Меню

Как регулировать напряжение блока питания ноутбука

Как регулировать напряжение блока питания ноутбука

Не работает блок питания ноутбука. Как починить?

Рядовой блок питания ноутбука представляет собой весьма компактный и довольно мощный импульсный блок питания.

В случае его неисправности многие просто его выбрасывают, а на замену покупают универсальный БП для ноутбуков, стоимость которого начинается от 1000 руб. Но в большинстве случаев починить такой блок можно своими руками.

Речь пойдёт о ремонте блока питания от ноутбука ASUS. Он же AC/DC адаптер питания. Модель ADP-90CD. Выходное напряжение 19V, максимальный ток нагрузки 4,74А.

AC/DC адаптер питания ноутбука

Сам блок питания работал, что было понятно по наличию индикации зелёного светодиода. Напряжение на выходном штекере соответствовало тому, что указано на этикетке – 19V.

Обрыва в соединительных проводах или поломки штекера не было. Но вот при подключении блока питания к ноутбуку зарядка батареи не начиналась, а зелёный индикатор на его корпусе потухал и светился в половину первоначальной яркости.

Также было слышно, что блок пищит. Стало ясно, что импульсный блок питания пытается запуститься, но по какой-то причине возникает то ли перегруз, то ли срабатывает защита от короткого замыкания.

Пару слов о том, как можно вскрыть корпус такого блока питания. Не секрет, что его делают герметичным, а сама конструкция не предполагает разборку. Для этого нам понадобится несколько инструментов.

Берём ручной лобзик или полотно от него. Полотно лучше взять по металлу с мелким зубом. Сам же блок питания лучше всего зажать в тисках. Если их нет, то можно изловчиться и обойтись без них.

Вскрываем корпус блока питания

Далее ручным лобзиком делаем пропил вглубь корпуса на 2-3 мм. посередине корпуса вдоль соединительного шва. Пропил нужно делать аккуратно. Если перестараться, то можно повредить печатную плату или электронную начинку.

Делаем распил вдоль корпуса

Затем берём плоскую отвёртку с широким краем, вставляем в пропил и расщёлкиваем половинки корпуса. Торопиться не надо. При разделении половинок корпуса должен произойти характерный щелчок.

Расщёлкиваем половинки корпуса

После того, как корпус блока питания вскрыт, убираем пластиковую пыль щёткой или кисточкой, достаём электронную начинку.

Чтобы осмотреть элементы на печатной плате потребуется снять алюминиевую планку-радиатор. В моём случае планка крепилась за другие части радиатора на защёлках, а также была приклеена к трансформатору чем-то вроде силиконового герметика. Отделить планку от трансформатора мне удалось острым лезвием перочинного ножа.

На фото показана электронная начинка нашего блока.

Электронная начинка блока питания

Саму неисправность искать долго не пришлось. Ещё до вскрытия корпуса я делал пробные включения. После пары подключений к сети 220V внутри блока что-то затрещало и зелёный индикатор, сигнализирующий о работе, полностью потух.

При осмотре корпуса был обнаружен жидкий электролит, который просочился в зазор между сетевым разъёмом и элементами корпуса. Стало ясно, что блок питания перестал штатно функционировать из-за того, что электролитический конденсатор 120 мкФ * 420V «хлопнул» из-за превышения рабочего напряжения в электросети 220V. Довольно рядовая и широко распространённая неисправность.

При демонтаже конденсатора его внешняя оболочка рассыпалась. Видимо потеряла свои свойства из-за длительного нагрева.

Неисправный конденсатор

Защитный клапан в верхней части корпуса «вспучен», — это верный признак неисправного конденсатора.

Вот ещё пример с неисправным конденсатором. Это уже другой адаптер питания от ноутбука. Обратите внимание на защитную насечку в верхней части корпуса конденсатора. Она вскрылась от давления закипевшего электролита.

Неисправный адаптер питания ноутбука

В большинстве случаев вернуть блок питания к жизни удаётся довольно легко. Для начала нужно заменить главного виновника поломки.

Подбираем конденсатор для замены

На тот момент у меня под рукой оказалось два подходящих конденсатора. Конденсатор SAMWHA на 82 мкФ * 450V я решил не устанавливать, хотя он идеально подходил по размерам.

Дело в том, что его максимальная рабочая температура +85 0 С. Она указана на его корпусе. А если учесть, что корпус блока питания компактный и не вентилируется, то температура внутри него может быть весьма высокой.

