Меню

Индикатор низкого заряда аккумулятора

Индикатор низкого заряда аккумулятора

10 схем индикаторов разряда Li-ion аккумуляторов

Статья обновлена: 2020-12-08

Индикатор разряда Li-ion аккумулятора отражает уровень оставшегося заряда и помогает избегать разочарований из-за внезапно разрядившихся элементов питания. Зная, что аккумулятор скоро сядет, можно заблаговременно поставить его на зарядку и избежать простоя в работе приборов. Разработкой схем индикаторов разряда Li-ion аккумуляторов занимались многие радиолюбители. Результатом их труда стало множество схемотехнических решений разной степени сложности.

В этой статье приведены 10 популярных схем, которые относительно просты в реализации. Собранные по ним индикаторы информируют о малом напряжении на ячейке, но не защищают ее от глубокого разряда. Для этой цели используются присоединенные к элементам питания платы защиты или самостоятельное отключение нагрузки пользователем.

Схема 1 – на стабилитроне и транзисторе

При величине напряжения выше 3,25 В стабилитрон пребывает в пробое, транзистор – в закрытом состоянии, и ток полностью идет через зеленый светодиод. При падении напряжения до его значений в диапазоне 3+1,2 В происходит открытие транзистора, и ток распределяется между светодиодами. Между цветами происходит плавный переход. Чем ярче горит красный индикатор, тем сильнее разрядился элемент. При 3 В цветового перехода нет – светится красная лампочка.

При реализации этой схемы могут возникнуть трудности с поиском стабилитронов, обеспечивающих нужный порог срабатывания. Еще один ее недостаток – постоянное энергопотребление около 1 мА.

Схема 2 – на микросхеме TL431 в роли стабилизатора напряжения

Порог срабатывания зависит от делителя R2-R3 и здесь равен 3,2 В. Когда вольтаж достигает этой величины, микросхема прекращает шунтировать светодиод, и он загорается. Это сигнал пользователю о скорой разрядке элемента питания.

Схема 3 – на паре транзисторов

Здесь границы срабатывания определяют транзисторы R2, R3. Вместо старых моделей уместно использовать BC237, BC238 или BC317 взамен КТ3102 и BC556 или BC557 вместо КТ3107.

Схема 4 – на паре полевых транзисторов

В режиме ожидания она потребляет минимальные токи. Транзисторы нужны n-канальные с минимальным напряжением отсечки. При питании нагрузки на затворе транзистора VT1 при участии делителя R1-R2 создается положительное напряжение. Если оно превышает напряжение отсечки транзистора, происходит его открытие, затвор VT2 притягивается на землю и закрывается. По мере снижения напряжения VT1 закрывается, а VT2 – открывается, обеспечивая сияние светодиода. Это знак о необходимости подзарядить элемент питания.

Схема 5 – на 3-х транзисторах

Схема обеспечивает высокую точность – между светящимся и несветящимся светодиодом хватает отличия в 0,01 В. При включенном индикаторе потребляется ток 3 мА, при отключенном – 0,3 мА. Вместо транзисторов BC848 и BC856 подходят ВС546 и ВС556.

Схема 6 – с отключением нагрузки

Она обеспечивает индикацию и отключение нагрузки при критическом падении напряжения, но сама продолжает потреблять ток около 15–20 мА.

Схема 7 – с мониторами напряжения

Мониторы, супервизоры или детекторы напряжения представляют собой микросхемы, созданные для отслеживания напряжения. По этой схеме светодиод начинает светиться при падении напряжения до 3,1 В. BD47xx с открытым выходным коллектором ограничивает выходной ток на границе 12 мА, поэтому светодиод можно подключать напрямую. Главные преимущества этого варианта – простота реализации и малое энергопотребление.

Схема 8 – на инверторе 74HC04

Используются стабилитроны с рабочим вольтажом менее напряжения срабатывания – на 2–2,7 В. Граница срабатывания подстраивается посредством резистора R2. Энергопотребление – порядка 2 мА.

