Меню

Ir2155 блок питания регулируемый



Схема импульсного сетевого блока питания для усилителей НЧ на 100-500Вт (IR2153, IR2155)

Для получения полноценного усилителя мощности НЧ требуется хороший источник питания, приведена схема простого блока питания для УМЗЧ. От параметров источника питания качество звучания зависит не чуть не меньше, чем от самого усилителя и относится халатно к его изготовлению не следует.

Описаний методик расчетов типовых трансформаторов более чем достаточно. Поэтому здесь предлагается описание импульсного источника питания, который может использоваться как с усилителями на базе TDA7293 (TDA7294), так и с любым другим усилителем мощности ЗЧ как на микросхемах,так и на транзисторах.

Основой данного блока питания (БП) служит полумостовой драйвер с внутренним генератором IR2153 (IR2155), предназначенный для управления транзисторами технологий MOSFET и IGBT в импульсных источниках питания.

Принципиальная схема

Функциональная схема микросхем приведена на рисунке 1, зависимость выходной частоты от номиналов RC-задающей цепочки на рисунке 2.

Микросхема обеспечивает паузу между импульсами «верхнего» и «нижнего» ключей в течении 10% от длительности импульса, что позволяет не опасаться «сквозных» токов в силовой части преобразователя.

Функциональная схема микросхем IR2153, IR2155

Рис. 1. Функциональная схема микросхем IR2153, IR2155.

Практическая реализация БП приведена на рисунке 3. Используя данную схему можно изготовить БП мощностью от 100 до 500Вт, необходимо лишь пропорционально увеличивать емкость конденсатора фильтра первичного питания С2 и использовать соответствующий силовой трансформатор ТV2.

Графики зависимости выходной частоты от номиналов RC-задающей цепочки для микросхемы IR2153

Рис. 2. Графики зависимости выходной частоты от номиналов RC-задающей цепочки для микросхемы IR2153.

Емкость конденсатора С2 выбирается из расчета 1. 1,5 мкФ на 1 Вт выходной мощности, например при изготовлении БП на 150 Вт следует использовать конденсатор на 150. 220 мкФ.

Принципиальная схема импульсного сетевого блока питания для усилителей НЧ на 100-500Вт

Рис. 3. Принципиальная схема импульсного сетевого блока питания для усилителей НЧ на 100-500Вт.

Диодный мост первичного питания VD можно использовать в соответствии с установленным конденсатором фильтра первичного питания, при емкостях до 330 мкФ можно использовать диодные мосты на 4. 6А, например RS407 или RS607.

При емкости конденсаторов 470. 680 мкФ нужны уже более мощные диодные мосты, например RS807, RS1007.

О трансформаторе

Об изготовлении трансформатора можно разговаривать долго, однако вникать в глубокую теорию расчетов слишком долго и далеко не каждому нужно.

Поэтому расчеты по книге Эраносяна для самых ходовых типоразмеров ферритовых колец М2000НМ1 просто сведены в таблицу 1.

Таблица 1. Габаритная мощность трансформатора при разной частоте преобразования, количество витков для первичной обмотки.

