнику фирменных и китайских (no name) БП, то можно увидеть, что они очень похожи. Используется одна и та же стандартная схема включения на базе микросхемы ШИМ КА7500 или аналогов на TL494. А в чем же между блоками питания разница? Разница в применяемых деталях, их качестве и количестве. Рассмотрим типичный фирменный блок питания:

Видно, что он довольно плотно упакован, отсутствуют свободные места и все детали распаяны. Присутствуют все фильтры, дроссели и конденсаторы.
Теперь рассмотрим типичный БП JNC с заявленной мощностью 300 вт.

Рисунок 2
Бесподобный образец китайской инженерной мысли! Нет ни фильтров (вместо них стоят «специально обученные перемычки»), ни конденсаторов, ни дросселей. В принципе без них тоже все работает – но как! В выходном напряжении присутствует шум переключения транзисторов, резкие выбросы напряжения и значительная его просадка при различных режимах работы компьютера. Какая тут уж стабильная работа…

Вследствие примененных дешевых комплектующих работа такого блока очень ненадежна. Реально выдаваемая безопасная мощность такого БП – 100-120 вт. При большей мощности он просто сгорит и утянет за собой половину компьютера. Как же доработать китайский БП до нормального состояния и сколько реально нам мощности нужно?

Хочется отметить что, сложившееся мнение о высоком энергопотреблении современных компьютеров, немного неверно. Упакованный системный блок на базе Pentium 4 потребляет меньше 200 вт, а на базе AMD ATHLON XP меньше 150 вт. Таким образом, если мы хотя бы обеспечим БП реальные 200-250 вт., то одним слабым звеном в нашем компьютере будет меньше.

Наиболее критическими деталями в БП являются:

  • Высоковольтные конденсаторы
  • Высоковольтные транзисторы
  • Высоковольтные выпрямительные диоды
  • Высокочастотный силовой трансформатор
  • Низковольтные диодные выпрямительные сборки

Братья китайцы умудряются и здесь экономить… Вместо высоковольтных конденсаторов 470мкф х 200 вольт они ставят 200мкф х 200 вольт. Эти детали влияют на способность блока держать кратковременное пропадание сетевого напряжения и на мощность выдаваемого напряжения БП. Ставят маленькие силовые трансформаторы, которые сильно нагреваются при критических мощностях. А так же экономят на низковольтных выпрямительных сборках, заменяя их на два спаянных вместе дискретных диода. Про отсутствие фильтров и сглаживающих конденсаторов уже говорилось выше.

Попробуем это все исправить. Прежде всего, нужно открыть БП и оценить размер трансформатора. Если он имеет размеры 3х3х3 см и больше, то блок имеет смысл дорабатывать. Для начала надо заменить большие высоковольтные конденсаторы и поставить не меньше 470мкф х 200 вольт. Необходимо поставить все дроссели в низковольтную часть БП. Дроссели можно намотать самому на ферритовом кольце диаметром 1- 1,5 см медным проводом с лаковой изоляцией сечением 1-2 мм 10 витков. Можно так же взять дроссели с неисправного БП (убитый БП можно купить в любой компьютерной конторе за 1-2$). Далее нужно распаять сглаживающие конденсаторы в пустующие места низковольтной части. Достаточно поставить 3 конденсатора 2200мкф х 16 вольт (Low ESR) в цепи +3.3в, +5в, +12в.

Типичный вид низковольтных выпрямительных диодов в дешевых блоках такой:

или, что хуже, такой

Первая диодная сборка обеспечивает 10 ампер на 40 вольт, вторая – 5 ампер мах. При этом на крышке БП написаны следующие данные:

Заявлено 20-30 ампер, а реально выдается 10 или 5 ампер. Причем на плате БП предусмотрено место для нормальных сборок, которые там должны стоять:

По маркировке видно, что это 30 ампер на 40 вольт – а это уже совсем другое дело! Эти сборки должны стоять на канале +12в и +5в. Канал +3.3в может быть выполнен двумя способами: либо на такой же сборке, или на транзисторе. Если стоит сборка, то ее меняем на нормальную, если транзистор, то оставляем все как есть.

