Меню

Импульсный трансформатор для блока питания маркировка

Определяем тип трансформатора по номеру.

Здравствуйте. Пробегусь сегодня по заезженной теме, поэтому статья пригодится тем, кто до сих пор не научился определять параметры неизвестного трансформатора. Давно уже хотел написать статью об этом, но не было более менее приличного трансформатора. Сегодня снял трансформатор с микроволновки времен СССР, определю какие напряжения на нем есть и покажу вам. Ну начнем с того что общепринято прозванивать обмотки на сопротивление и где сопротивление больше та сетевая. Такой способ имеет право на жизнь, но не для всех трансформаторов. Анодно накальные тяжело определить где сетевая, так же тяжело определить если есть две симметричные обмотки по 110В или 127В. Как быть с трансформатором как мой герой статьи на фото, у которого 14 вводов

На время написания статьи я забуду откуда снял трансформатор, забуду куда что было включено. Возьму мультиметр в режиме омметра на пределе 200 Ом и начну мерять и сразу записывать какие обмотки связанны и какое на них сопротивление. Для удобства обмотки буду метить на бумаге.

В итоге у меня есть таблица сопротивлений(не учитывал сопротивление щупов мультиметра, поэтому показания не точны) и схема трансформатора. Как бы уже по схеме понятно что сетевая это обмотка между контактами 1-2, но как определить если бы были еще обмотки с большим сопротивление, скажем 20Ом или 30Ом.

Тут все просто, сетевая обмотка обычно мотается первой. Но стоит перестраховаться. Беру лампочку на 220В на 40Вт и последовательно включаем с обмотками, как описано в статье безопасный пуск через лампу. Начинать надо с обмотки самым большим сопротивлением, и двигаться в сторону уменьшения сопротивления. Если лампа начинает конкретно подсвечивать, значит ток ХХ стал превышать нормы.

Выбираю предыдущую обмотку и подключаю теперь трансформатор через предохранитель. Оставляю на час, смотрю как греется. Если транс слегка теплый, значит обмотка выбрана правильно. На этой обмотке трансформатор должен выдавать номинальную расчетную мощность, в моем случае должен тянуть 180-200Вт

Ну и на последок осталось замерить напряжения на оставшихся обмотках. Обмотка 13-14 это отвод с другой стороны намотанный толстым проводом не менее 2,5 квадратов. Остальные обмотки намотаны проводом 0,51мм кв, что означает что каждая обмотка выдержит около 1А

Напряжения для моих задач не совсем стандартные, но возможно он куда нибудь да пригодится без перемотки На этом пока все. Надеюсь было полезно и интересно. Если вам нравятся мои статьи, рекомендую подписаться на обновления Контакте или Одноклассниках что бы не пропустить что то новое С ув. Эдуард

Первое, что надо сделать, это взять листок бумаги, карандаш и мультиметр. Пользуясь всем этим, прозвонить обмотки трансформатора и зарисовать на бумаге схему. При этом должно получиться что-то очень похожее на рисунок 1.

Выводы обмоток на картинке следует пронумеровать. Возможно, что выводов получится намного меньше, в самом простейшем случае всего четыре: два вывода первичной (сетевой) обмотки и два вывода вторичной. Но такое бывает не всегда, чаще обмоток несколько больше.

Некоторые выводы, хотя они и есть, могут ни с чем не «звониться». Неужели эти обмотки оборваны? Вовсе нет, скорей всего это экранирующие обмотки, расположенные между другими обмотками. Эти концы, обычно, подключают к общему проводу – «земле» схемы.

Поэтому, желательно на полученной схеме записать сопротивления обмоток, поскольку главной целью исследования является определение сетевой обмотки. Ее сопротивление, как правило, больше, чем у других обмоток, десятки и сотни Ом. Причем, чем меньше трансформатор, тем больше сопротивление первичной обмотки: сказывается малый диаметр провода и большое количество витков. Сопротивление понижающих вторичных обмоток практически равно нулю – малое количество витков и толстый провод.

Рис. 1. Схема обмоток трансформатора (пример)

Предположим, что обмотку с наибольшим сопротивлением найти удалось, и можно считать ее сетевой. Но сразу включать ее в сеть не надо. Чтобы избежать взрывов и прочих неприятных последствий, пробное включение лучше всего произвести, включив последовательно с обмоткой, лампочку на 220В мощностью 60…100Вт, что ограничит ток через обмотку на уровне 0,27…0,45А.