тип 40кГц 50кГц 60кГц 70кГц 80кГц 90кГц 100кГц
ДЛЯ КОЛЬЦА К40х25х11
1 КОЛЬЦО К40х25х11 мощность 100 130 160 175 200 220 250
витки 180 145 120 105 90 80 72
2 КОЛЬЦА К40х25х22 мощность 200 230 280 330 370 420 470
витки 90 72 60 52 45 40 36
ДЛЯ КОЛЬЦА К45х28х8
1 КОЛЬЦО К45х28х8 мощность 110 135 150 180 200 230 240
витки 217 174 145 124 110 97 87
2 КОЛЬЦА К45х28х16 мощность 200 240 290 340 390 440 480
витки 109 87 73 62 55 49 44
3 КОЛЬЦА К45х28х24 мощность 290 360 440 510 580 660 730
витки 82 66 55 47 41 36 33
4 КОЛЬЦА К45х28х32 мощность 380 490 580 680 780 870 970
витки 62 50 41 35 31 28 25
5 КОЛЕЦ К45х28х40 мощность 500 600 700 850 950 1100 1200
витки 50 40 35 30 25 22 20
6 КОЛЕЦ К45х28х48 мощность 550 700 850 1000 1150 1300 1450
витки 41 33 28 24 21 19 17
7 КОЛЕЦ К45х28х56 мощность 650 850 1000 1150 1350 1500 1700
витки 35 30 24 20 18 16 14
8 КОЛЕЦ К45х28х64 мощность 750 950 1150 1350 1550 1750 1950
витки 31 25 21 18 16 14 13
9 КОЛЕЦ К45х28х72 мощность 850 1000 1300 1500 1750 1950 2200
витки 28 22 18 16 14 13 11
10 КОЛЕЦ К45х28х80 мощность 970 1200 1450 1700 1950 2200 2400
витки 25 20 17 14 12 11 10

Как видно из таблицы габаритная мощность трансформатора зависит не только от габаритов сердечника, но и от частоты преобразования.

Изготавливать трансформатор для частот ниже 40 кГц не очень логично — гармониками можно создать не преодолимые помехи в звуковом диапазоне. Изготовление трансформаторов на частоты выше 100 кГц уже непозволительно по причине саморазогрева феррита М2000НМ1 вихревыми токами.

В таблице приведены данные по первичным обмоткам, из которых легко вычисляются отношения витков/вольт и дальше уже вычислить, сколько витков необходимо для того или иного выходного напряжения труда не составит.

XLS-таблица, для помощи в расчетах (изменять только желтые ячейки) — Скачать.

Следует обратить внимание на то, что подводимое к первичной обмотке напряжение составляет 155 В — сетевое напряжение 220 В после выпрямителя и слаживающего фильтра будет составлять 310 В постоянного напряжения, схема полу мостовая, следовательно к первичной обмотке будет прилагаться половина этого значения.

Так же следует помнить, что форма выходного напряжения будет прямоугольной, поэтому после выпрямителя и слаживающего фильтра величина напряжения от расчетной отличаться будет не значительно.

Таблица приведена до мощностей 2400 Вт (на будущее, для более мощных вариантов схем блока питания).

Диаметры необходимых проводов рассчитываются из отношения 5 А на 1 кв мм сечения провода. Причем лучше использовать несколько проводов меньшего диаметра, чем один, более толстый провод.

Это требование относится ко всем преобразователям напряжения, с частотой преобразования выше 10 кГц, так как начинает уже сказываться скин-эффект — потери внутри проводника, поскольку на высоких частотах ток течет уже не по всему сечению, а по поверхности проводника и чем выше частота, тем сильнее сказываются потери в толстых проводниках.

Поэтому не рекомендуется использовать в преобразователях с частотой преобразования выше 30 кГц проводники толще 1 мм. Следует так же обратить внимание на фазировку обмоток — неправильно сфазированные обмотки могут либо вывести силовые ключи из строя, либо снизить КПД преобразователя.

О мощности БП и транзиаторах

Но вернемся к БП, приведенному на рисунке 3. Минимальная мощность данного БП практически ни чем не ограничена, поэтому можно изготовить БП и на 50 Вт и меньше. Верхний же предел мощности ограничен некоторыми особенностями элементной базы.

Для получения больших мощностей требуются транзисторы MOSFET более мощные, а чем мощнее транзистор, тем больше емкость его затвора.

Если емкость затвора силового транзистора довольно высокая, то для её заряда-разряда требуется значительный ток. Ток транзисторов управления IR2153 довольно не велик (200 мА), следовательно, эта микросхема не может управлять слишком мощными силовыми транзисторами на больших частотах преобразования.