Схема 9 – на контроллере ATMega328

Предусматривает использование микроконтроллера ATMega328 с интегрированным источником опорного напряжения и входом АЦП. Светодиод используется 3-цветный, но синий цвет не задействуется. Контроллер управляет светодиодами через ШИМ и выдает индикацию путем смешения цветов:

  1. мигающий зеленый – соответствует напряжению 4,2 В;
  2. зеленый – 4,1 В;
  3. оба цвета – в промежутке от 3,5 до 4,1 В;
  4. мигающий красный – ниже 3,5 В.

Схема 10 – на микросхеме LM3914

Линия из 10 светодиодов информирует пользователя о степени разряда элемента питания. Пороговые напряжения (минимальное DIV_LO и максимальное DIV_HI) определяет делитель R3-R4-R5. Для экономии энергии рекомендуется подключить 9-й вывод на землю. В результате будет светиться не линия светодиодов, а один, который соответствует текущему напряжению. Энергопотребление этой схемы – порядка 2,5 мА и еще по 5 мА на каждый светящийся светодиод.

Источник



13 схем индикаторов разряда Li-ion аккумуляторов: от простых к сложным

Как узнать, когда сядет аккумулятор

Что может быть печальнее, чем внезапно севший аккумулятор в квадрокоптере во время полета или отключившийся металлоискатель на перспективной поляне? Вот если бы можно было бы заранее узнать, насколько сильно заряжен аккумулятор! Тогда мы могли бы подключить зарядку или поставить новый комплект батарей, не дожидаясь грустных последствий.

И вот тут как раз рождается идея сделать какой-нибудь индикатор, который заранее подаст сигнал о том, что батарейка скоро сядет. Над реализацией этой задачи пыхтели радиолюбители всего мира и сегодня существует целый вагон и маленькая тележка различных схемотехнических решений — от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

Далее будут представлены только те индикаторы разряда li-ion аккумуляторов, которые не только проверены временем и заслуживают вашего внимания, но и с легкостью собираются своими руками.

Вариант №1

Индикатор разряда Li-ion на стабилитроне

Начнем, пожалуй, с простенькой схемки на стабилитроне и транзисторе:

Разберем, как она работает.

Пока напряжение выше определенного порога (2.0 Вольта), стабилитрон находится в пробое, соответственно, транзистор закрыт и весь ток течет через зеленый светодиод. Как только напряжение на аккумуляторе начинает падать и достигает значения порядка 2.0В + 1.2В (падение напряжение на переходе база-эмиттер транзистора VT1), транзистор начинает открываться и ток начинает перераспределяться между обоими светодиодами.

Если взять двухцветный светодиод, то мы получим плавный переход от зеленого к красному, включая всю промежуточную гамму цветов.

Типовое различие прямого напряжения в двухцветных светодиодах составляет 0.25 Вольта (красный зажигается при более низком напряжении). Именно этой разницей определяется область полного перехода между зеленым и красным цветом.

Таким образом, не смотря на свою простоту, схема позволяет заранее узнать, что батарейка начала подходить к концу. Пока напряжение на аккумуляторе составляет 3.25В или более, горит зеленый светодиод. В промежутке между 3.00 и 3.25V к зеленому начинает подмешиваться красный — чем ближе к 3.00 Вольтам, тем больше красного. И, наконец, при 3V горит только чисто красный цвет.

Читайте также:  Сульфатация пластин аккумулятора что это и как устранить

Недостаток схемы в сложности подбора стабилитронов для получения необходимого порога срабатывания, а также в постоянном потреблении тока порядка 1 мА. Ну и, не исключено, что дальтоники не оценят эту задумку с меняющимися цветами.

Индикатор заряда с двумя светодиодами (зеленый и красный)

Кстати, если в эту схему поставить транзистор другого типа, ее можно заставить работать противоположным образом — переход от зеленого к красному будет происходить, наоборот, в случае повышения входного напряжения. Вот модифицированная схема:

Вариант №2

Простейший индикатор разряда для литий-ионного аккумулятора

В следующей схеме использована микросхема TL431, представляющая собой прецизионный стабилизатор напряжения.

Порог срабатывания определяется делителем напряжения R2-R3. При указанных в схеме номиналах он составляет 3.2 Вольта. При снижении напряжения на аккумуляторе до этого значения, микросхема перестает шунтировать светодиод и он зажигается. Это будет сигналом к тому, что полный разряд батареи совсем близок (минимально допустимое напряжение на одной банке li-ion равно 3.0 В).

