Импульсный блок питания для компрессора
Обновлено 26 января 2021
Виды блоков питания, их основные технические характеристики
Блок питания является вторичным источником энергии для технических устройств, преобразующим напряжение питающей электрической сети в их рабочее напряжение.
Наиболее востребованными являются блоки питания, у которых первичное напряжение – это переменное напряжение бытовой электрической сети, равное 220 Вольт, а вторичное − преобразуемое в постоянное, равное 24/12/5/3,3 V. По принципу преобразования напряжения блоки питания (БП) подразделяются на два вида:
- трансформаторные – когда преобразование осуществляется посредством понижающего трансформатора, они называются линейными;
- импульсные – преобразование осуществляется благодаря наличию электронных компонентов, обеспечивающих преобразование напряжения, они называются инверторными.
Если в схеме БП предусмотрен стабилизатор выходного напряжения, то такое устройство называется стабилизированным блоком питания.
Основными техническими характеристиками, определяющими возможность использования подобных технических устройств, являются:
- электрическая мощность, измеряемая в Ваттах (Вт или В×А);
- напряжение на входе и выходе, измеряемое в Вольтах (В);
- выходной ток, измеряемый в Амперах (А);
- коэффициент полезного действия – параметр полезный при использовании БП большой мощности, измеряется в %;
- наличие элементов защиты внутренних электрических цепей от перегрузок и токов короткого замыкания.
Область применения
Блоки питания с вторичным напряжением в 12 Вольт импульсного типа используются для подключения к бытовой электрической сети:
- персональных компьютеров различного типа – для зарядки их аккумуляторных батарей и работы непосредственно от сети;
- для зарядки электронных гаджетов, в том числе сотовых телефонов и смартфонов, плееров и видеокамер, а также прочих устройств, имеющих в своей конструкции аккумуляторные батареи;
- для зарядки ручного переносного электрического инструмента – шуруповёрт, болгарка и т.д.;
- для подключения LED светотехнических приборов (светодиодные светильники и ленты);
- для использования прочих устройств, предполагающих работу от сети постоянного тока с напряжением 12 В и до 5 ампер, – автомагнитола или автоприёмник в условиях дома или гаража.
Принципиальная схема и принцип работы
Принципиальная схема и принцип работы зависит от вида устройства, и поэтому необходимо рассмотреть их отдельно:
- Трансформаторный БП.
Аналоговый вид БП имеет в своей схеме понижающий трансформатор, обеспечивающий величину вторичного напряжения в заданных величинах, и диодный мост, служащий для его выпрямления. Простейшая схема такого устройства выглядит следующим образом:
Принципиальная схема аналогового блока питания
Конденсаторы, установленные в схеме, обеспечивают сглаживание импульсов напряжения на выходе блока питания.
- Импульсный БП.
Инверторный вид БП работает за счёт электронных компонентов, входящих в схему устройства. Напряжение питающей сети подаётся на входной диодный мост, а его пики сглаживаются установленными конденсаторами. После этого сигнал преобразуется в прочих элементах схемы (транзисторы, микросхема, тиристоры и т.д.) и подаётся на импульсный трансформатор.
Трансформаторы данного вида изготавливаются на основе ферромагнетных материалов, поэтому имеют малые габаритные размеры, позволяющие минимизировать размеры БП. Напряжение, полученное после трансформации, подаётся к нагрузке (выходам блока питания). Такой тип БП называется схемой с гальванической развязкой.
Импульсный блок питания на интегральной микросхеме и с построечными резисторами
Существуют схемы БП без использования гальванического соединения. В этом случае входной сигнал сразу подаётся на фильтр нижних частот.
Расчёт мощности блока питания на 12 V
Мощность БП является одной из главных технических характеристик, определяющих возможность подключения к нему той или иной нагрузки. Мощность поэтому может быть рассчитана разными способами:
Для светодиодных лент.
В этом случае расчёт выполняется следующим образом:
- за основу берётся мощность в 1 метра LED-ленты, указываемая производителем на упаковке;
- определяется её длина;
- эти значения перемножаются, и полученное выражение увеличивается на 30%.
Увеличение на 30% обеспечивает необходимый запас мощности. Этот расчёт можно выразить следующей формулой:
P блока = P уд × L ленты × K запаса , где:
P блока – электрическая мощность блока питания;
P уд − электрическая мощность 1 метра светодиодной ленты;
L ленты – длина ленты;
K запаса — коэффициент запаса мощности.
Для персонального компьютера.
При необходимости определить мощность БП персонального компьютера следует знать мощности всех элементов устройств, входящих в его комплект. Это непростая задача, поэтому существуют специальные программы и онлайн-калькуляторы, служащие для выполнения такого расчёта. Вот некоторые из них:
- OuterVision® – калькулятор, ссылка для скачивания: https://outervision.com/power-supply-calculator
- Компания «Enermax», калькулятор питания − ссылка для скачивания: http://www.enermax.outervision.com/index.jsp
- MSI – калькулятор источника питания, ссылка для скачивания: https://ru.msi.com/power-supply-calculator
- KSA Power Supply Calculator WorkStation – ссылка для скачивания: http://ksa-soft.ru/soft/10-ksa-power-supply-calculator-workstation.html
Для зарядки электрического инструмента и электронных гаджетов.