Исходя из вышесказанного становится ясно, что максимальная выходная мощность преобразователя на базе IR2153 не может быть более 500. 600 Вт при частоте преобразования 50. 70 кГц, поскольку использование более мощных силовых транзисторов на этих частотах довольно серьезно снижает надежность устройства.

Читайте также:  Блок питания для велотренажера oxygen

Список рекомендуемых транзисторов для силовых ключей VТ1, VТ2 с краткими характеристиками сведен в таблицу 2.

Наименование Емкость
затвора,
пкФ
Сопротивление
открытого
перехода, Ом
Максимальное
напряжение,
В
Максимальный
ток, А
IRF740 1600 0,55 400 10 А
IRF840 1300 0,85 500 8 А
STP10NK60Z 1370 0,75 600 10 А

Выпрямительные диоды вторичных цепей питания должны иметь наименьшее время восстановления и как минимум двукратный запас по напряжению и трехкратный току.

Последние требования обоснованы тем, что выбросы напряжения самоиндукции силового трансформатора составляют 20. 50 % от амплитуды выходного напряжения. Например при вторичном питании в 100 В амплитуда импульсов самоиндукции может составлять 120.

150 В и не смотря на то, что длительность импульсов крайне мала ее достаточно чтобы вызвать пробой в диодах, при использовании диодов с обратным напряжением в 150 В.

Трехкратный запас по току необходим для того, чтобы в момент включения диоды не вышли из строя, поскольку емкость конденсаторов фильтров вторичного питания довольно высокая, и для их заряда потребуется не малый ток. Наиболее приемлемые диоды VD4-VD11 сведены в таблицу 3.

Наименование Максимальное
напряжение, В
Макс.
ток, А
Обратное
время
восстанов.,
нС
Примечания
16CTQ100 100 8 2 диода Шотки по 8 А
в корпусе ТО-220
20CTQ150 150 10 2 диода Шотки по 10 А
в корпусе Т0-220
30CPQ100 100 15 2 диода Шотки по 15 А
в корпусе ТО-247
30CPQ150 150 15 2 диода Шотки по 15 А
в корпусе ТО-247
40CPQ100 100 20 2 диода Шотки по 20 А
в корпусе ТО-247
60CPQ150 150 30 2 диода Шотки по 30 А
в корпусе Т0-247
15ETH06FP 600 15 35 1 диод 15 А в корпусе ТО-220
30EPF06 600 30 40 1 диод 30 А в корпусе Т0-247
30ETH06PBF 600 30 40 1 диод 30 А в корпусе ТО-220
80EBU02 200 80 35
HER308 1000 3 30 DO-201
HER605 400 6 50 DO-201
HFA06TB120 1200 6 26 ТО-220
HFA08TB120 1200 8 28 ТО-220
HFA15TB60 600 15 60 ТО-220
HFA16TB120 1200 16 30 ТO-220
HFA25PB60 600 25 23 ТО-247
HFA30PB120 1200 30 37 ТО-247
MUR2020CT 200 10 25 2 диода по 10 А
в корпусе ТО-220
MUR820 200 8 25 ТО-220
SF54 300 5 35 DO-201
SF56 600 5 35 DO-201
SF84 400 8 35 ТО-220

Емкость фильтров вторичного питания (С11, С12) не следует увеличивать слишком сильно, поскольку преобразование производится на довольно больших частотах.

Для уменьшения пульсаций гораздо актуальней использование большой емкости в первичных цепях питания и правильный расчет мощности силового трансформатора.

Во вторичных же цепях конденсаторов на 1000 мкФ в плечо вполне достаточно для усилителей до 100 Вт (конденсаторы по питанию, установленные на самих платах УМЗЧ должны быть не менее 470 мкФ) и 4700 мкФ для усилителя на 500 Вт.

Печатная плата

На принципиальной схеме изображен вариант выпрямителей вторичного силового питания, выполненный на диодах Шотки, под них и разведена печатная плата (рисунок 4).