Защита литиевой батареи от переразряда

Если для питания устройства применяется батарея из нескольких последовательно включенных банок литий-ионного аккумулятора, то приведенную выше схему необходимо подключить к каждой банке отдельно. Вот таким образом:

Для настройки схемы подключаем вместо батарей регулируемый блок питания и подбором резистора R2 (R4) добиваемся зажигания светодиода в нужный нам момент.

Вариант №3

Самый простой индикатор разряда для li-ion аккумулятора

А вот простая схема индикатора разрядки li-ion аккумулятора на двух транзисторах:Порог срабатывания задается резисторами R2, R3. Старые советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).

Вариант №4

Контроль разряда батареек на полевых транзисторах

Схема на двух полевых транзисторах, потребляющая в ждущем режиме буквально микротоки.

При подключении схемы к источнику питания, положительное напряжение на затворе транзистора VT1 формируется с помощью делителя R1-R2. Если напряжение выше напряжение отсечки полевого транзистора, он открывается и притягивает затвор VT2 на землю, тем самым закрывая его.

В определенный момент, по мере разряда аккумулятора, напряжение, снимаемое с делителя становится недостаточным для отпирания VT1 и он закрывается. Следовательно, на затворе второго полевика появляется напряжение, близкое к напряжению питания. Он открывается и зажигает светодиод. Свечение светодиода сигнализирует нам о необходимости подзаряда аккумулятора.

Транзисторы подойдут любые n-канальные с низким напряжением отсечки (чем меньше — тем лучше). Работоспособность 2N7000 в этой схеме не проверялась.

Вариант №5

Схема индикатора разряда литиевого аккумулятора

На трех транзисторах:

Думаю, схема не нуждается в пояснениях. Благодаря большому коэфф. усиления трех транзисторных каскадов, схема срабатывает очень четко — между горящим и не горящим светодиодом достаточно разницы в 1 сотую долю вольта. Потребляемый ток при включенной индикации — 3 мА, при выключенном светодиоде — 0.3 мА.

Чтобы не сел аккумулятор

Не смотря на громоздкий вид схемы, готовая плата имеет достаточно скромные габариты:

С коллектора VT2 можно брать сигнал, разрешающий подключение нагрузки: 1 — разрешено, 0 — запрещено.

Транзисторы BC848 и BC856 можно заменить на ВС546 и ВС556 соответственно.

Вариант №6

Индикатор разряда АКБ и отключение нагрузки

Эта схема мне нравится тем, что она не только включает индикацию, но и отрубает нагрузку.

Жаль только, что сама схема от аккумулятора не отключается, продолжая потреблять энергию. А жрет она, благодаря постоянно горящему светодиоду, немало.

Источник образцового напряжения на TL431

Зеленый светодиод в данном случае выступает в роли источника опорного напряжения, потребляя ток порядка 15-20 мА. Чтобы избавиться от такого прожорливого элемента, вместо источника образцового напряжения можно применить ту же TL431, включив ее по такой схеме*:

*катод TL431 подключить ко 2-ому выводу LM393.

Вариант №7

Схема с применением так называемых мониторов напряжения. Их еще называют супервизорами и детекторами напряжения (voltdetector’ами). Это специализированные микросхемы, разработанные специально для контроля за напряжением.

Монитор напряжения (супервизор)

Вот, например, схема, поджигающая светодиод при снижении напряжения на аккумуляторе до 3.1V. Собрана на BD4731.

Согласитесь, проще некуда! BD47xx имеет открытый коллектор на выходе, а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

Аналогичным образом можно применить любой другой супервизор на любое другое напряжение.

Вот еще несколько вариантов на выбор:

  • на 3.08V: TS809CXD, TCM809TENB713, MCP103T-315E/TT, CAT809TTBI-G;
  • на 2.93V: MCP102T-300E/TT, TPS3809K33DBVRG4, TPS3825-33DBVT, CAT811STBI-T3;
  • серия MN1380 (или 1381, 1382 — они отличаются только корпусами). Для наших целей лучше всего подходит вариант с открытым стоком, о чем свидетельствует дополнительная циферка «1» в обозначении микросхемы — MN13801, MN13811, MN13821. Напряжение срабатывания определяется буквенным индексом: MN13811-L как раз на 3,0 Вольта.

