Меню

Как работает блок питания постоянного тока

Как работает блок питания постоянного тока

Электричество и компьютеры

Электричество — это просто поток электронов. Электроны в некоторых металлах, таких как медь, могут быть легко удалены из внешних оболочек атомов. Эти электроны движутся по цепям, создавая ток. При преобразовании переменного тока в постоянный ток электроны вынуждены течь в одном направлении с помощью диодов.

Источники питания и компьютеры постоянного тока

Основная причина, по которой AC используется для питания домов, заключается в том, что их легче переносить на расстояния. Однако DC обычно используется и в домашних хозяйствах. Например, батареи используют постоянный ток, так как они однонаправлены. Большинство компьютеров ПК содержат источник питания постоянного тока для преобразования переменного тока, который более удобен для использования на компьютере.

Транзисторы

Компьютеры содержат транзисторы, которые контролируют поток электроэнергии. Транзисторы аналогичны диодам, т.к. они работают лучше всего, когда электричество идет в одном направлении. Поскольку переменный ток чередуется, если он используется в компьютерах, эти транзисторы не будут получать электричество, по крайней мере, в течение половины времени, что значительно замедляет скорость работы компьютера.

Транзисторы работают с двоичным кодом. Поэтому компьютеры должны запускать вычисления через большое количество транзисторов одновременно. Переменный ток недостаточно устойчив, чтобы выполнять эти быстрые вычисления. Ниже приведены некоторые общие измерения AC:

Как работают источники питания постоянного тока

Источники питания постоянного тока направляют питание переменного тока через несколько разных механизмов. Эти механизмы, включая трансформатор, выпрямитель и фильтр, меняют ток питания, чтобы он мог использоваться компьютером. В персональных компьютерах это небольшая коробка, содержащаяся в корпусе компьютера, наряду с другими частями, такими как вентилятор и центральный процессор (CPU), поэтому большинство людей редко видят устройство. Тем не менее, важно, чтобы компьютер функционировал должным образом.

Трансформатор

Некоторые источники питания постоянного тока имеют трансформатор. Основной целью трансформатора в источнике питания является изменение напряжения, так как большинство компьютеров требуют меньшего напряжения, чем то, что приходит через сетевую розетку. Трансформаторы состоят из двух катушек, каждый из которых соединен со своими цепями.

Через магнитные поля ток передается от одной катушки к другой. В понижающем трансформаторе, как и в блоке питания постоянного тока, первая катушка будет иметь больше оборотов, чем вторая.

Выпрямитель

Выпрямитель — это то, что фактически преобразует AC в DC, используя диоды. Как отмечалось выше, диоды позволяют электричеству течь в одном направлении. Поэтому полноволновый выпрямитель использует два набора диодов. Один набор позволяет AC протекать току, когда он идет в одном направлении, а другой позволяет ему протекать, когда он идет в другом направлении. Этот процесс преобразует его в импульсный постоянный ток.

Фильтр

Компьютеры нуждаются в постоянном потоке тока. Выпрямитель может изменять переменный ток на постоянный ток, но он создает импульсный ток. Поэтому для подачи постоянного тока необходим фильтр для сглаживания тока. По сути, он отфильтровывает определенные частоты, делая импульс меньше. Он похож на яблочный сердечник, который позволяет сердцевине проникать через центральное отверстие. Фильтр пропускает только желаемые частоты.

Как купить блок питания постоянного тока через строительный магазин?

Источник питания постоянного тока является техническим оборудованием, хотя и не слишком сложным. При его покупке вы должны знать, какой тип вам нужен для вашего компьютера, поскольку они могут варьироваться в зависимости от того, какое напряжение они выставляют. Поэтому при поиске через панель инструментов на любой странице строительного магазина вы должны использовать очень конкретные ключевые слова.

Отфильтруйте категории, чтобы вам быстрее найти то, что вам нужно. Например, выбор категории «Компьютер» и конкретного бренда значительно сужает варианты поиска. Электрический ток может быть опасным, поэтому вы также должны быть уверены в приобретении необходимого вам безопасного оборудования.