Печатня плата для импульсного блока питания к УМЗЧ - сторона дорожек

Рис. 4. Печатня плата для импульсного блока питания к УМЗЧ — сторона дорожек.

Печатня плата для импульсного блока питания к УМЗЧ - сторона деталей

Рис. 5. Печатня плата для импульсного блока питания к УМЗЧ — сторона деталей.

На диодах VD12, VD13 выполнен выпрямитель для вентилятора принудительного охлаждения теплоотводов, на диодах VD14-VD17 выполнен выпрямитель для низковольтного питания (предварительные усилители, активные регуляторы тембра и т.д.). На том же рисунке приведен чертеж расположения деталей и схема подключения.

В преобразователе имеется защита от перегрузки, выполненная на трансформаторе тока ТV1, состоящая из кольца К20х12х6 феррита М2000 и содержащего 3 витка первичной обмотки (сечение такое же как и первичная обмотка силового трансформатора и 3 витка вторичной обмотки, намотанной двойным проводом диаметром 0,2. 0,3 мм.

При перегрузке напряжение на вторичной обмотке трансформатора ТV1 станет достаточным для открытия тиристора VS1 и он откроется, замкнув питание микросхемы IR2153, тем самым прекратив ее работу. Порог срабатывания защиты регулируется резистором R8.

Об остальных деталях:

  • конденсатор С5 — пленочный на 0,33. 1 мкФ 400В;
  • конденсаторы С9, С10 — пленочные на 0,47. 2,2 мкФ минимум на 250В;
  • индуктивности L1. L3 выполнены на ферритовых кольцах К20х12х6 М2000 и наматываются проводом 0,8. 1,0 мм до заполнения виток к витку в один слой;
  • С14, С15 — пленочные на 0,33. 2,2 мкФ на напряжение не менее 100 В при выходном напряжении до 80 В;
  • конденсаторы С1, С4, С6, С8 можно керамические, типа К10-73 или К10-17;
  • С7 можно и керамический, но лучше пленочный, типа К73-17.

Налаживание

Регулировку производят без нагрузки начиная с максимальной чувствительности и добиваясь устойчивого запуска преобразователя.

Принцип регулировки основан на том, что в момент запуска преобразователя он нагружен максимально, поскольку требуется зарядить емкости фильтров вторичного питания и нагрузка на силовую часть преобразователя максимальная.

Источник

Импульсный стабилизатор

– коммутационная схема, работающая в замкнутом контуре и регулирующая выходные параметры ИП.

Рассмотрим один из ее примеров.

Тема разработки мощных импульсных источников питания до сих пор является актуальной. На рис. 1.35 приведена схема полумостового преобразователя напряжения, реализованного на современной элементной базе с одной первичной обмоткой.

Рис. 1.35. Электрическая схема полумостового преобразователя напряжения

Цепи входного выпрямителя определяются выходной мощностью преобразователя. При выходной мощности до 100 Вт в качестве диодного моста можно использовать DB107. При увеличении мощности можно использовать мосты типа BR310 и более мощные. Выпрямитель во вторичной обмотке импульсного трансформатора можно выполнить по любой схеме, в зависимости от параметров и характера нагрузки.

Подстроенный резистор R4 предназначен для изменения частоты автогенератора в широких пределах.

В качестве автогенератора используется одна микросхема IR2153 (можно использовать любую из микросхем: IR2151D, IR2152D, IR2155D, IR21531D). Отличительная особенность рассматриваемых микросхем с индексом «D» от микросхем без индекса – в первом случае в автогенератор уже встроен высоковольтный диод для питания цепи управления выходного транзисторного ключа.

Внешний вид типичного ИИП представлен на рис. 1.36.