Мощность лампочки должна примерно соответствовать габаритной мощности трансформатора. Если обмотка определена правильно, то лампочка не горит, в крайнем случае, чуть теплится нить накала. В этом случае можно почти смело включать обмотку в сеть, для начала лучше через предохранитель на ток не более 1…2А.

Если лампочка горит достаточно ярко, то это может оказаться обмотка на 110…127В. В этом случае следует прозвонить трансформатор еще раз и найти вторую половину обмотки. После этого соединить половины обмоток последовательно и произвести повторное включение. Если лампочка погасла, то обмотки соединены правильно. В противном случае поменять местами концы одной из найденных полуобмоток.

Итак, будем считать, что первичная обмотка найдена, трансформатор удалось включить в сеть. Следующее, что потребуется сделать, измерить ток холостого хода первичной обмотки. У исправного трансформатора он составляет не более 10…15% от номинального тока под нагрузкой. Так для трансформатора, данные которого показаны на рисунке 2, при питании от сети 220В ток холостого хода должен быть в пределах 0,07…0,1А, т.е. не более ста миллиампер.

Рис. 2. Трансформатор ТПП-281

Как измерить ток холостого хода трансформатора

Ток холостого хода следует измерить амперметром переменного тока. При этом в момент включения в сеть выводы амперметра надо замкнуть накоротко, поскольку ток при включении трансформатора может в сто и более раз превышать номинальный. Иначе амперметр может просто сгореть. Далее размыкаем выводы амперметра и смотрим результат. При этом испытании дать поработать трансформатору минут 15…30, и убедиться, что заметного нагрева обмотки не происходит.

Следующим шагом следует замерить напряжения на вторичных обмотках без нагрузки, — напряжение холостого хода. Предположим, что трансформатор имеет две вторичные обмотки, и напряжение каждой из них 24В. Почти то, что надо для рассмотренного выше усилителя. Далее проверяем нагрузочную способность каждой обмотки.

Для этого надо к каждой обмотке подключить нагрузку, в идеальном случае лабораторный реостат, и изменяя его сопротивление добиться, чтобы напряжение на обмотке упало на 10-15%%. Это можно считать оптимальной нагрузкой для данной обмотки.

Вместе с измерением напряжения производится замер тока. Если указанное снижение напряжения происходит при токе, например 1А, то это и есть номинальный ток для испытуемой обмотки. Измерения следует начинать, установив движок реостата R1 в правое по схеме положение.

Рисунок 3. Схема испытания вторичной обмотки трансформатора

Вместо реостата в качестве нагрузки можно использовать лампочки или кусок спирали от электрической плитки. Начинать измерения следует с длинного куска спирали или с подключения одной лампочки. Для увеличения нагрузки можно постепенно укорачивать спираль, касаясь ее проводом в разных точках, или увеличивая по одной количество подключенных ламп.

Как проверить трансформатор мультиметром

Начинающим радиолюбителям очень полезно уметь и знать, как проверить трансформатор мультимтером. Такие знания полезны по той причине, что позволяют сэкономить время и деньги. В большинстве линейных блоков питания львиную долю стоимости составляет трансформатор. Поэтому, если в руках оказался трансформатор с неизвестными параметрами не спешите его выбрасывать. Лучше возьмите в руки мультиметр. Также для некоторых опытов нам понадобится лампа накаливания с патроном.

С целью более осознанного выполнения дальнейших опытов и экспериментов следует понимать, как устроен и работает трансформатор трансформатора. Рассмотрим здесь это в упрощенной форме.

Читайте также:  Применение блока питания от монитора

Простейший трансформатор представляет собой две обмотки, намотанных на сердечник или магнитопровод. Каждая обмотка представляет собой изолированные друг от друга проводники. А сердечник набирается из тонких изолированных друг от друга листов из специальной электротехнической стали. На одну из обмоток, называемую первичной, подается напряжение, а со второй, называемой вторичной, оно снимается.

Источник



Что такое импульсный трансформатор и как его рассчитать?

Импульсные трансформаторы (ИТ) являются востребованным прибором в хозяйственной деятельности. Часто устанавливают в блоки питания бытовой, компьютерной, специальной техники. Импульсный трансформатор своими руками создают мастера с минимальным опытом работы в области радиотехники. Что это за устройство, а также принцип работы будут рассмотрены далее.