Источник



Принцип работы блока питания

Принцип работы блока питания

Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.

Они подразделяются на трансформаторные и импульсные изделия.

Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.

Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.

Импульсные блоки питания: как работает структурная схема и взаимодействуют ее части — краткое пояснение

Правило №1 всех ИБП: чем выше рабочая частота, тем лучше. Преобразование электроэнергии выполняется не на промышленных 50 герц, а на более высоких сигналах в пределах 1÷100кГц.

За счет этого снижаются потери и общий вес всех элементов, но усложняется технология. Принципы работы импульсного блока питания помогает понять его структурная схема.

Показываю ее составные части прямоугольниками, связи стрелками, а форму выходного сигнала из каждого блока — мнемонической фигурой преобразованного напряжения (темно синий цвет сверху).

Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.

Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.

Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.

Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.

После силового трансформатора наступает очередь работы выходного выпрямителя.

Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.

Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.

Пример монтажа деталей показан на фотографии платы импульсного блока питания ниже.

Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.

Накопительная емкость сглаживает пульсации.

Генератор инвертора на основе силового ключевого транзистора в комплекте с импульсным трансформатором выдает напряжение на выходной выпрямитель с диодами, конденсаторами и дросселями.

Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.

Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций

Правило №2: у качественных ИБП в конструкции блока должен работать надежный фильтр в/ч сигналов.

Важно понимать, что импульсы высокой частоты играют двоякую роль:

  1. в/ч помехи могут приходить из бытовой сети в блок питания;
  2. импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.

Причины появления помех в бытовой сети:

  • апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
  • работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
  • последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.

Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.

Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.

Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.

Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)

Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.

Работу дросселя эффективно дополняют емкостные сопротивления.

Читайте также:  Epson l210 как извлечь блок питания

Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.

Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.

Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.

Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.

Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.

У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение.

Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.

Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.

У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.

Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.

Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией.

Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.

Сетевой выпрямитель напряжения: самая популярная конструкция

Правило №3: после выхода с фильтра напряжение подается на схему выпрямителя, состоящего в базовой версии из диодного моста и электролитического конденсатора.

В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.

Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.

Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками

Правило №4: выпрямленный сигнал подвергается широтно-импульсной модуляции на силовом ключе под управлением ШИМ контроллера.

Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.

На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.

Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).

Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.

ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.

Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.

За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.

Импульсный трансформатор: принцип работы одного импульса в 2 такта

Правило №5: импульсный трансформатор для блока питания передает каждый ШИМ импульс за счет двух преобразований электромагнитной энергии.

Во время преобразования электрической энергии в магнитную и обратно в электрическую с пониженным напряжением обеспечивается гальваническое разделение первичных входных цепей с вторичной выходной схемой.

Каждый ШИМ импульс тока, поступающий при кратковременном открытии силового транзистора, протекает по замкнутой цепи первичной обмотки трансформатора.

Его энергия расходуется:

  1. вначале на намагничивание сердечника магнитопровода;
  2. затем на его размагничивание с протеканием тока по вторичной обмотке и дополнительной подзарядкой конденсатора.

По этому принципу каждый ШИМ импульс из первичной сети подзаряжает накопительный конденсатор.

Генераторы ИБП могут работать по простой однотактной или более сложной двухтактной технологии построения.

Однотактная схема импульсного блока питания: состав и принцип работы

На стороне 220 расположены: предохранитель, выпрямительный диодный мост, сглаживающий конденсатор, биполярный транзистор, цепочки колебательного контура и коллекторного тока, а также обмотки импульсного трансформатора.

Однотактная схема импульсного блока питания создается для передачи мощности 10÷50 ватт, не более. По ней изготавливают зарядные устройства мобильных телефонов, планшетов и других цифровых гаджетов.

В выходной цепочке трансформатора используется выпрямительный диод Д7. Он может быть включен в прямом направлении, как показано на картинке, или обратно, что важно учитывать.

При прямом включении импульсный трансформатор накапливает индуктивную энергию и передает ее в выходную цепь к подключенной нагрузке с задержкой по времени.

Если диод включен обратно, то трансформация энергии из первичной схемы во вторичную цепь происходит во время закрытого состояния транзистора.