Схема детектора разряда аккумулятора на КР1171СП28

Также можно взять советский аналог — КР1171СПхх:

КР1171СП хх

В зависимости от цифрового обозначения, напряжение детекции будет разным:

Сетка напряжений не очень-то подходит для контроля за li-ion аккумуляторами, но совсем сбрасывать эту микросхему со счетов, думаю, не стоит.

Микросхема монитора (детектора) напряжения

Неоспоримые достоинства схем на мониторах напряжения — чрезвычайно низкое энергопотребление в выключенном состоянии (единицы и даже доли микроампер), а также ее крайняя простота. Зачастую вся схема умещается прямо на выводах светодиода:

Чтобы сделать индикацию разряда еще более заметной, выход детектора напряжения можно нагрузить на мигающий светодиод (например, серии L-314). Или самому собрать простейшую «моргалку» на двух биполярных транзисторах.

Индикатор севшего аккумулятора 18650 с мигающим светодиодом

Пример готовой схемы, оповещающей о севшей батарейке с помощью вспыхивающего светодиода приведен ниже:

Еще одна схема с моргающим светодиодом будет рассмотрена ниже.

Вариант №8

Экономичный индикатор разряда литиевого аккумулятора на МАХ9030

Крутая схема, запускающая моргание светодиода, если напряжение на литиевом аккумуляторе упадет до 3.0 Вольта:

Эта схема заставляет вспыхивать сверхяркий светодиод с коэффициентом заполнения 2.5% (т.е. длительная пауза — коротка вспышка — опять пауза). Это позволяет снизить потребляемый ток до смешных значений — в выключенном состоянии схема потребляет 50 нА (нано!), а в режиме моргания светодиодом — всего 35 мкА. Сможете предложить что-нибудь более экономичное? Вряд ли.

Как можно было заметить, работа большинства схем контроля за разрядом сводится к сравнению некоего образцового напряжения с контролируемым напряжением. В дальнейшем эта разница усиливается и включает/отключает светодиод.

Читайте также:  Калибровка аккумулятора для ноутбука dell

Обычно в качестве усилителя разницы между опорным напряжением и напряжением на литиевом аккумуляторе используют каскад на транзисторе или операционный усилитель, включенный по схеме компаратора.

Но есть и другое решение. В качестве усилителя можно применить логические элементы — инверторы. Да, это нестандартное использование логики, но это работает. Подобная схема приведена в следующем варианте.

Вариант №9

74HC04 в качестве индикатора разряда литий-ионного аккумулятора

Схема на 74HC04.

Рабочее напряжение стабилитрона должно быть ниже напряжение срабатывания схемы. Например, можно взять стабилитроны на 2.0 — 2.7 Вольта. Точная подстройка порога срабатывания задается резистором R2.

Схема потребляет от батареи около 2 мА, так что ее тоже надо включать после выключателя питания.

Вариант №10

Светодиодный индикатор напряжения на литий-ионном аккумуляторе

Это даже не индикатор разряда, а, скорее, целый светодиодный вольтметр! Линейная шкала из 10 светодиодов дает наглядное представление о состоянии аккумулятора. Весь функционал реализован всего на одной-единственной микросхеме LM3914:

Делитель R3-R4-R5 задает нижнее (DIV_LO) и верхнее (DIV_HI) пороговые напряжения. При указанных на схеме значениях свечению верхнего светодиода соответствует напряжение 4.2 Вольта, а при снижении напряжения ниже 3х вольт, погаснет последний (нижний) светодиод.

Подключив 9-ый вывод микросхемы на «землю», можно перевести ее в режим «точка». В этом режиме всегда светится только один светодиод, соответствующий напряжению питания. Если оставить как на схеме, то будет светиться целая шкала из светодиодов, что нерационально с точки зрения экономичности.