Импульсный трансформатор

  • 1 Область применения
    • 1.1 Видео: Как работает импульсный трансформатор?
  • 2 Требования к приборам
  • 3 Принцип работы
  • 4 Разновидности
  • 5 Преимущества
  • 6 Разновидности материалов
  • 7 Расчет
    • 7.1 Интересное видео: Импульсный трансформатор своими руками

Область применения

Задача импульсного трансформатора заключается в защите электрического прибора от короткого замыкания, чрезмерного увеличения значения напряжения, нагрева корпуса. Стабильность блоков питания обеспечена импульсными трансформаторами. Подобные схемы применяются в триодных генераторах, магнетронах. Импульсник применяется при работе инвертора, газового лазера. Данные приборы устанавливают в схемах в качестве дифференцирующего трансформатора.

Импульсные трансформаторы

Радиоэлектронная аппаратура основана на трансформаторной способности импульсных преобразователей. При использовании импульсного блока питания организовывается работа цветного телевизора, обычного компьютерного монитора и т. д. Помимо обеспечения потребителя током требуемой мощности и частоты, трансформатором выполняется стабилизация значения напряжения при работе оборудования.

Видео: Как работает импульсный трансформатор?

Требования к приборам

Преобразователи в блоках питания обладают рядом характеристик. Это функциональные устройства, имеющие определенную габаритную мощность. Они обеспечивают правильное функционирование элементов в схеме.

Импульсный бытовой трансформатор обладает надежностью и высоким перегрузочным порогом. Преобразователь отличается стойкостью к механическим, климатическим воздействиям. Поэтому схема импульсного блока питания телевизоров, компьютеров, планшетов. отличается повышенной электрической устойчивостью.

трансформатор питания импульсный

Приборы обладают небольшой габаритной характеристикой. Стоимость представленных агрегатов зависит от области применения, трудозатрат на изготовление. Отличие представленных трансформаторов от иных подобных приборов заключается в их высокой надежности.

Принцип работы

Рассматривая, как работает агрегат представленного типа, нужно понять отличия между обычными силовыми установками и устройствами ИТ. Намотка трансформатора имеет разную конфигурацию. Это две катушки, связанные магнитоприводом. В зависимости от количества витков первичной и вторичной намотки, на выходе создается электричество с заданной мощностью. Например, в трансформаторе преобразовывается напряжение 12 в 220 В.

Схема подключения импульсного трансформатора

На первичный контур подаются однополярные импульсы. Сердечник остается в состоянии постоянного намагничивания. На первичной намотке определяются импульсные сигналы прямоугольной формы. Интервал между ними во времени короткий. При этом появляются перепады индуктивности. Они отражаются импульсами на вторичной катушке. Эта особенность является основой принципов функционирования подобного оборудования.

Временная диаграмма иллюстрирующая работу импульсного трансформатора

Разновидности

Выделяют разные типы импульсной схемы силового оборудования. Агрегаты отличаются в первую очередь формой конструкции. От этого зависят эксплуатационные характеристики. По виду обмотки различают агрегаты:

  • Тороидальный.Конструкция тороидального импульсного трансформатора
  • Броневой.Конструкция импульсного трансформатора в броневом исполнении
  • Стержневой.Конструкция стержневого импульсного трансформатора
  • Бронестержневой.

Конструктивные особенности бронестержневого импульсного трансформатора

Поперечное сечение сердечника бывает прямоугольное, круглое. Маркировка обязательно содержит информацию об этом факте. Также различают тип обмоток. Катушки бывают:

  • Спиральные.
  • Цилиндрические.
  • Конические.

В первом случае индуктивность рассеивания будет минимальной. Представленный тип преобразователя применяется для автотрансформаторов. Намотка при этом выполняется из фольги или тенты из специального материала.

Цилиндрический тип обмотки характеризуется низким показателем рассеивания индуктивности. Это простая , технологичная конструкция.

Конические разновидности значительно уменьшают рассеивание индуктивности. Емкость обмоток при этом мало увеличивается. Изоляция между двумя слоями обмоток пропорциональна напряжению между первичными витками. Толщина контуров увеличивается от начала к концу.

Представленное оборудование отличается различными эксплуатационными характеристиками. В их число входят габаритная мощность, напряжение на первичной, вторичной обмотке, масса и размер. При указании маркировки учитываются перечисленные характеристики.