Однотактная схема ИБП отмечается простотой конструкции, но большими амплитудами напряжения, приложенными к виткам первичной обмотки импульсного трансформатора.

Их защита осуществляется дополнительными цепочками из резисторов R2÷R4 и конденсаторов С2, С3.

Двухтактная схема импульсного блока питания: 3 варианта исполнения

Более высокий КПД и пониженные потери мощности являются неоспоримыми преимуществами этих ИБП по сравнению с однотактными моделями.

Простейший вариант исполнения двухполупериодной методики показан на картинке.

Если в нее дополнительно подключить два диода и один сглаживающий конденсатор, то на этом же трансформаторе получается двухполярная схема.

Она распространена в усилителях мощности, работает по обратноходовому принципу. В ней через каждую емкость протекают меньшие токи, обеспечивающие повышенный ресурс конденсаторов при эксплуатации.

Продлить ресурс работы электролитических конденсаторов в ИБП можно заменой одного большой мощности несколькими составными. Ток будет распределяться по всем, что вызовет меньший нагрев. А отвод тепла с каждого отдельного происходит лучше.

Прямоходовая схема блока питания имеет в своей конструкции дроссель, который выполняет функцию накопления энергии. Для этого два диода направляют поступающие импульсы ШИМ на его вход в одной полярности.

Дроссель этих устройств изготавливается большими габаритами и устанавливается отдельно внутри платы ИБП. Он дополняет работу накопительного конденсатора.

Это наглядно видно по верхней форме сигнала, показанного осциллограммой выпрямления одного и того же блока без дросселя и с ним.

Прямоходовая схема используется в мощных блоках питания, например, внутри компьютера.

В ней выпрямлением тока занимаются диоды Шоттки. Их применяют за счет:

  • уменьшенного падения напряжения на прямом включении;
  • и повышенного быстродействия во время обработки высокочастотных импульсов.

3 схемы силовых каскадов двухтактных ИБП

По порядку сложности их исполнения генераторы выполняют по:

  • полумостовому;
  • мостовому;
  • или пушпульному принципу построения выходного каскада.

Полумостовая схема импульсного блока питания: обзор

Конденсаторы С1, С2 собраны последовательно емкостным делителем. На него и переходы коллектор-эмиттер транзисторов Т1, Т2 подается напряжение постоянного питания.

К средней точке емкостного делителя и транзисторов подключена первичная обмотка трансформатора Тр2. С ее вторичной обмотки снимается выходное напряжение генератора, которое пропорционально входному сигналу ТР1, трансформируемому на базы Т1 и Т2.

Полумостовая схема ИБП работает для нагрузок от нескольких ватт до киловатт. Ее недостатком является возможность повреждения элементов при перегрузках, что требует использования сложных защит.

Мостовая схема импульсного блока питания: краткое пояснение

Вместо емкостного делителя предыдущей технологии здесь работают транзисторы T3 и T4. Они попарно открываются совместно с Т1 и Т2: (пара Т1-Т4), (пара Т2-Т3).

Напряжение переходов эмиттер-коллектор у закрытых транзисторов не выше величины питающего напряжения, а на обмотке w1 ТР3 оно возрастает до значения U пит. За счет этого увеличивается величина КПД.

Мостовая схема сложна в наладке из-за трудностей с настройкой цепей управления транзисторов Т1÷Т4.

Пушпульная схема: важные особенности

Первичная обмотка выходного ТР2 имеет средний вывод, на который подается плюсовой потенциал источника питания, а его минус — на среднюю точку вторичной обмотки Т1.

Читайте также:  Чертеж компьютерного блока питания

Во время прохождения одного полупериода колебания работает один из транзисторов Т1 или Т2 и соответствующая ему часть полуобмотки трансформатора.

Здесь создается самый высокий КПД, малые пульсации и низкие помехи. Амплитудное значение импульсного напряжения на любой половине обмотки w1 ТР2 достигает величины U пит.

К напряжению перехода коллектор-эмиттер каждого транзистора добавляется ЭДС самоиндукции, и оно возрастает до 2U пит. Поэтому Т1 и Т2 надо подбирать на 600÷700 вольт.