Рис. 1.36. Внешний вид типичного ИИП

Автогенератор IR2153 имеет внешнее регулирование частоты (R4), фиксированную паузу 1,2 мкс, миниатюрный DIP-8 корпус. В автогенератор встроен стабилитрон на напряжение 15,6 В, который стабилизирует напряжение питания, получаемое через токо- ограничительный резистор R2 от цепи основного питания.

В качестве выходных ключей необходимо использовать мощные MOSFET транзисторы с встроенным диодом защиты, например IRFBC40. При питании от сети 220 В допустимое напряжение сток- исток MOSFET транзистора должно быть не менее 400 В. Величина его тока определяется необходимой мощностью преобразователя. Фактически выходная мощность определяется только применяемыми выходными транзисторами (выбор MOSFET транзисторов огромен, диапазон токов – от единиц до сотен ампер).

Читайте также:  Блок питания для компьютера как правильно установить вентилятор

Токоограничительные резисторы R5 и R6 в цепях затвора предназначены для ограничения выходного тока управления при перезаряде входной емкости MOSFET транзисторов. При выходной мощности 50 Вт и более необходимо мощные MOSFET транзисторы устанавливать на радиаторы.

Рабочая частота автогенератора задается одной RC-цепью. Рекомендуется использовать резистор сопротивлением не менее 5 кОм. Частота генерации определяется формулой

F- 1/1,38 х (R1 + 75) х С1,

где JR1 – в омах, С\ – в фарадах.

При сборке платы необходимо обеспечить электростатическую защиту MOSFET транзисторов. Запаивать в плату их надо в последнюю очередь.

Выбор рабочей частоты и расчет выходного трансформатора не раз описывались в литературе для радиолюбителей.

Для регулировки в широком диапазоне времени паузы между импульсами подходят микросхемы-автогенераторы IR2156 или IR21571.

Источник

2 Схемы

Принципиальные электросхемы, подключение устройств и распиновка разъёмов

IR2153 — параметры микросхемы, даташит и схемы блоков питания

На основе микросхемы IR2153 и силовых IGBT транзисторов было сконструировано множество схем, таких как драйвер и генератор индукционного нагревателя, источник питания для катушки Тесла, DC-DC преобразователи, импульсные источники питания и так далее. А связка NGTB40N120FL2WG + IR2153 работают вместе как нельзя лучше, где IR2153 является драйвером — задающим генератором импульсов, а пара биполярных транзисторов с изолированным затвором на 40А/1000В может обрабатывать большой ток нагрузки.

Схемы включения IR2153

IR2153 - параметры микросхемы, даташит и схемы блоков питанияПринципиальная схема включения IR2153 IR2153 - параметры микросхемы, даташит и схемы блоков питанияIR2153 — схема электрическая БП IR2153 - параметры микросхемы, даташит и схемы блоков питанияСхема Теслы на IR2153

Если вы собираетесь повторить одну из этих схем — вот архив с файлами печатных плат. Схема формирователя стробирующих импульсов для их управления работает от 15 В постоянного тока — на транзисторы выходного каскада подаётся до 400 В напряжения.

IR2153 - параметры микросхемы, даташит и схемы блоков питания

IR2153 импульсный блок питания на плате

Кстати, IR2153 — это улучшенная версия популярных микросхем IR2155 и IR2151, которая включает высоковольтный полумостовой драйвер затвора. IR2153 предоставляет больше возможностей и проще в использовании, чем предыдущие м/с. Тут имеется функция отключения, так что оба выхода формирователя стробирующих импульсов могут быть отключены с помощью низкого напряжения сигнала. Помехоустойчивость была значительно улучшена, как за счет снижения пиковых импульсов. Наконец, особое внимание было уделено максимально всесторонней защите от электростатических разрядов на всех выводах.