Длительный нагрев очень плохо сказывается на надёжности электролитических конденсаторов. Поэтому я установил конденсатор фирмы Jamicon ёмкостью 68 мкФ *450V, который рассчитан на рабочую температуру до 105 0 С.

Стоит учесть, что ёмкость родного конденсатора 120 мкФ, а рабочее напряжение 420V. Но мне пришлось поставить конденсатор с меньшей ёмкостью.

В процессе ремонта блоков питания от ноутбуков я столкнулся с тем, что очень трудно найти замену конденсатору. И дело вовсе не в ёмкости или рабочем напряжении, а его габаритах.

Найти подходящий конденсатор, который бы убрался в тесный корпус, оказалось непростой задачей. Поэтому было принято решение установить изделие, подходящие по размерам, пусть и меньшей ёмкости. Главное, чтобы сам конденсатор был новый, качественный и с рабочим напряжением не менее 420

450V. Как оказалось, даже с такими конденсаторами блоки питания работают исправно.

При запайке нового электролитического конденсатора необходимо строго соблюдать полярность подключения выводов! Как правило, на печатной плате рядом с отверстием указан знак » +» или ««. Кроме этого минус может помечаться чёрной жирной линией или меткой в виде пятна.

Соблюдаем полярность подключения конденсатора!

На корпусе конденсатора со стороны отрицательного вывода имеется пометка в виде полосы со знаком минуса ««.

При первом включении после ремонта держитесь на расстоянии от блока питания, так как если перепутали полярность подключения, то конденсатор снова «хлопнет». При этом электролит может попасть в глаза. Это крайне опасно! При возможности стоит одеть защитные очки.

А теперь расскажу о «граблях», на которые лучше не наступать.

Перед тем, как что-то менять, нужно тщательно очистить плату и элементы схемы от жидкого электролита. Занятие это не из приятных.

Дело в том, что когда электролитический конденсатор хлопает, то электролит внутри его вырывается наружу под большим давлением в виде брызг и пара. Он же в свою очередь моментально конденсируется на расположенных рядом деталях, а также на элементах алюминиевого радиатора.

Поскольку монтаж элементов очень плотный, а сам корпус маленький, то электролит попадает в самые труднодоступные места.

Читайте также:  Блок питания для prestigio smartbook 116c

Конечно, можно схалтурить, и не вычищать весь электролит, но это чревато проблемами. Фишка в том, что электролит хорошо проводит электрический ток. В этом я убедился на собственном опыте. И хотя блок питания я вычистил очень тщательно, но вот выпаивать дроссель и чистить поверхность под ним не стал, поторопился.

В результате после того, как блок питания был собран и подключен к электросети, он заработал исправно. Но спустя минуту-две внутри корпуса что-то затрещало, и индикатор питания потух.

После вскрытия оказалось, что остатки электролита под дросселем замкнули цепь. Из-за этого перегорел плавкий предохранитель Т3.15А 250V по входной цепи 220V. Кроме этого в месте замыкания всё было покрыто копотью, а у дросселя отгорел провод, который соединял его экран и общий провод на печатной плате.

Место замыкания из-за остатков электролита

Тот самый дроссель. Перегоревший провод восстановил.

Восстановленный дроссель

Копоть от замыкания на печатной плате прямо под дросселем.

Копоть от замыкания на печатной плате

Как видим, шарахнуло прилично.

В первый раз предохранитель я заменил новым из аналогичного блока питания. Но, когда он сгорел второй раз, я решил его восстановить. Вот так выглядит плавкий предохранитель на плате.

Плавкий предохранитель на печатной плате

А вот что у него внутри. Сам он легко разбирается, нужно лишь отжать защёлки в нижней части корпуса и снять крышку.

Перегоревший предохранитель

Чтобы его восстановить, нужно убрать остатки выгоревшей проволоки и остатки изоляционной трубки. Взять тонкий провод и припаять его на место родного. Затем собрать предохранитель.

Восстановленный плавкий предохранитель

Кто-то скажет, что это «жучок». Но я не соглашусь. При коротком замыкании выгорает самый тонкий провод в цепи. Иногда выгорают даже медные дорожки на печатной плате. Так что в случае чего наш самопальный предохранитель сделает своё дело. Конечно, можно обойтись и перемычкой из тонкого провода напаяв её на контактные пятаки на плате.

В некоторых случаях, чтобы вычистить весь электролит может потребоваться демонтаж охлаждающих радиаторов, а вместе с ними и активных элементов вроде MOSFET-транзисторов и сдвоенных диодов.