Пушпульная схема ключевого каскада пользуется большей популярностью. Она применяется в наиболее мощных преобразователях.

Выходной выпрямитель: самое популярное устройство

Правило №6: сигнал, поступающий с выхода ИБП, выпрямляется и сглаживается.

Простейшая схема выпрямителя, состоящая из диода и накапливающего конденсатора, показана картинкой ниже.

Она может дорабатываться подключением дополнительных конденсаторов, дросселей, элементов фильтров.

Схема стабилизации напряжения: как работает

Правило №7: оптимальные условия для работы нагрузки при изменяющихся условиях эксплуатации обеспечивает принцип стабилизации вторичного напряжения.

Самая примитивная схема стабилизации выходного напряжения создается на дополнительной обмотке импульсного трансформатора.

С нее снимается напряжение и подается для корректировки величины сигнала первичной обмотки.

Лучшая стабилизация создается за счет контроля выходного сигнала с вторичной обмотки и отделения его гальванической связи через оптопару.

В ней используется светодиод, через который проходит ток, пропорциональный значению выходного напряжения. Его свечение воспринимается фототранзистором, который посылает соответствующий электрический сигнал на схему управления генератора ключевого каскада.

Повысить качество стабилизации выходного напряжения позволяет последовательное дополнение к оптопаре стабилитрона, как показано на примере микросхемы TL431 на картинке ниже.

Источник

Что такое блок питания.

Блок питания – это устройство, которое используется для создания напряжения, необходимого для работы компьютера, из напряжения домашней электросети. В России блок питания (в дальнейшем просто БП) преобразует переменный электрический ток домашней электрической сети напряжением 220 В и частотой 50 Гц в заданный постоянный ток. В разных странах стандарты домашней электросети отличаются. В США, к примеру, в дома обычных жителей подаётся переменный ток напряжением 120 В и частотой 60 Гц.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.

Виды блоков питания и их различия.

Существуют два основных вида блоков питания: трансформаторные и импульсные. Ниже будут рассмотрены их устройства и различия, а также преимущества и недостатки.

Трансформаторный блок питания и его устройство.

Этот вид блока питания является классическим и, одновременно, простейшим. Ниже представлена его схема с двухполероудным выпрямителем:

Важнейшим элементом этого вида БП является понижающий трансформатор (вместо которого может быть использован автотрансформатор). Первичная обводка этого элемента как раз и рассчитана на входящее сетевое напряжение. Ещё одна важная деталь такого БП – это выпрямитель. Он выполняет функцию преобразования переменного напряжения в однонаправленное и пульсирующее постоянное. В подавляющем большинстве случаев используются однополупериодный выпрямитель или двухполупериодный. Первый состоит из одного диода, а последний из четырёх диодов, которые образуют диодный мост. В некоторых случаях могут использоваться и другие схемы этого элемента, например, в трёхфазных выпрямителях или выпрямителях с удвоенным напряжением. Последней важной деталью трансформаторного БП является фильтр, который сглаживает пульсации, создающиеся выпрямителем. Обычно эта деталь представлена конденсатором с большой ёмкостью.

Габариты трансформатора. Из базовых законов электротехники выводится следующая формула:

В этой формуле n – это число витков на 1 вольт, f – частота переменного тока, S – площадь сечения магнитопровода, B – индукция магнитного поля в магнитопроводе.

Формула описывает не мгновенное значение, а амплитуду B!

Практически величина индукции магнитного поля (B) ограничена гистерезисом в сердечнике. Это приводит к перегревам трансформатора и потерям на перемагничивании.