Источник

ЗАРЯДНОЕ УСТРОЙСТВО — ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ ИЗ ATX

Простой линейный блок питания

В ходе радиолюбительской деятельности, да и просто при создании каких-либо электронных устройств не обойтись без регулируемого источника напряжения. Конечно можно обойтись и набором блоков питания на стандартные напряжения, например 5, 9, 12 вольт, но это чаще всего неудобно, к тому же отсутствует возможность использоваться промежуточные значения напряжений. Регулируемый блок питания решит эту проблему, также с его помощью можно тестировать различные собранные своими руками устройства на то, как они будут вести себя при изменении питающего напряжения.

Условно все блоки питания можно разделить на две категории — импульсные и линейные. Каждый вид имеет свои преимущества и недостатки, например, импульсные имеет хороший КПД (вплоть до 90%), а потому почти не греются даже при большой мощности нагрузки, но за эти достоинства нужно платить — в их основе лежат схемы, работающие на высоких частотах, а потому очень трудно избавиться от мешающих помех на выходе. Линейные же блоки питания напротив, имеют минимум помех на выходе, но зато значительно нагреваются при больших токах нагрузки. Уже долгое время остаётся популярной микросхема линейного регулятора напряжения LM317 — она обладает идеальными характеристиками для построения самодельного регулятора напряжения. Именно о блоке питания на этой микросхеме пойдёт речь в этой статье. Схема включения LM317 представлена ниже.


В левой части схемы виден элемент с обозначением «Tr» — это сетевой трансформатор, преобразующий высокое сетевое напряжение 220В в более низкой, в частности, в 12В. Трансформатор для этой схемы необходимо брать с запасом по мощности, идеально подойдут экземпляры на 30-50Вт. Выходное напряжение может быть любым, в пределах от 12 до 24В. Со вторичной обмотки трансформатора получается переменное напряжение, а потому его нужно выпрямить, именно для этого на схеме имеется диодный мост. Можно использовать как готовый диодный мост с 4-мя выводами (два для входа переменного напряжения, два для выхода постоянного), либо собрать диодный мост из 4-х диодов, например 1N4007, как показано на схеме, соблюдая расположение анодов и катодов. После выпрямительного моста стоит конденсатор С1 — он нужен для сглаживания пульсаций напряжения, ведь напряжение после диодного моста нельзя полностью назвать постоянным — оно имеет сильные пульсации. И только после конденсатора С1 напряжение постоянным. Если замерить его мультиметром, то оно окажется примерно в 1,5 раза больше, чем переменное напряжение на вторичной обмотке трансформатора. Это явление абсолютно нормально, оно связано с с тем, что значение эффективного и пикового переменного напряжения отличаются. Дальше по схеме подключается сама микросхема LM317, её необходимо использовать в корпусе ТО-220 для того, чтобы в дальнейшем без проблем закрепить на радиаторе. Также эта микросхема выпускается в корпусе ТО-92 и в корпусе для поверхностного монтажа, как на картинке ниже. Не стоит использовать эти корпуса, так как корпус ТО-92 не предназначен для высоких токов, а корпус для поверхностного монтажа просто неудобно паять и он не имеет крепления к радиатору. На схеме присутствует переменный резистор, служащий для для регулировки напряжения на выходе схемы, именно этот элемент управления в дальнейшем нужно будет вывести наружу корпуса. Также можно поставить вместо одного переменного резистора сразу два последовательно, один большего номинала, другой меньшего, чтобы их суммарное сопротивление было около 6,8 кОм. В этом случае можно будет грубо настраивать выходное напряжение одним переменным резистором, а более точно — вторым. На выходе регулятора также стоит сглаживающий электролитический конденсатор С2, его ёмкость может лежать в пределах 10-100 мкФ, большую ёмкость брать не следует. А вот на ёмкость С1 наоборот экономить не стоит — чем больше будет ёмкость (в разумных пределах), тем меньше пульсаций будет на выходе. Оптимальное значение 1000-4700 мкФ. Конденсаторы следует брать на напряжение не ниже, чем напряжение со вторичной обмотки, умноженное на 1,5. Схема проста, а потому для неё даже не обязательно изготавливать печатную плату, ведь для таких схем существуют макетные платы. На картинке ниже показано расположение микросхемы с обвязкой, трансформатора с диодным мостом и переменного резистора (он выводится на стенку корпуса на проводах).