Преимущества

Блоки питания с импульсным устройством обладают массой достоинств перед аналоговыми приборами. Именно по этой причине их подавляющее большинство изготавливается по представленной схеме.

Трансформаторы импульсного типа отличаются следующими преимуществами:

  1. Малый вес.
  2. Низкая цена.
  3. Повышенный уровень КПД.
  4. Расширенный диапазон напряжения.
  5. Возможность встроить защиту.

Меньшим весом конструкция обладает из-за увеличения частоты сигнала. Конденсаторы уменьшаются в объеме. Схема их выпрямления наиболее простая.

Сравнивая обычные и импульсные блоки питания, видно, что в последних потери энергии сокращаются. Они наблюдаются при переходных процессах. КПД при этом может составлять 90-98%.

Меньшие габариты агрегатов позволяют снизить затраты на производство. Материалоемкость конечного продукта значительно уменьшается. Запитывать представленные аппараты можно от тока с различными характеристиками. Цифровые технологии, которые применяются при создании малогабаритных моделей, позволяют применять в конструкции специальные защитные блоки. Они предотвращают появление короткого замыкания, прочие аварийные ситуации.

Единственным недостатком импульсных разновидностей устройств является появление высокочастотных помех. Их приходится подавлять различными методами. Поэтому в некоторых разновидностях точных цифровых приборов подобные схемы не используются.

Разновидности материалов

Представленное оборудование изготавливается из различных материалов. Создавая блоки питания представленного типа, потребуется рассмотреть все возможные варианты. Применяются следующие материалы:

  1. Электротехническая сталь.
  2. Пермаллой.
  3. Феррит.

Одним из лучших вариантов является альсифер. Однако его практически не найти в свободной продаже. Поэтому, желая создать оборудование самостоятельно, его не рассматривают в качестве возможного варианта.

Чаще всего для создания сердечника применяется электротехническая сталь марок 3421-3425, 3405-3408. Магнитно-мягкими характеристиками известен пермаллой. Это сплав, который состоит из никеля и железа. Его легируют в процессе обработки.

Для импульсов, интервал которых находится в пределах наносекунды, используется феррит. Этот материал имеет высокое удельное сопротивление.

Расчет

Чтобы создать и намотать трансформаторные контуры самостоятельно, потребуется произвести расчет импульсного трансформатора. Применяется специальная методика. Сначала определяют ряд исходных характеристик оборудования.

График смещения

Например, на первичной обмотке установлено напряжение 300 В. Частота преобразования равняется 25 кГц. Сердечник выполнен из ферритового кольца типоразмером 31 (40х25х11). Сначала потребуется определить площадь сердечника в поперечном сечении:

П = (40-25)/2*11 = 82,5 мм².

Далее можно просчитать минимальное количество витков:

расчет импульсного трансформатора

На основе полученных данных можно найти диаметр сечения провода, который потребуется для создания контуров:

Д = 78/181 = 0,43 мм.

Площадь сечения в этом случае равняется 0,12 м². Максимально допустимый ток на первичной катушке при таких параметрах не должен превышать 0,6 А. Габаритную мощность можно определить по следующей формуле:

ГМ = 300 * 0,6 = 180 Вт.

На основе полученных показателей можно самостоятельно рассчитать параметры всех составляющих будущего прибора. Создать трансформатор этого типа станет увлекательным занятием для радиолюбителя.

Подобный аппарат является надежным и качественным при правильной последовательности всех действий. Расчет проводится для каждой схемы индивидуально. При изготовлении подобного оборудования вторичная обмотка должна замыкаться на нагрузку потребителя. В противном случае прибор не будет считаться безопасным.

От типа сборки, материалов и прочих параметров зависит работа трансформатора. Качество схемы напрямую зависит от импульсного блока. Поэтом расчетам, выбору материалов уделяется высокое значение.

Интересное видео: Импульсный трансформатор своими руками

Рассмотрев особенности импульсных трансформаторов, можно понять их важность для многих радиоэлектронных схем. Создать подобное устройство самостоятельно можно только после соответствующего расчета.

Источник

Импульсный трансформатор — виды, принцип работы, формулы для расчета

Различные типы трансформаторного оборудования применяются в электронных и электротехнических схемах, которые востребованы во многих сферах хозяйственной деятельности. Например, импульсные трансформаторы (далее по тексту ИТ) — важный элемент, устанавливаемый практически во всех современных блоках питания.