Как видим, под моточными изделиями, вроде дросселей, также может остаться жидкий электролит. Даже если он высохнет, то в дальнейшем из-за него может начаться коррозия выводов. Наглядный пример перед вами. Из-за остатков электролита полностью корродировал и отвалился один из выводов конденсатора во входном фильтре. Это один из адаптеров питания от ноута, что побывал у меня в ремонте.

Съеденный коррозией вывод конденсатора

Вернёмся к нашему блоку питания. После чистки от остатков электролита и замены конденсатора необходимо проверить его не подключая к ноутбуку. Замерить выходное напряжение на выходном штекере. Если всё в порядке, то производим сборку адаптера питания.

Надо сказать, что дело это весьма трудоёмкое. Сперва.

Сборка блока питания от ноутбука

Охлаждающий радиатор блока питания состоит из нескольких алюминиевых пластин. Между собой они крепятся защёлками, а также склеены чем-то напоминающим силиконовый герметик. Его можно убрать перочинным ножом.

Установка планки радиатора

Верхняя крышка радиатора крепится к основной части на защёлки.

Установка верхней крышки радиатора

Нижняя пластина радиатора фиксируется к печатной плате пайкой, как правило, в одном или двух местах. Между ней и печатной платой помещается изоляционная пластина из пластика.

Нижняя крышка радиатора

Пару слов о том, как скрепить две половинки корпуса, которые в самом начале мы распиливали лобзиком.

В самом простейшем случае можно просто собрать блок питания и обмотать половинки корпуса изолентой. Но это не самый лучший вариант.

Для склейки двух пластиковых половинок я использовал термоклей. Так как термопистолета у меня нет, то ножом срезал кусочки термоклея с трубки и укладывал в пазы. После этого брал термовоздушную паяльную станцию, выставлял градусов около 200

250 0 C. Затем прогревал феном кусочки термоклея до тех пор, пока они не расплавились. Излишки клея убирал зубочисткой и ещё раз обдувал феном паяльной станции.

Желательно не перегревать пластик и вообще избегать чрезмерного нагрева посторонних деталей. У меня, например, пластик корпуса начинал светлеть при сильном прогреве.

Несмотря на это получилось весьма добротно.

Склеиваем корпус термоклеем

Теперь скажу пару слов и о других неисправностях.

Кроме таких простых поломок, как хлопнувший конденсатор или обрыв в соединительных проводах, встречаются и такие, как обрыв вывода дросселя в цепи сетевого фильтра. Вот фото.

Обрыв дросселя

Казалось бы, дело плёвое, отмотал виток и запаял на место. Но вот на поиск такой неисправности уходит море времени. Обнаружить её удаётся не сразу.

Наверняка уже заметили, что крупногабаритные элементы, вроде того же электролитического конденсатора, дросселей фильтра и некоторых других деталей замазаны чем-то вроде герметика белого цвета. Казалось бы, зачем он нужен? А теперь понятно, что с его помощью фиксируются крупные детали, которые от тряски и вибраций могут отвалиться, как этот самый дроссель, что показан на фото.

Кстати, первоначально он не был надёжно закреплён. Поболтался — поболтался, и отвалился, унеся жизнь ещё одного блока питания от ноутбука.

Подозреваю, что от таких вот банальных поломок на свалку отправляются тысячи компактных и довольно мощных блоков питания!

Для радиолюбителя такой импульсный блок питания с выходным напряжением 19 — 20 вольт и током нагрузки 3-4 ампера просто находка! Мало того, что он очень компактный, так ещё и довольно мощный. Как правило, мощность адаптеров питания составляет 40

К большому сожалению, при более серьёзных неисправностях, таких как, выход из строя электронных компонентов на печатной плате, ремонт осложняет то, что найти замену той же микросхеме ШИМ-контроллера довольно трудно.

SMD-элементы на печатной плате AC/DC адаптера ноутбука

Даже найти даташит на конкретную микросхему не удаётся. Кроме всего прочего ремонт осложняет обилие SMD-компонентов, маркировку которых либо трудно считать или невозможно приобрести замену элементу.

Микросхема ШИМ-контроллера на плате блока питания

Стоит отметить, что подавляющее большинство адаптеров питания ноутбуков выполнены весьма качественно. Это видно хотя бы по наличию моточных деталей и дросселей, которые установлены в цепи сетевого фильтра. Он подавляет электромагнитные помехи. В некоторых низкокачественных блоках питания от стационарных ПК такие элементы вообще могут отсутствовать.