Если частота переменного тока(f) равна 50 Гц, то изменяемыми параметрами при конструировании трансформатора остаются только S и n. На практике используется такая эвристика: n (в значении от 55 до 70) / S в см^2

Увеличение площади сечения магнитопровода (S) приводит к повышению габаритов и веса трансформатора. Если же понижать значение S то этим повышается значение n, что в трансформаторах небольшого размера приводит к снижению сечения провода (в противном случае обмотка не поместится на сердечнике)

При увеличении значения n и уменьшения площади сечения происходит значительное увеличении активного сопротивления обмотки. В трансформаторах с малой мощностью на это можно не обращать внимания, поскольку ток, проходящий через обмотку, невелик. Однако, при повышении мощности ток, проходящий через обмотку, увеличивается, а это вместе с высоким сопротивлением обмотки приводит к рассеиванию значительной тепловой мощности.

Всё вышесказанное приводит к тому, что стандартной частоте 50 Гц трансформатор большой мощности (необходимой для питания компьютера) может быть сконструирован только как устройство, имеющее большой вес и габариты.

В современных БП идут по другому пути – увеличивания значения f, которое достигается использованием импульсных блоков питания. Такие БП намного легче и в значительной степени меньше по габаритам, чем трансформаторные. Также импульсные БП не столь требовательны к входному напряжению и частоте.

Преимущества трансформаторных БП

  • Простота изделия;
  • Надёжность конструкции;
  • Доступность элементов;
  • Отсутствие создаваемых радиопомех.

Недостатки трансформаторных БП

  • Большой вес и габариты, которые увеличиваются вместе с мощностью;
  • Металлоёмкость;
  • Необходимость компромисса между снижением КПД и стабильностью выходного напряжения.

Импульсный БП и его устройство.

Ниже представлена схема одноконтактного импульсного БП (эта схема является простейшей):

Фактически блоки питания импульсного вида являются инверторной системой. В этом БП входящая в него электроэнергия сначала выпрямляется (т. е. образуется постоянный электрический ток), а после этого преобразуется в прямоугольные импульсы определённой частоты и скважности. После этого эти прямоугольные импульсы на трансформатор (в случае если конструкция БП включает в себя гальваническую развязку) или же сразу на выходной ФНЧ (в случае если отсутствует гальваническая развязка). Из-за того, что в импульсных БП с ростом частоты повышается эффективность работы трансформатора и в значительной степени снижается требование к сечению сердечника, в них могут применяться гораздо более малогабаритные трансформаторы чем в классических решениях.

В большинстве случаев сердечник трансформатора импульсного вида может быть выполнен из ферримагнитных материалов, в отличии от низкочастотных трансформаторах, в которых используется электротехническая сталь.

Стабилизация напряжения в импульсных блоках питания обеспечивается путём отрицательной обратной связи. Она позволяет поддерживать выходное напряжение на относительно постоянном уровне. Такая связь может быть сконструирована различными способами. В случае наличия в конструкции БП гальванической развязки чаще всего используют способ использования связи посредством одной из выходных обмоток трансформатора или же способ оптрона. Скважность на выходе ШИМ-контроллера зависит от сигнала обратной связи, который, в свою очередь, зависит от выходного напряжения. В том случае, если развязка в БП не предусмотрена, используется обычный резистивный делитель напряжения. Благодаря этому импульсные блоки питания могут поддерживать стабильное выходное напряжение.

Достоинства импульсных БП.

  • Значительно меньший вес и габариты (это достигается благодаря тому, что при повышении частоты можно использовать трансформаторы с меньшими габаритами при одинаковой мощности. Большинство линейных стабилизаторов производятся в большинстве своём из мощных низкочастотных силовых трансформаторов и радиаторов, которые работают в линейном режиме;
  • Намного более высоким КПД (до 98%). Такой высокий коэффициент полезного действия достигается благодаря тому, что большую часть времени ключевые элементы находятся в устойчивом состоянии (а потери возникают во время включения/выключения ключевых элементов);
  • Меньшей стоимостью (это преимущество было достигнуто благодаря повсеместному выпуску унифицированной элементной базы и разработке транзисторов повышенной мощности);
  • Надёжностью наравне с линейными стабилизаторами;
  • Большим диапазоном входной частоты и напряжения электрической энергии. Благодаря этому один и тот же БП может использоваться в различных странах мира с различными стандартами домашней электрической сети;
  • Наличие защиты от непредвиденных ситуаций (короткое замыкание).
Читайте также:  Fix price блок питания