Конструкция (виды) импульсных трансформаторов

В зависимости от формы сердечника и размещения на нем катушек, ИТ выпускаются в следующих конструктивных исполнениях:

Читайте также:  Ошибка блок питания фары

На рисунках обозначены:

  • A — магнитопроводный контур, выполненный из марок трансформаторной стали, изготовленной по технологии холодного или горячего металлопроката (за исключением сердечника тороидальной формы, он изготавливается из феррита);
  • В — катушка из изолирующего материала
  • С — провода, создающие индуктивную связь.

Заметим, что электротехническая сталь содержит мало добавок кремния, поскольку он становится причиной потери мощности от воздействия вихревых токов на контур магнитопровода. В ИТ тороидального исполнения сердечник может производится из рулонной или ферримагнитной стали.

Пластины для набора электромагнитного сердечника подбираются толщиной в зависимости от частоты. С увеличением этого параметра необходимо устанавливать пластины меньшей толщины.

Принцип работы

Основная особенность трансформаторов импульсного типа (далее ИТ) заключается в том, что на них подаются однополярные импульсы с постоянной токовой составляющей, в связи с чем магнитопровод находится в состоянии постоянного подмагничивания. Ниже показана принципиальная схема подключения такого устройства.

Как видите, схема подключения практически идентична с обычными трансформаторами, чего не скажешь о временной диаграмме.

На первичную обмотку поступают импульсные сигналы, имеющие прямоугольную форму е (t), временной интервал между которыми довольно короткий. Это вызывает возрастание индуктивности во время интервала t u, после чего наблюдается ее спад в интервале (Т-t u).

Перепады индукции происходят со скоростью, которую можно выразить через постоянную времени по формуле: τ p=L 0/R н

Коэффициент, описывающий разность индуктивного перепада, определяется следующим образом: ∆В=В max — В r

  • В max – уровень максимального значения индукции;
  • В r –остаточный.

Более наглядно разность индукций представлена на рисунке, отображающем смещение рабочей точки в магнитопроводном контуре ИТ.

Как видно на временной диаграмме, вторичная катушка имеет уровень напряжения U 2, в котором присутствуют обратные выбросы. Так проявляет себя накопленная в магнитопроводе энергия, которая зависит от намагничивания (параметр i u).

Импульсы тока проходящего через первичную катушку, отличаются трапецеидальной формой, поскольку токи нагрузки и линейные (вызванные намагничиванием сердечника) совмещаются.

Уровень напряжения в диапазоне от 0 до t u остается неизменным, его значение е t=U m . Что касается напряжения на вторичной катушке, то его можно вычислить, воспользовавшись формулой:

  • Ψ — параметр потокосцепления;
  • S – величина, отображающая сечение магнитопроводного сердечника.

Учитывая, что производная, характеризующая изменения тока, проходящего через первичную катушку, является постоянной величиной, нарастание уровня индукции в магнитопроводе происходит линейно. Исходя из этого, допустимо вместо производной внести разность показателей, сделанных через определенный интервал времени, что позволяет внести изменения в формулу:

в этом случае ∆t будет отождествляться с параметром t u , который характеризует длительность, с которой протекает входной импульс напряжения.

Чтобы вычислить площадь импульса, с которым напряжение образуется во вторичной обмотке ИТ, необходимо обе части предыдущей формулы умножить на t u. В результате мы придем к выражению, которое позволяет получить основной параметр ИТ:

U m x t u=S x W 1 x ∆В

Заметим, что от параметра ∆В прямо пропорционально зависит величина площади импульса.

Вторая по значимости величина, характеризующая работу ИТ, — перепад индукции, на него влияют такие параметры, как сечение и магнитная проницаемость сердечника магнитопровода, а также числа витков на катушке:

  • L 0 — перепад индукции;
  • µ а — магнитная проницаемость сердечника;
  • W 1 — число витков первичной обмотки;
  • S — площадь сечения сердечника;
  • l cр — длинна (периметр) сердечника (магнитопровода)
  • В r — величина остаточной индукции;
  • В max – уровень максимального значения индукции.
  • H m — Напряженность магнитного поля (максимальная).

Учитывая, что параметр индуктивности ИТ полностью зависит от магнитной проницаемости сердечника, при расчета необходимо исходить из максимального значения µ а, которое показывает кривая намагничивания. Соответственно, что у материала, из которого делается сердечник, уровень параметра В r, отображающий остаточную индукцию, должен быть минимальным.