Читайте также:  Блок питания для компьютера почему греется

Источник



Как сделать лабораторный блок питания из ноутбучного зарядного устройства

АлександрАлександр Кузнецов | 19 Июня, 2017 — 22:55

Лабораторные блоки питания хороши тем, что позволяют регулировать выходное напряжение. Они могут использоваться в разных целях: для проверки лампочек, светодиодов, реанимации полностью истощённых аккумуляторов и для питания различных устройств. Такой блоки питания можно сделать из ненужного зарядного устройства от ноутбука, потребуется лишь несколько радиоэлементов, вольтметр а также провода и паяльник.

Обычно ноутбучные зарядные устройства могут выдавать до 20 вольт и 3 ампер, чего будет вполне достаточно для большинства задач, которые обычно возлагаются на лабораторные БП. Кроме того, в такой БП можно встроить USB-выход для зарядки смартфонов и других гаджетов.

Что нам потребуется:

— Зарядное устройство от ноутбука, которое будет взято за основу блока питания.
— Регулятор вольтажа (например, такой или такой).
— Корпус, который подойдёт для этой задачи.
— Выключатель, рассчитанный минимум на 3 ампера.
— Вольтметр с экраном (например, такой). Можно обойтись без него, но тогда напряжение каждый раз при перенастройке придётся замерять мультиметром, а это не очень удобно.
— Провода с крокодилами и переходники для разных разъёмов (опционально).

— Преобразователь напряжения с 220 до 5 вольт для USB-порта (его можно взять от зарядного устройства от смартфона).
— Потенциометр для изменения вольтажа.
— Провода.
— Инструменты: паяльник, канифоль, припой, мультиметр, горячий клей с пистолетом.
— Пару часов свободного времени.

Разберите корпус зарядного устройства. Если он неразборный, воспользуйтесь бормашиной или нагретым над газом ножом.

Спаяйте компоненты по этой схеме:


Если всё сделано правильно, вольтметр должен показать выходное напряжение. Поместите все компоненты в корпус, предварительно сделав отверстия для проводов, выключателя, регулятора напряжения и вольтметра. При отключении блока питания выключателем на корпусе USB-зарядник всё равно продолжит работать, ведь он запитан напрямую от 220 вольт.

Источник

Переделка БП от ноутбука в регулируемый

Блок питания — это устройство, служащее для преобразования (понижение или повышение) переменного сетевого напряжения в заданное постоянное напряжение. Блоки питания делятся на: трансформаторные и импульсные. Первоначально создавались только трансформаторные конструкции блоков питания. Они состояли из силового трансформатора, питающегося от бытовой сети 220В, 50Гц и выпрямителя с фильтром, стабилизатором напряжения. Благодаря трансформатору происходит понижение напряжения сети до необходимых величин, с последующим выпрямлением напряжения выпрямителем, состоящим из диодов, включенных по мостовой схеме. После выпрямления постоянное пульсирующее напряжение сглаживается параллельно подключенным конденсатором. При необходимости точной стабилизации уровня напряжения применяются стабилизаторы напряжения на транзисторах.

Основной недостаток трансформаторного блока питания — это трансформатор. Почему так? Все из-за веса и габаритов, так как они ограничивают компактность блока питания, при этом их цена достаточно высока. Но эти блоки питания просты в конструкции и это их достоинство. Но все-же в большинстве современных устройств применение трансформаторных блоков питания, стало не актуальным. Им на смену пришли импульсные блоки питания.

В состав импульсных блоков питания входят:

1) сетевой фильтр, (входной дроссель, электромеханический фильтр, обеспечивающего отстройку от помех, сетевой предохранитель);

2) выпрямитель и сглаживающий фильтр (диодный мост, накопительный конденсатор);

3) инвертор (силовой транзистор);

4) силовой трансформатор;

5) выходной выпрямитель (выпрямительные диоды включенные по полумостовой схеме);

6) выходной фильтр (фильтрующие конденсаторы, силовые дроссели);

7) блок управления инвертором (ШИМ контроллер с обвязкой)