В качестве светодиодов нужно брать только светодиоды красного свечения, т.к. они обладают самым малым прямым напряжением при работе. Если, например, взять синие светодиоды, то при севшем до 3х вольт аккумуляторе, они, скорее всего, вообще не загорятся.

Сама микросхема потребляет около 2.5 мА, плюс 5 мА на каждый зажженный светодиод.

Недостатком схемы можно считать невозможность индивидуальной настройки порога зажигания каждого светодиода. Можно задать только начальное и конечное значение, а встроенный в микросхему делитель разобьет этот интервал на равные 9 отрезков. Но, как известно, ближе к концу разряда, напряжение на аккумуляторе начинает очень стремительно падать. Разница между аккумуляторами, разряженными на 10% и 20% может составлять десятые доли вольта, а если сравнить эти же аккумуляторы, только разряженненные на 90% и 100%, то можно увидеть разницу в целый вольт!

График (кривая) разряда литий-ионного аккумулятора

Типичный график разряда Li-ion аккумулятора, приведенный ниже, наглядно демонстрирует данное обстоятельство:

Таким образом, использование линейной шкалы для индикации степени разряда аккумулятора представляется не слишком целесообразным. Нужна схема, позволяющая задать точные значения напряжений, при которых будет загораться тот или иной светодиод.

Полный контроль над моментами включения светодиодов дает схема, представленная ниже.

Вариант №11

Прецизионный индикатор на LM339

Данная схема является 4-разрядным индикатором напряжения на аккумуляторе/батарейке. Реализована на четырех ОУ, входящих в состав микросхемы LM339.

4 светодиода горят в зависимости от напряжения на батарейке

Схема работоспособна вплоть до напряжения 2 Вольта, потребляет меньше миллиампера (не считая светодиода).

Разумеется, для отражения реального значения израсходованной и оставшейся емкости аккумулятора, необходимо при настройке схемы учесть кривую разряда используемого аккумулятора (с учетом тока нагрузки). Это позволит задать точные значения напряжения, соответствующие, например, 5%-25%-50%-100% остаточной емкости.

Вариант №12

Ну и, конечно, широчайший простор открывается при использовании микроконтроллеров со встроенным источником опорного напряжения и имеющих вход АЦП. Тут функционал ограничивается только вашей фантазией и умением программировать.

Индикатор разряда АКБ на микроконтроллере ATMega

Как пример приведем простейшую схему на контроллере ATMega328.

Хотя тут, для уменьшения габаритов платы, лучше было бы взять 8-миногую ATTiny13 в корпусе SOP8. Тогда было бы вообще шикарно. Но пусть это будет вашим домашним заданием.

Светодиод взят трехцветный (от светодиодной ленты), но задействованы только красный и зеленый.

Готовую программу (скетч) можно скачать по этой ссылке.

Программа работает следующим образом: каждые 10 секунд опрашивается напряжение питания. Исходя из результатов измерений МК управляет светодиодами с помощью ШИМ, что позволяет получать различные оттенки свечения смешением красного и зеленого цветов.

Свежезаряженный аккумулятор выдает порядка 4.1В — светится зеленый индикатор. Во время зарядки на АКБ присутствует напряжение 4.2В, при этом будет моргать зеленый светодиод. Как только напряжение упадет ниже 3.5В, начнет мигать красный светодиод. Это будет сигналом к тому, что аккумулятор почти сел и его пора заряжать. В остальном диапазоне напряжений индикатор будет менять цвет от зеленого к красному (в зависимости от напряжения).

Вариант №13

Ну и на закуску предлагаю вариант переделки стандартной платы защиты (их еще называют контроллерами заряда-разряда), превращающий ее в индикатор севшего аккумулятора.

Эти платы (PCB-модули) добываются из старых батарей мобильных телефонов чуть ли не в промышленных масштабах. Просто подбираете на улице выброшенный аккумулятор от мобилы, потрошите его и плата у вас в руках. Все остальное утилизируете как положено.

Схема защиты Li-ion от переразряда/перезаряда

Чаще всего PCB-плата представляет собой вот такую схемку:

Микросборка 8205 — это два миллиомных полевика, собранных в одном корпусе.