Видео: подробное описание принципа работы импульсного трансформатора
https://www.youtube.com/watch?time_continue=13&v=XYxKfYd8Elk

Исходя из этого, в качестве на роль материала сердечника ИТ, идеально подходит лента, изготовленная из трансформаторной стали. Также можно применять пермаллой, у которого такой параметр как коэффициент прямоугольности, минимальный.

Высокочастотным ИТ идеально подходят сердечники из ферритовых сплавов, поскольку этот материал отличается незначительными динамическими потерями. Но из-за его низкой индуктивности приходится делать ИТ больших размеров.

Расчет импульсного трансформатора

Рассмотрим, как необходимо производить расчет ИТ . Заметим, КПД устройства напрямую связано с точностью вычислений. В качестве примера возьмем схему обычного преобразователя, в которой используется ИТ тороидального вида.

В первую очередь нам потребуется вычислить уровень мощности ИТ, для этого воспользуемся формулой: Р=1,3 х Р н.

Значение Р н отображает, сколько мощности будет потреблять нагрузка. После этого рассчитываем габаритную мощность (Р гб), она должна быть не меньше мощности нагрузки:

Необходимые для вычисления параметры:

  • S c – отображает площадь сечения тороидального сердечника;
  • S 0 – площадь его окна (как наитии это и предыдущее значение показано на рисунке);

Следующий этап сводится к определению количества витков в первичной обмотке Тр2:

(полученный результат округляется в большую сторону)

Величина U I определяется выражением:

U I=U/2-U э ( U – питающее преобразователь напряжение; U э— уровень напряжения, поступающего на эмиттеры транзисторных элементов V1 и V2).

Переходим к вычислению максимального тока, проходящего через первичную обмотку ИТ:

Параметр η равен 0,8, это КПД, с которым должен работать наш преобразователь.

Диаметр используемого в обмотке провода вычисляется по формуле:

Осталось рассчитать выходную обмотку ИТ, а именно, количество витков провода и его диаметр:

Если у вас возникли проблемы с определением основных параметров ИТ, в интернете можно найти тематические сайты, позволяющие в онлайн режиме рассчитать любые импульсные трансформаторы.

Использованная литература

  • Вдовин С. С. «Проектирование импульсных трансформаторов» 1991
  • П.Н. Матханов «Расчет импульсных трансформаторов» 1980
  • Хныков А.В. «Теория и расчет трансформаторов» 2004
  • Бартош А.И. «Электрика для любознательных» 2019

Дмитрий, благодарю за пример расчета тороидального ИТ. А при броневой конструкции на феррите габаритная мощность считается так же, как и при тороидальной ? Есл… Читать ещё

Дмитрий, благодарю за пример расчета тороидального ИТ. А при броневой конструкции на феррите габаритная мощность считается так же, как и при тороидальной ? Если не так, то где это можно изучить? Спасибо.

Почему нигде не указаны единицы измерения -мм- см- м? Как делать расчет без этого?

Познавательно было для меня ознакомиться с методикой расчетов ИТ. А допустимо ли, при переделке покупного ИБП на другое напряжение, заменить стержневой трансфо… Читать ещё

Познавательно было для меня ознакомиться с методикой расчетов ИТ. А допустимо ли, при переделке покупного ИБП на другое напряжение, заменить стержневой трансформатор на тороидальный, так как его легче сделать?

В ИБП трансформатор представляет собой обычный четырехполюсник с определенными рабочими параметрами, если вы собираетесь заменить один трансформатор на другой… Читать ещё

В ИБП трансформатор представляет собой обычный четырехполюсник с определенными рабочими параметрами, если вы собираетесь заменить один трансформатор на другой, то его параметры должны соответствовать предшествующему, иначе другие элементы устройства могут выйти со строя от слишком высокого напряжения или работать некорректно при слишком малом относительно их номинального.

Поэтому если вы изменяете параметр питающего напряжения, которое подается на трансформатор, в большую сторону, то вместе с ним необходимо заменить элементы, находящиеся на вводе (предохранители, электронный блок и т.д., наличие тех или иных элементов определяются конструктивными особенностями конкретного ИБП). Также в этом случае не забывайте о классе изоляции корпуса и питающего провода.