Импульсный блок питания обеспечивает стабилизированное напряжение за счет использования обратной связи. Работает он следующим образом. Напряжение сети поступает на выпрямитель и сглаживающий фильтр, где напряжение сети выпрямляется, а пульсации сглаживается за счет использования конденсаторов. При этом выдерживается амплитуда порядка 300 вольт. На следующем этапе подключается инвертор. Его задача — формирование прямоугольных высокочастотных сигналов для трансформатора. Обратная связь с инвертором осуществляется через блок управления. С выхода трансформатора высокочастотные импульсы поступают на выходной выпрямитель. Из-за того, что частота импульсов порядка 100 кГц, то необходимо применение быстродействующих полупроводниковых диодов Шотке. На завершавшей фазе производится сглаживание напряжения на фильтрующем конденсаторе и дросселе. И только после этого напряжение заданной величины подается в нагрузку. Все, хватит теории, перейдем к практике и начнем делать блок питания.

Корпус блока питания

Каждый радиолюбитель, который занимается радиоэлектроникой, желая оформить свои устройства часто сталкивается с проблемой, где взять корпус. Эта проблема постигла и меня, что в свою очередь натолкнуло на мысль, а почему бы не сделать корпус своими руками. И тут начались мои поиски. Поиск готового решения как сделать корпус не привел ни к чему. Но я не отчаивался. Подумав некоторое время, у меня возникла мысль, а почему не сделать корпус из пластикового короба для укладки проводов. По габаритам он мне подходил, и я начал резать и клеить. Смотрим рисунки ниже.

Размеры короба были выбраны исходя из размера платы блока питания. Смотрим рисунок ниже.

Также в корпусе должны поместиться еще индикатор, провода, регулятор и сетевой разъем. Смотрим рисунок ниже.

Для установки выше перечисленных элементов в корпусе были прорезаны необходимые отверстия. Смотрим рисунки выше. Ну и наконец, для придания корпусу блока питания эстетичности, он был окрашен в черный цвет. Смотрим рисунки ниже.

Измерительный прибор

Скажу сразу, что искать измерительный прибор долго не пришлось, выбор сразу пал на совмещенный цифровой вольтамперметр TK1382. Смотрим рисунки ниже.

Диапазоны измерений прибора составляют для напряжения 0-100 В и ток до 10 А. На приборе также установлены два калибровочных резистора для подстройки напряжения и тока. Смотрим рисунок ниже.

Что касается схемы подключения, то у нее есть нюансы. Смотрим рисунки ниже.

Схема блока питания

Для измерения тока и напряжения воспользуемся схемой — 2, смотри рисунок выше. И так по порядку. На имеющийся у меня блок питания от ноутбука сначала найдем схему электрическую принципиальную. Поиск необходимо проводить по ШИМ контроллеру. В данном блоке питания это CR6842S. Схему смотрим ниже.

Читайте также:  Блок питания для компьютера куда дует вентилятор

Теперь коснемся переделки. Так как будет делаться регулируемый блок питания, то схему придется переделать. Для этого внесем изменения в схему, эти участки обведены оранжевым цветом. Смотрим рисунок ниже.

Участок схемы 1,2 обеспечивает питание ШИМ контроллера. И из себя представляет параметрический стабилизатор. Напряжение стабилизатора 17,1 В выбрано в связи с особенностями работы ШИМ контроллера. При этом для питания ШИМ контроллера задаемся током через стабилизатор порядка 6 мА. «Особенность данного контроллера в том, что для его включения необходимо напряжение питания больше 16,4 В, ток потребления 4 мА» выдержка из datasheet. При такой переделке блока питания необходимо отказаться от обмотки самозапитки, так как ее применение не целесообразно при низких напряжениях на выходе. На рисунке ниже можете увидеть данный узел после переделки.

Участок схемы 3 обеспечивает регулирование напряжения, при данных номиналах элементов регулирование осуществляется в пределах 4,5-24,5 В. Для такой переделки необходимо выпаять резисторы, отмеченные на рисунке ниже оранжевым цветом, и на их место запаять переменный резистор для регулировки напряжения.

На этом переделка окончена. И можно производить пробный запуск. ВАЖНО. В связи с тем, что блок питания запитывается от сети 220 В то необходимо быть внимательным, во избежания попадания под действие напряжения сети! Это ОПАСНО ДЛЯ ЖИЗНИ. Перед первым запуском блока питания необходимо проверить правильность монтажа всех элементов, а затем производить включение в сеть 220 В, через лампочку накаливания 220 В, 40 Вт во избежания выхода из строя силовых элементов блока питания. Первый запуск можете увидеть на рисунке ниже.