Недостатки импульсных БП

  • Затруднение ремонта БП вследствие того, что большая часть схемы работает в отсутствии гальванической развязки электросети
  • Является источником высокочастотных помех. Этот недостаток выходит из самого принципа работы импульсных БП. Из-за него производителям блоков питания приходится предпринимать меры шумоподавления, которые, в большинстве случаев, не могут полностью устранить данную проблему
  • Эффект гармоник кратный трём (при наличии корректоров фактора мощности и фильтров данный недостаток неактуален)

Источник

Как работает блок питания постоянного тока

Электричество и компьютеры

Электричество — это просто поток электронов. Электроны в некоторых металлах, таких как медь, могут быть легко удалены из внешних оболочек атомов. Эти электроны движутся по цепям, создавая ток. При преобразовании переменного тока в постоянный ток электроны вынуждены течь в одном направлении с помощью диодов.

Источники питания и компьютеры постоянного тока

Основная причина, по которой AC используется для питания домов, заключается в том, что их легче переносить на расстояния. Однако DC обычно используется и в домашних хозяйствах. Например, батареи используют постоянный ток, так как они однонаправлены. Большинство компьютеров ПК содержат источник питания постоянного тока для преобразования переменного тока, который более удобен для использования на компьютере.

Транзисторы

Компьютеры содержат транзисторы, которые контролируют поток электроэнергии. Транзисторы аналогичны диодам, т.к. они работают лучше всего, когда электричество идет в одном направлении. Поскольку переменный ток чередуется, если он используется в компьютерах, эти транзисторы не будут получать электричество, по крайней мере, в течение половины времени, что значительно замедляет скорость работы компьютера.

Транзисторы работают с двоичным кодом. Поэтому компьютеры должны запускать вычисления через большое количество транзисторов одновременно. Переменный ток недостаточно устойчив, чтобы выполнять эти быстрые вычисления. Ниже приведены некоторые общие измерения AC:

Как работают источники питания постоянного тока

Источники питания постоянного тока направляют питание переменного тока через несколько разных механизмов. Эти механизмы, включая трансформатор, выпрямитель и фильтр, меняют ток питания, чтобы он мог использоваться компьютером. В персональных компьютерах это небольшая коробка, содержащаяся в корпусе компьютера, наряду с другими частями, такими как вентилятор и центральный процессор (CPU), поэтому большинство людей редко видят устройство. Тем не менее, важно, чтобы компьютер функционировал должным образом.

Трансформатор

Некоторые источники питания постоянного тока имеют трансформатор. Основной целью трансформатора в источнике питания является изменение напряжения, так как большинство компьютеров требуют меньшего напряжения, чем то, что приходит через сетевую розетку. Трансформаторы состоят из двух катушек, каждый из которых соединен со своими цепями.

Через магнитные поля ток передается от одной катушки к другой. В понижающем трансформаторе, как и в блоке питания постоянного тока, первая катушка будет иметь больше оборотов, чем вторая.

Выпрямитель

Выпрямитель — это то, что фактически преобразует AC в DC, используя диоды. Как отмечалось выше, диоды позволяют электричеству течь в одном направлении. Поэтому полноволновый выпрямитель использует два набора диодов. Один набор позволяет AC протекать току, когда он идет в одном направлении, а другой позволяет ему протекать, когда он идет в другом направлении. Этот процесс преобразует его в импульсный постоянный ток.

Фильтр

Компьютеры нуждаются в постоянном потоке тока. Выпрямитель может изменять переменный ток на постоянный ток, но он создает импульсный ток. Поэтому для подачи постоянного тока необходим фильтр для сглаживания тока. По сути, он отфильтровывает определенные частоты, делая импульс меньше. Он похож на яблочный сердечник, который позволяет сердцевине проникать через центральное отверстие. Фильтр пропускает только желаемые частоты.

Как купить блок питания постоянного тока через строительный магазин?