Читайте также:  Блок питания fsp group inc hh 350atx pf

Если вы меняете напряжение на выходе ИБП, то по аналогии с предыдущим вариантом, вы должны учитывать все элементы, подключенные к вторичной цепи трансформатора.
Для обоих случаев, если питающее напряжение будет понижаться, то можете не менять элементы, которые отбраковывались по параметру изоляции, замене будут подлежать только те части, которые отличаются своим рабочим напряжением.

По намотке трансформатора хочу сказать, что это достаточно сложный и кропотливый процесс, я бы не сказал, что тороидальный мотать в домашних условиях проще, чем стержневой.

Источник

Тема: Импульсные трансформаторы из ATX блоков питания

Опции темы

Импульсные трансформаторы из ATX блоков питания

Собсвенно из-за наличия огромного количества таких устройств в мире появилась идея сделать из него блок питания для сабвуфера.
Схема готовая, из нескольких сгоревших блоков можно спокойно сделать один.
Ну плюс купить диоды и кондесаторы. Решено — сделано.
Но проявилась проблема — после проварки трансфоматора в воде для его разборки, феррит теряет свои свойства.
Сначала я проварил — разобрал, перемотал вторичку. И получил сильный нагрев транзисторов и почти синус на первичной обмотке.
При замере индуктивности первички она оказалась вместо 6мГн — около 1мГн.
При дальнейших испытаниях с проваркой в воде трансформаторов от АТХ БП результаты были аналогичными.
Просто варим его минут 10 — сушим замеряем индуктивность и она получается от 0.5 мГн до 2 мГн.

Для пробы сварил трансформатор БП от монитора — индуктивность первички не поменялась.

Кто нибудь сталкивался с подобным? Просто в сети полно информации как мастера разбирают трансформаторы проваркой их
в воде, масле, микроволновке, строительным феном и перематывают,
но вот дальше работают ли они у них — информации нет.

Инетересно, что за феррит такой ставят в эти дешевые БП .

Завсегдатай Аватар для Станислафф Регистрация 18.10.2007 Адрес Тольятти Возраст 43 Сообщений 1.502

Re: Импульсные трансформаторы из ATX блоков питания

Ага, дроссели всякие тоже в них порой превращаются в «катушку с воздушным сердечником» (а потом бац — канал 3,3 В ну никак работать не хочет).

Феррит без маркировки, так что — только гадать.

Источник

Импульсный трансформатор

Импульсный трансформатор – трансформатор, предназначенный для преобразования тока и напряжения импульсных сигналов с минимальным искажением исходной формы импульса на выходе. Рассмотрим особенности конструктивного устройства этой техники, область применения, выпускаемые разновидности и другие характеристики, связанные с данным оборудованием.

  1. Конструкция и принцип работы
  2. Область применения
  3. Разновидности
  4. Стоимость трансформатора
  5. Преимущества и недостатки
  6. Порядок проверки исправности
  7. Процедура намотки

Конструкция и принцип работы

Импульсный трансформатор, по аналогии с другими идентичными устройствами, состоит из следующих элементов:

  • первичной и вторичной обмоток;
  • сердечника.

При подаче на входную катушку однополярных импульсов “е(t)” временной интервал между которыми довольно короткий, он вызывает возрастание индуктивности во время интервала t и , после чего наблюдается ее спад в интервале (Т-t и). Благодаря разнице в количестве витков на катушках входа и выхода и импульсному характеру подачи тока, получается добиться высокого коэффициента трансформации с сокращением габаритных размеров устройства.

Временная диаграмма

Одновременно решаются задачи измерения уровня и полярности токового импульса или характеристик по напряжению, согласования значения сопротивления аппарата, создающего сигналы, с потребляющим оборудованием, создание схем обратной связи и пр.,

Подключение импульсного трансформатора

Подключение импульсного трансформатора

Область применения

По большей части указанные трансформаторы применяются в импульсных устройствах:

Виды трансформаторов

  • газовых лазерах;
  • триодных генераторах;
  • дифференцирующих модулях;
  • магнетотронах и др.

Виды трансформаторов

Эти приборы используются в современном радиоэлектронном оборудовании, для источников питания импульсного типа, телевизорах, компьютерах и другой технике.

Ещё одна область использования устройств – в качестве защитных элементов при коротком замыкании в условиях холостого хода, чрезмерной нагрузке или избыточном нагреве.

Разновидности

В зависимости от конструктивных особенностей различают следующие разновидности импульсных трансформаторов:

Виды магнитопроводов

  • стержневые;
  • броневые;
  • тороидальные, с намоткой провода на изолированный сердечник, не предполагающие применения катушек;
  • бронестержневые.