Также после первого запуска проверим верхний и нижний пределы регулирования напряжения. И как задумывалось, они лежат в заданных пределах 4,5-24,5 В. Смотрим рисунки ниже.

Ну и напоследок, при испытаниях с нагрузкой на 2,5 А корпус начал хорошо греться, что меня не устроило и я решил сделать перфорацию в корпусе для охлаждения. Место для перфорации выбирал исходя из места наибольшего нагрева. Для перфорации корпуса сделал 9 отверстий диаметром 3 мм. Смотрим рисунок ниже.

Для предотвращения случайного попадания внутрь корпуса токопроводящих элементов, с обратной стороны крышки на небольшом расстоянии приклеена предохранительная заслонка. Смотрим рисунок ниже.

Вот и все, в результате сделан регулируемый блок питания из зарядного от ноутбука. Ниже можно посмотреть дополнительные фото.

Источник

Переделка БП от ноутбука на UC3843A и TSM101 на другое напряжение

Смысл этой статьи в том, что бы поставить точку в том как переделать блок питания ноутбука или монитора или мало ли от чего еще на необходимое напряжение и как дальнейшее продолжение этого материала, можно переделать на регулируемый БП.

Проблемы как таковой конечно особо нет, вопросы чаще всего возникают не в регулировании выхода БП на UC3843A, а именно в том случае, когда UC3843A стоит в связке с TSM101. Информации внятной в сети я не нашел, конечно есть такой вариант, что или не так или не там искал.
Ну все по порядку: рассмотрим схему включения UC3843A

Переделка БП от ноутбука на UC3843A и TSM101 на другое напряжение

Стандартная схема включения из Datasheet

Переделка БП от ноутбука на UC3843A и TSM101 на другое напряжение

Почти стандартная схема (отличаются некоторые номиналы и только) но уже с обратной связью.

Для понимания плана достижения цели этого вполне достаточно и тут никакой Америки я не открыл. Имеем ногу №1 которая является входом обратной связи и регулировкой уровня «отзыва» обратной связи или уровнем (в первой схеме) смещения резистивного делителя в определенных пределах можем регулировать выход ШИМ и тем самым выходное напряжение БП в целом.
На самом деле вторая схема и есть идеальным примером: изменяем режим работы TL431 и как результат через оптопару получаем управление UC3843A на том уровне на котором нужно. И информации о том как это сделать в сети просто МОРЕ! Но в большинстве случаев блоки питания ноутбуков и подобных имеют в своей схеме вместо TL431 немного другую микросхему, а именно TSM101.

Источник

Тема: Регулируем выходной ток и напряжение блока питания от ноутбука.

Опции темы
Отображение
  • Линейный вид
  • Комбинированный вид
  • Древовидный вид

Администратор Регистрация 29.04.2015 Адрес Ярославль Возраст 35 Сообщений 862 Спасибо 20 Спасибо 4 Спасибо за 4 сообщ.

Регулируем выходной ток и напряжение блока питания от ноутбука.

Однажды мне попался блок питания от ноутбука Lenovo с параметрами 20,5 вольт и 4,75 ампер. Долго думал что с ним сделать и куда приспособить.

Открыл Интернет и долго ползал по его просторам, дабы найти не сложную схему по регулировке напряжения. И вдруг наткнулся на одну, но полазив ещё немного я нашел простейшую схему, что бы можно было регулировать не только напряжение но ещё и ток!

Схема до безобразия проста и работает сразу после сборки! Однако мне не понравился выходной транзистор V4, который не долго думая сгорел.

После чего я начал искать запасы и дохлые БП от компьютеров. Они как раз работают на «хороший» ток. Расковыряв парочку таких, я нашел несколько подходящих транзисторов, но один мне попался аж на 6 Ампер, его то я и поставил на выход (маркировки не помню).

Кстати я убрал из схемы сопротивление R2, и тем самым достиг максимального выходного тока, но лишился защиты от короткого замыкания.

ОБЯЗАТЕЛЬНО ВАЖНО: Выходной транзистор очень сильно греется, так что ставить его нужно на радиатор с вентилятором(куллер от старого компьютера как раз подойдёт).

На входе этой схемы я поставил блок питания от ноутбука (кстати у него своя защита) и получил лабораторный блок питания! С его помощью я свободно смог неоднократно зарядить свой помирающий аккумулятор на автомобиле, а так же питаю различные собранные мною схемы!

Всем удачи! С Уважением, Сиднев А.Н.

МиниатюрыМиниатюры

Источник