Микросхему следует обязательно установить на радиатор, также не помешает при этом использовать теплопроводную пасту. Необходимо учитывать, что радиатор не должен касаться других электрических частей схемы. Размер радиатора следует выбирать исходя из принципа «кашу маслом не испортишь» — чем больше он будет, тем лучше будет охлаждаться микросхема. Если не планируется использование блока питания на больших токах, радиатор может быть небольшого размера. Показанного на фото ниже хватит для большинства применений.

Читайте также:  Блок питания для rx 580 8gb видеокарта

Несколько слов о выборе трансформатора. Так как блок питания линейный, то всё «лишнее» напряжение, которое не идёт в нагрузку, просто рассеивается в тепло на радиаторе LM317. Поэтому не рационально брать трансформатор на большое напряжение (около 20-24В), иначе микросхема будет слишком сильно нагреваться при больших токах и низкой выходном напряжении. Также стоит отметить, что максимальный выходной ток микросхемы составляет 1,5А, чего достаточно для питания большинства самодельных устройств.

Схема устанавливается в деревянный корпус весьма специфичного вида. Кто увидит впервые — ни за что не догадается, что это блок питания :)Сетевое питание к трансформатору можно подвести, установив разъём на корпусе, либо просто оставив «торчать» отрезок провода с вилкой.

Вывести напряжение с регулятора также можно либо с помощью клемм, либо просто на проводах с крокодилами. Ручка переменного резистора смотрит наружу корпуса, с её помощью можно регулировать напряжение от 1,25В (нижний предел для LM317) до максимального, которое выдаёт трансформатор. Ниже представлены несколько фотографий с замерами напряжения, нижний и верхний предел, а также типовые значения напряжений 5 и 12В.

Использовать получившийся блок питания также можно, например, для регулировки оборотов электромоторов, в частности небольших сверлилок печатных плат, граверов. Удачной сборки!


Источник (Source)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

График входных и выходных напряжений

Электроника

Я решил разбить электронику на две части – фальш-панель и управляющая электроника. Причина для такого разбиения – банально не хватило места на лицевой панели, чтобы вместить еще и управляющую электронику.

В качестве основного источника питания для своей электроники я выбрал standby источник. Было замечено, что если его хорошенько нагрузить, то он перестает пищать, поэтому идеальными оказались 7-сегментные индикаторы — и блок питания подгрузят и напряжение с током покажут.

Фальш-панель:

На ней индикаторы, потенциометры, светодиод. Для того, чтобы не тащить кучу проводов к 7-сегментникам, я использовал сдвиговые регистры 74AC164. Почему AC, а не HC ? У HC максимальный суммарный ток всех ножек – 50мА, а у AC – по 25мА на каждую ножку. Ток индикаторов я выбрал 20мА, тоесть 74HC164 точно бы не хватило по току.

Управляющая электроника – тут все слегка посложнее.

В процессе составления схемы, я конкретно налажал, за что и поплатился кучей перемычек на плате. Вам-же предоставляется исправленная схема.

Если кратко, то – U1A – диф. усилитель тока. При максимальном тока, на выходе получается 2.56В, что совпадает с опорным у АЦП контроллера.

U1B – собственно токовый компаратор – если ток превышает порог, заданный резисторами, tl494 “затыкается”

U2A – индикатор того, что БП работает в режиме ограничения тока.

Переделка выходной части

Выбрасываем все лишнее. Схема получается такой (кликабельно):

Синфазный дроссель я немного переделал – соединил последовательно обмотку которая для 12В и две обмотки для 5в, в итоге получилось около 100мкГн, что дофига. Еще я заменил конденсатор тремя включенными параллельно 1000мкФ/25В

После модификации, выход выглядит так:

Настройка

Запускаем. Офигиваем от количества шума!