Итак, бежим в магазин или на рынок и покупаем там 2 или 3 (в зависимости от БП) диодные сборки MOSPEC S30D40 (на канал +12 вольт S40D60 – последняя цифра D – напряжение – чем больше, тем на душе спокойнее или F12C20C – 200 вольт ) или аналогичные по характеристикам, 3 конденсатора 2200 мкф х 16вольт, 2 конденсатора 470 мкф х 200 вольт. Все эти детали стоят примерно 5-6$.

После того как мы все поменяли, БП будет выглядеть примерно так:

Рисунок 8
Дальнейшая доработка БП сводится к следующему… Как известно в БП каналы +5 вольт и +12 вольт стабилизируются и управляются одновременно. При установленном +5 вольт реальное напряжение на канале +12 составляет 12,5 вольт. Если в компьютере сильная нагрузка по каналу +5 (система на базе AMD), то происходит падение напряжения до 4,8 вольт, при этом напряжение по каналу +12 становится равным 13 вольтам. В случае с системой на базе Pentium 4 сильнее нагружается канал +12 вольт и там все происходит наоборот. В силу того, что канал +5 вольт в БП выполнен гораздо качественнее, то даже дешевый блок будет без особых проблем питать систему на основе AMD. Тогда как энергопотребление Pentium 4 гораздо больше (особенно по +12 вольтам) и дешевый БП нужно обязательно дорабатывать.

Завышенное напряжение по каналу 12 вольт очень вредно для жестких дисков. В основном нагрев HDD происходит по причине повышенного напряжения (больше чем 12,6 вольт). Для того чтобы уменьшить напряжение 13 вольт достаточно в разрыв желтого провода, питающего HDD, впаять мощный диод, например КД213. В результате напряжение уменьшится на 0.6 вольт и составит 11.6 вольт – 12,4 вольт, что вполне безопасно для жесткого диска.

В результате мы получили нормальный БП, способный отдавать в нагрузку не меньше 250 вт (нормальных, не китайских!!), который к тому же станет гораздо меньше греться.
Предупреждение.
Все, что Вы будете делать со своим БП – Вы делаете на свой страх и риск! Если Вы не обладаете достаточной квалификацией и не можете отличить паяльник от вилки, то не читайте,что здесь написано и тем более не делайте.

Комплексное снижение шума у компьютеров

Как бороться с шумом? Для этого у нас должен быть правильный корпус с горизонтальным расположением блока питания (БП). Такой корпус имеет большие габариты, но гораздо лучше выводит излишнее тепло наружу, так как БП расположен над процессором. Имеет смысл поставить на процессор кулер с вентилятором размерами 80х80, например серии Titan. Как правило, большой вентилятор при одинаковой производительности с маленьким, работает на меньших оборотах и издает меньше шума. Следующим шагом станет понижение температуры процессора при простое или маленькой нагрузке.

Как известно, большую часть времени процессор компьютера простаивает в ожидании реакции пользователя или программ. В это время процессор просто зря гоняет пустые циклы и нагревается. Бороться с этим явлением призваны программы охладители или софт-кулеры. В последнее время эти программы даже стали встраивать в БИОС материнской платы (например, EPOX 8KRAI) и в операционную систему Windows XP. Одна из наиболее простых и эффективных программ – это VCOOL. Эта программа при работе процессора AMD выполняет процедуру Bus disconnect – отключение шины процессора при простое и снижение тепловыделения. Поскольку простой процессора занимает 90% времени, то охлаждение будет очень существенное.