Виды магнитопроводов

Поперечное сечение сердечника в большинстве устройств выполняется в форме круга или прямоугольника, по аналогии с силовыми аппаратами.

отличия

Основные характеристики устройств нанесены на корпус, поэтому из условного обозначения можно почерпнуть информацию об главных параметрах оборудования.

Стоимость трансформатора

Цена на единицу продукции может колебаться от 50 до 700 рублей и выше, в зависимости от характеристик устройства. При покупке учитывается производитель изделия и размер приобретаемой партии. Наиболее дешево обойдётся продукция китайского производства, массово представленная на рынке.

Импульсные трансформаторы – устройства, без которых невозможно представить современную бытовую технику и промышленное производство. Эти аппараты обладают рядом преимуществ, по сравнению с аналогичным оборудованием, но в некоторых случаях сопутствующие недостатки не позволяют их использовать.

Преимущества и недостатки

Использование импульсных трансформаторов объясняется следующими преимуществами:

Разобранный импульсный трансформатор

  • высокими показателями выходной мощности;
  • небольшой массой и габаритными размерами;
  • высокой эффективностью, благодаря снижению энергетических потерь;
  • меньшей ценой при сопоставимых характеристиках;
  • высокой надёжностью по причине наличия схем защиты.

Разобранный импульсный трансформатор

Малая масса достигается посредством возрастания частоты импульса. Это приводит к уменьшению объёма конденсаторов и простоте схемы выпрямления.

Возрастание коэффициента полезного действия обеспечивается, благодаря сокращению энергетических потерь.

Уменьшение габаритов связано со снижением количества использованных материалов. Это основная причина удешевления данной продукции. Ещё одно достоинство малых размеров – возможность применения устройства в малогабаритных электротехнических изделиях.

Недостатки связаны со сложностью в ремонте по причине отсутствия в схеме гальванической развязки наличии помех высокой частоты, в связи с особенностями конструкции и принципа действия устройства.

Чтобы предупредить влияние высокочастотных помех, нередко приходится прибегать к использованию специальных защитных средств, если применяется оборудование, для которого такие факторы нежелательны. В некоторых случаях, в связи с помехами, применение импульсных трансформаторов оказывается невозможным.

Порядок проверки исправности

Для проверки исправности импульсного трансформатора используется аналоговый или цифровой мультиметр. Цифровое устройство обладает преимуществами, благодаря удобству применения. Его не нужно дополнительно подстраивать, достаточно убедиться в наличии питания и целостности проводов подключения.

Аналоговый мультиметр настраивается следующим образом:

  • выбирается режим эксплуатации переключением в область минимальной величины сопротивления при измерении;
  • провода вставляются в контакты прибора и соприкасаются друг с другом;
  • специальной подстройкой стрелка выставляется на ноль;

Если совместить стрелку с нулём не получается, это говорит о проблемах с элементами питания, нуждающимися в замене.

Если трансформатор является составной частью некоторого аппарата, желательно отделить этот элемент от остальной конструкции, чтобы исключить воздействие сопутствующих помех при диагностике.

Проверка с помощью осцилографа:

Неисправность прибора может объясняться следующими проблемами:

  • повреждённым сердечником;
  • подгоревшими соединениями;
  • нарушением изоляции проводов, вызывающим короткое замыкание обмотки;
  • разрывом провода.

Кроме инструментальных измерений, необходимо обращать внимание на внешний вид аппарата. О неисправности может свидетельствовать подгоревшая обмотка, следы гари и соответствующий запах.

Процедура намотки

Если провод входной или выходной катушки не пригоден для дальнейшей эксплуатации, трансформатор можно перемотать. Для этого подбирается провод с двойной или тройной изоляцией, который необходимо намотать на сердечник.

Операция выполняется в следующем порядке:

  • наматывается провод первичной катушки, после предварительного припаивания входного контакта. Витки наматываются равномерно и плотно;
  • выходной конец провода припаивается в положенном месте;
  • наносится изоляция в несколько слоёв;
  • наматывается вторичная обмотка, с припаиванием входного и выходного концов.

Чтобы устройство работало нормально, провод наматывается равномерно, исключив узлы и перекручивания. Количество витков устанавливают, исходя из проведённого расчёта по характеристикам устройства.

Источник