300мВ! Пачки, похоже на возбуждение обратной связи. Тормозим ОС до предела, пачки не исчезают. Значит, дело не в ОС

Долго тыкавшись, я нашел, что причина такого шума – провод! О_о Простой двужильный двухметровый провод! Если подключить осциллограф до него, или включить конденсатор прямо на щуп осциллографа, пульсации уменьшаются до 20мВ ! Это явление я толком не могу объяснить. Может, кто-то из вас, поделится? Теперь, понятно что делать – в питающейся схеме должен быть конденсатор, и конденсатор нужно повесить непосредственно на клеммы БП.

Кстати, насчет Y – конденсаторов. Китайцы сэкономили на них и не поставили. Итак, выходное напряжение без Y-конденсаторов

А теперь – с Y конденсатором:

Лучше? Несомненно! Более того, после установки Y – конденсаторов сразу-же перестал глючить измеритель тока!

Еще я поставил X2 – конденсатор, чтобы хоть как-то поменьше хлама в сети было. К сожалению, похожего синфазного дросселя у меня нет, но как только найду – сразу поставлю.

Обратная связь.

Про нее я написал отдельную статейку, читайте

Охлаждение

Вот тут пришлось повозиться! После нескольких секунд под полной нагрузкой вопрос о необходимости активного охлаждения был снят. Больше всех грелась выходная диодная сборка.

В сборке стоят обычные диоды, я думал заменить их диодами Шоттки. Но обратное напряжение на этих диодах оказалось порядка 100 вольт, а как известно, высоковольтные диоды шоттки не намного лучше обычных диодов.

Поэтому, пришлось прикрутить кучу дополнительных радиаторов (сколько влезло) и организовать активное охлаждение.

Откуда брать питание для вентилятора? Вот и я долго думал, но таки придумал. tl494 питается от источника напряжением 25В. Берем его (с перемычки J3 на схеме) и понижаем стабилизатором 7812.

Для продуваемости пришлось вырезать крышку под 120мм вентилятор, и прицепить соответствующую решетку, а сам вентилятор поставить на 80мм. Единственное место, где это можно было сделать – это верхняя крышка, а поэтому конструкция получилась очень плохая – с верху может упасть какая-то металлическая хрень и замкнуть внутренние цепи блока питания. Ставлю себе 2 балла. Не стоило уходить от корпуса блока питания! Не повторяйте моих ошибок!

Вентилятор никак не крепится. Его просто прижимает верхняя крышка. Так вот хорошо с размерами я попал.

Результаты

Итог. Итак, этот блок питания работает уже неделю, и можно сказать, что он довольно надежен. К моему удивлению, он очень слабо излучает, и это хорошо!

Я попытался описать подводные камни, на которые сам нарвался. Надеюсь, вы не повторите их! Удачи!

Добрый день. Хотелось бы уточнить номиналы резисторов R3, R8, R14 и R18, параметры L1 в управляющей электронике, номиналы резисторов R22 и R25 в фальшпанеле, а также возможно ли выложить печатные платы. Спасибо.

Автору конечно респект за разработку! Но для повторения нужно сначала расколдовать схему управления БП, котораые в ПДФе. Блин! Что заставляет вас сначала зашифровывать схему? А тот, для кого это здесь выложено, потом расшифровывает эту схему. Какой же дебил так так придумал. Неужели нельзя было нормально нарисовать обе схемы управления (pdf) на одном листе и без всяких ссылок типа: Vref, AGND… Что за бездарность такая. BSVi — тебе большой минус по черчению схем! Ты бездарность. Никогда больше этого не делай. Попроси специалистов сделать это

Автор проделал приличную работу и написал полезную статью. Насчет схем, уж извините, наоборот, Вы показываете свою безграмотность

Источник