Источник питания постоянного тока является техническим оборудованием, хотя и не слишком сложным. При его покупке вы должны знать, какой тип вам нужен для вашего компьютера, поскольку они могут варьироваться в зависимости от того, какое напряжение они выставляют. Поэтому при поиске через панель инструментов на любой странице строительного магазина вы должны использовать очень конкретные ключевые слова.

Отфильтруйте категории, чтобы вам быстрее найти то, что вам нужно. Например, выбор категории «Компьютер» и конкретного бренда значительно сужает варианты поиска. Электрический ток может быть опасным, поэтому вы также должны быть уверены в приобретении необходимого вам безопасного оборудования.

Источник

Блок питания

Содержание

  1. Что такое блок питания
  2. Характеристики блока питания
  3. Тип выходного напряжения
  4. Выходное напряжение
  5. Выходная мощность
  6. Трансформаторный блок питания
  7. Импульсный блок питания
  8. Лабораторный блок питания
  9. Описание лабораторного блока питания
  10. Как применять в работе
  11. Где купить лабораторный блок питания

Что такое блок питания

Блок питания – это какой-либо узел радиоэлектронного устройства, который обеспечивает необходимым питанием какое-либо устройство. Все вы знаете, что для работы радиоэлектронных устройств нужно питание, которые они получают извне. То есть все радиоэлектронные устройства так или иначе потребляют электрический ток. Каждому радиоэлектронному устройству требуется конкретное напряжение и мощность, поэтому, блоки питания “заточены” именно под конкретное устройство. Именно поэтому встречается огромное множество различных блоков питания и для каждого устройства оно свое.

Характеристики блока питания

Итак, каждый отдельный блок питания обладает своими характеристиками и параметрами. Ниже перечислим их основные параметры.

Тип выходного напряжения

В основном радиоэлектронные устройства питаются переменным и постоянным током. Поэтому, блоки питания могут выдавать переменное или постоянное напряжение. В большинстве случаев используется именно постоянное напряжение.

К блокам питания с постоянным выходным напряжением можно отнести компьютерные блоки питания

а также различные зарядные устройства для ваших гаджетов.

К блокам питания с переменным напряжением можно отнести трансформаторы

А также инверторы. Инверторы – это устройства, которые из постоянного напряжения делают переменное напряжение.

Выходное напряжение

Блок питания выдает какое-либо определенное напряжение, которое требуется для какого-либо конкретного устройства. Поэтому, самый главный параметр – это напряжение в Вольтах, которое выдает блок питания.

Например, для зарядки наших смартфонов требуется блок питания с постоянным напряжение в 5 Вольт, а для того, чтобы горела автомобильная лампочка, нам потребуется блок питания с напряжением в 12 Вольт.

Выходная мощность

Каждый блок питания наряду с выходным напряжением также должен уметь выдавать в нагрузку и требуемую силу тока. Хочу напомнить, что мощность постоянного тока рассчитывается по формуле P=IU, где P – это мощность, I – сила тока, U – напряжение. Следовательно, мощный блок питания должен уметь выдавать и большую силу тока, если от этого потребует нагрузка. Рассчитать максимальную силу тока, которую способен выдавать такой блок в нагрузку, вы можете по формуле I=P/U. Но чаще всего силу тока пишут также на самой этикетке блока питания.

Те, кто занимается компьютерами, знают, что на самом компьютерном блоке питания на этикетке написана мощность, которую может выдать блок питания. Поэтому, геймеры берут очень мощный блок питания, так как железо мощного компьютера потребляет очень много электрической энергии.

Трансформаторный блок питания

Трансформаторный блок питания уже почти не используется в современной электронике, так как состоит из громоздкого трансформатора, что делает такой блок питания тяжелым и крупногабаритным. Схема трансформаторного блока питания до боли простая.

На такой схеме в давние времена собирались почти все блоки питания во всем мире. Такая схема отличалась своей надежностью и неприхотливостью. Здесь мы видим трансформатор, диодный мост и конденсатор. Как работает эта схема, я писал еще в этой статье.

На базе этой схемы можно собрать себе самый простой блок питания с регулировкой от 1,2 Вольта и до 37 Вольт и с выходной силой тока до 1,5 Ампер. Его я описывал еще в этой статье.

Источник