Как сделать индикатор разряда лития из платы защиты от мобильного телефона

Внеся в схему некоторые изменения (показаны красным цветом), мы получим прекрасный индикатор разряда li-ion аккумулятора, практически не потребляющий ток в выключенном состоянии.

Так как транзистор VT1.2 отвечает за отключение зарядного устройства от банки аккумулятора от при перезаряде, то он в нашей схеме лишний. Поэтому мы полностью исключили этот транзистор из работы, разорвав цепь стока.

Резистор R3 ограничивает ток через светодиод. Его сопротивление необходимо подобрать таким образом, чтобы свечение светодиода было уже заметным, но потребляемый ток еще не был слишком велик.

Как сделать индикатор разряда из платы защиты литий-ионного аккумулятора

Кстати, можно сохранить все функции модуля защиты, а индикацию сделать с помощью отдельного транзистор, управляющий светодиодом. То есть индикатор будет загораться одновременно с отключением аккумулятора в момент разряда.

Вместо 2N3906 подойдет любой имеющийся под рукой маломощный p-n-p транзистор. Просто подпаять светодиод напрямую не получится, т.к. выходной ток микросхемы, управляющий ключами, слишком мал и требует усиления.

Как, наверное, не сложно догадаться, схемы могут быть использованы и наоборот — в качестве индикатора заряда.

Источник

Индикатор разряда Li-ion на TL431

Всем привет! Давно ничего не выкладывал, да и на само радиолюбительство подзабил в последнее время. Данный проект у меня уже давно «висит», вот нашёл время поделиться им с вами.
Итак, что и зачем: в большинстве моих (и не только моих) поделок используются элементы питания li-ion номиналом 3,7в — стандартные 18650, всяческие аккумы из сотовых телефонов и китайские разнокалиберные «лепёхи». На том же алиэкспресс есть модули зарядки, повышающие модули, модули для контроля разряда и прочая полезная ерунда, которая сильно облегчает жизнь. Но я не нашёл ничего вменяемого чтобы следить за уровнем заряда батареи и в случае достижения какого-то порогового значения сообщать об этом. Можно конечно сделать слежение на мозгах мк самоделки, либо поставить вольтметр за 70р с того же али, но всегда либо ног у мк не хватает, либо решение получается чрезмерным и громоздким. Исходя из всего этого возникла цель сделать маленькое и просто устройство, которое можно было бы клепать пачками из дешевых компонентов и которое выполняло бы свою функцию — показывало бы что батарея садится и её нужно зарядить.
Началось с вот такой схемы, которую я нашёл на просторах интернета:

Читайте также:  Micromax x704 аккумулятор совместимость

Тут используются 4 резистора, R1 и R2 составляют делитель напряжения на управляющем контакте TL431, R3 подтяжка базы NPN транзистора к плюсу питания, R4 — токоограничивающий для индикаторного светодиода, уже упомянутый NPN-транзистор, а также регулируемый стабилитрон TL431, который является сердцем всей схемы.
Сначала был собран DIP-прототип, для проверки работоспособности, вот его фото, если кто захочет в таком варианте повторить:

Образец тесты прошёл, после чего была разработана (слово то какое громкое) новая схема на смд компонентах, собственно к чему я и стремился:

После ЛУТ, травления и сверловки я получил несколько таких вот малышек (часть уже где-то просрал):

ну и собственно готовое изделие, я бы даже сказал модуль:

Источник

10 схем индикаторов разряда Li-ion аккумуляторов

10 схем индикаторов разряда Li-ion аккумуляторов

Статья обновлена: 2020-12-08

Индикатор разряда Li-ion аккумулятора отражает уровень оставшегося заряда и помогает избегать разочарований из-за внезапно разрядившихся элементов питания. Зная, что аккумулятор скоро сядет, можно заблаговременно поставить его на зарядку и избежать простоя в работе приборов. Разработкой схем индикаторов разряда Li-ion аккумуляторов занимались многие радиолюбители. Результатом их труда стало множество схемотехнических решений разной степени сложности.

В этой статье приведены 10 популярных схем, которые относительно просты в реализации. Собранные по ним индикаторы информируют о малом напряжении на ячейке, но не защищают ее от глубокого разряда. Для этой цели используются присоединенные к элементам питания платы защиты или самостоятельное отключение нагрузки пользователем.