Здесь мы подходим к пониманию того, что вращение вентилятора кулера на полной скорости для охлаждения процессора нам не нужно. Как понизить обороты? Можно взять кулер с регулировкой оборотов выносным регулятором. А можно воспользоваться программой управления скоростью вентилятора – SPEEDFAN. Эта программа замечательна тем, что в ней можно настроить обороты вентилятора в зависимости от нагрева процессора путем задания температурного порога. Таким образом, при старте компьютера, вентилятор имеет полные обороты, а при работе в Windows с документами и интернетом скорость вентилятора автоматически снижается до минимальных.
Комбинация программ VCOOL и SPEEDFAN позволяет при работе в Word и Интернет вообще останавливать кулер и при этом температура процессора не поднимается выше 55С ! (Athlon XP 1600). Но у программы SPEEDFAN есть один недостаток – она работает не на всех материнских платах. В таком случае понизить скорость вентилятора можно, если перевести его на работу с 12 вольт на 7 или даже на 5 вольт. Обычно кулер присоединяется к материнской плате с помощью трехконтактного разъема. Черный провод это земля, красный +12, желтый — датчик оборотов. Для того, чтобы перевести кулер на питание 7 вольт, нужно черный провод вытащить из разъема и вставить в свободный разъем (красный провод +5вольт) идущий от БП, а красный провод от кулера вставить в разъем БП с желтым проводом (+12).

Рисунок 9
Желтый провод от кулера можно оставить в разъеме и вставить в материнскую плату, что бы мониторились обороты вентилятора. Таким образом, мы получаем 7 вольт на кулере (разница между +5 и +12 вольт составляет 7 вольт). Что бы получить 5 вольт на кулере достаточно присоединить только красный провод кулера к красному проводу БП, а два оставшихся провода оставить в кулерном разъеме.

Таким образом, мы получили процессорный кулер со сниженными оборотами и низким шумом. При значительном снижении шума теплоотведение от процессора не снижается или снижается незначительно.

Следующий шаг – снижение тепловыделения жесткого диска. Поскольку главный нагрев диска происходит из-за повышенного напряжения по шине +12 вольт (реально здесь всегда 12.6 – 13,2 вольт), то здесь все делается очень просто. В разрыв желтого провода, который питает винчестер, впаиваем мощный диод типа КД213. На диоде происходит падение напряжения примерно 0,5 вольт, что благоприятно сказывается на температурном режиме винчестера.
Далее займемся блоком питания. Рекомендуется вентилятор БП перевести на питание с 12 на 7 вольт. По аналогии с процессорным кулером перепаиваем внутри БП вентилятор (черный на +5 вольт, красный на +12вольт)
А может пойти еще дальше? Перевести вентилятор БП на 5 вольт? Просто так перевести не получится – нужна доработка БП. А заключается она в следующем. Как известно, основной нагрев внутри БП испытывает радиатор низковольтной части (диодные сборки) – порядка 70-80 С. Причем наибольший нагрев испытывает сборка +5в и +3.3в. Высоковольтные транзисторы у правильного блока ( эта часть БП практически у 95% БП правильна, даже у китайских) греются до 40-50 С и их мы трогать не будем.

Очевидно, что один общий радиатор для трех шин питания слишком мал. И если при работе вентилятора на больших оборотах радиатор еще нормально охлаждается, то при снижении оборотов происходит перегрев. Что делать? Разумно было бы увеличить размер радиатора или вообще разделить шины питания по разным радиаторам. Последним мы и займемся.

Для отделения от основного радиатора был выбран канал +3.3в., собранный на транзисторе. Почему не +5в? Сначала так было и сделано, но обнаружились пульсации напряжения (сказалось влияние проводов, которыми были удлинены выводы диодной сборки +5в). Так как канал +3.3в. питается от +5в., то пульсаций уже нет.

Для радиатора была выбрана алюминиевая пластина размером 10х10 см, к которой был прикручен транзистор канала +3.3в. Выводы транзистора были удлинены толстым проводом длиной 15 см. Сама пластина была прикручена через изолирующие втулки к верхней крышке БП. Важно, чтобы пластина радиатора не соприкасалась с крышкой БП и радиаторами силовых диодов и транзисторов.

Источник