Схема 1 – на стабилитроне и транзисторе

При величине напряжения выше 3,25 В стабилитрон пребывает в пробое, транзистор – в закрытом состоянии, и ток полностью идет через зеленый светодиод. При падении напряжения до его значений в диапазоне 3+1,2 В происходит открытие транзистора, и ток распределяется между светодиодами. Между цветами происходит плавный переход. Чем ярче горит красный индикатор, тем сильнее разрядился элемент. При 3 В цветового перехода нет – светится красная лампочка.

При реализации этой схемы могут возникнуть трудности с поиском стабилитронов, обеспечивающих нужный порог срабатывания. Еще один ее недостаток – постоянное энергопотребление около 1 мА.

Схема 2 – на микросхеме TL431 в роли стабилизатора напряжения

Порог срабатывания зависит от делителя R2-R3 и здесь равен 3,2 В. Когда вольтаж достигает этой величины, микросхема прекращает шунтировать светодиод, и он загорается. Это сигнал пользователю о скорой разрядке элемента питания.

Схема 3 – на паре транзисторов

Здесь границы срабатывания определяют транзисторы R2, R3. Вместо старых моделей уместно использовать BC237, BC238 или BC317 взамен КТ3102 и BC556 или BC557 вместо КТ3107.

Схема 4 – на паре полевых транзисторов

В режиме ожидания она потребляет минимальные токи. Транзисторы нужны n-канальные с минимальным напряжением отсечки. При питании нагрузки на затворе транзистора VT1 при участии делителя R1-R2 создается положительное напряжение. Если оно превышает напряжение отсечки транзистора, происходит его открытие, затвор VT2 притягивается на землю и закрывается. По мере снижения напряжения VT1 закрывается, а VT2 – открывается, обеспечивая сияние светодиода. Это знак о необходимости подзарядить элемент питания.

Схема 5 – на 3-х транзисторах

Схема обеспечивает высокую точность – между светящимся и несветящимся светодиодом хватает отличия в 0,01 В. При включенном индикаторе потребляется ток 3 мА, при отключенном – 0,3 мА. Вместо транзисторов BC848 и BC856 подходят ВС546 и ВС556.

Схема 6 – с отключением нагрузки

Она обеспечивает индикацию и отключение нагрузки при критическом падении напряжения, но сама продолжает потреблять ток около 15–20 мА.

Схема 7 – с мониторами напряжения

Мониторы, супервизоры или детекторы напряжения представляют собой микросхемы, созданные для отслеживания напряжения. По этой схеме светодиод начинает светиться при падении напряжения до 3,1 В. BD47xx с открытым выходным коллектором ограничивает выходной ток на границе 12 мА, поэтому светодиод можно подключать напрямую. Главные преимущества этого варианта – простота реализации и малое энергопотребление.

Схема 8 – на инверторе 74HC04

Используются стабилитроны с рабочим вольтажом менее напряжения срабатывания – на 2–2,7 В. Граница срабатывания подстраивается посредством резистора R2. Энергопотребление – порядка 2 мА.

Схема 9 – на контроллере ATMega328

Предусматривает использование микроконтроллера ATMega328 с интегрированным источником опорного напряжения и входом АЦП. Светодиод используется 3-цветный, но синий цвет не задействуется. Контроллер управляет светодиодами через ШИМ и выдает индикацию путем смешения цветов:

  1. мигающий зеленый – соответствует напряжению 4,2 В;
  2. зеленый – 4,1 В;
  3. оба цвета – в промежутке от 3,5 до 4,1 В;
  4. мигающий красный – ниже 3,5 В.

Схема 10 – на микросхеме LM3914

Линия из 10 светодиодов информирует пользователя о степени разряда элемента питания. Пороговые напряжения (минимальное DIV_LO и максимальное DIV_HI) определяет делитель R3-R4-R5. Для экономии энергии рекомендуется подключить 9-й вывод на землю. В результате будет светиться не линия светодиодов, а один, который соответствует текущему напряжению. Энергопотребление этой схемы – порядка 2,5 мА и еще по 5 мА на каждый светящийся светодиод.

Источник