Когда необходимо определить мощность БП для зарядки шуруповёрта, смартфона или иного электронного устройства, необходимо знать их электрическую мощность и учесть коэффициент запаса. Это можно отразить следующей формулой:
P блока = P устройства × K запаса
Диоды для блока питания
Для выпрямления переменного напряжения бытовой электрической сети в схемах блоков питания и прочих электронных устройств используют диоды, собираемые по мостовой схеме. Схематично полупроводниковый диод выглядит следующим образом.
Устройство полупроводникового диода
Для устройства диодного моста используется 4 однотипных диода, которые соединяются определённым образом, приведённым на следующей схеме. Их технические характеристики должны соответствовать величине протекающего через них тока, а также величине допустимого обратного напряжения.
Схема соединения диодов по мостовой схеме
Стабилизация напряжения
Для стабилизации напряжения в БП используются электролитические конденсаторы большой ёмкости и стабилитроны. Конденсаторы сглаживают сигналы напряжения, которые имеют полусинусоидальную форму практически до прямой линии. Чем больше ёмкость конденсатора, тем сигнал на выходе более правильной формы и стремится к прямой линии. Стабилитроны обеспечивают постоянство напряжения на выходе блока питания.
Импульсный блок питания 12 V своими руками — схема
Существует большое количество различных схем блоков питания, имеющих различные технические характеристики и собранных на различных электронных компонентах. Ниже представлена схема импульсного БП с вторичным напряжением 12 Вольт.
Принципиальная схема импульсного блока питания
При самостоятельном изготовлении подобных устройств необходимо помнить, что для обеспечения заданной пульсации напряжения на выходе ёмкость конденсаторов должна приниматься из расчёта 1 мкФ на 1 Вт выходной мощности. Электролитические конденсаторы должны быть рассчитаны на напряжение не менее 350 В. Оптимальное соотношение мощности БП и технических характеристик электронных компонентов приведено в следующей таблице:
Блок питания | Элементы схемы | ||
Мощность, кВт | Ток, А | Ток диода, А | Ёмкость конденсатора, мкФ |
0,1 | 0,4 | 0,2 | 100 |
0,2 | 0,8 | 0,4 | 200 |
0,3 | 1,2 | 0,6 | 300 |
0,5 | 2 | 1 | 500 |
1 | 4 | 2 | 1 000 |
2 | 8 | 4 | 2 000 |
3 | 12 | 6 | 3 000 |
5 | 20 | 10 | 5 000 |
Основные этапы изготовления импульсного блока питания 12 В своими руками
Работу по изготовлению БП можно разбить на несколько этапов: подготовительный, монтаж и проверка работоспособности. В данной статье рассмотрим изготовление блока питания по схеме, приведённой на рисунке № 10.
Подготовительный этап
В этот период рассчитывается мощность. Она должна быть достаточной для его использования с нагрузкой, планируемой к подключению. Выбирается вид и схема БП (см. рисунок № 10), после чего приобретаются необходимые комплектующие. В рассматриваемом случае это:
- PTC термистор;
- два конденсатора из расчёта 1 мкФ на 1 Вт мощности;
- диодный мост (диоды должны соответствовать по напряжению и току);
- драйвера − IR2152 (IR2153, IR2153D);
- полевые транзисторы − IRF740, IRF840;
- трансформатор (можно использовать б/у от ПК);
- диоды, устанавливаемые на выходе, серии HER.
Монтаж блока питания
Пошаговая инструкция по изготовлению импульсного БП по выше приведённой схеме выглядит следующим образом:
Печатная плата изготавливается, для этого:
Проверка работоспособности
Когда БП собран, необходимо его проверить, для этого:
- к выходу блока питания подключается нагрузка;
- БП включается в электрическую сеть.
В случае если подключённая нагрузка работает нормально: LED-светильники излучают свет, гаджеты и инструмент заряжаются, а прочая техника работает – значит, монтаж выполнен успешно. Ещё один способ изготовления блока питания − это размещение всех элементов устройства на ДИН-рейке.
Дин-рейка – это металлическая профилированная полоса, предназначенная для крепления электрических приборов и элементов электрических схем.
При использовании ДИН-рейки отпадает потребность в изготовлении монтажной платы, однако конструкция получается более объёмная, т.к. соединение между элементами схемы приходится выполнять при помощи соединительных проводов.
Нюансы изготовления блока питания для шуруповёрта
При изготовлении блока питания 12 В своими руками для подключения шуруповёрта к электрической сети необходимо учитывать следующие нюансы, связанные с его использованием:
- Напряжение на выходе должно быть 18–19 В, в противном случае мощность устройства значительно снизится.
- Электронные компоненты схемы БП должны соответствовать номинальному току работающего шуруповёрта.
- Размер собираемого блока должен быть таким, чтобы разместиться в корпусе демонтируемого аккумулятора (в случае изготовления встроенной конструкции).
В остальном этапы изготовления аналогичны, как и в случае отдельно размещаемого варианта исполнения БП.
Где купить и сколько стоит блок питания 12 V
Они продаются в магазинах бытовой электроники, офисной техники, а также в организациях, специализирующихся на их ремонте. Кроме этого, в интернете также есть предложения различных компаний, предлагающих к реализации БП различной направленности.
Блок питания DC-12V, 20.8А, 250 Вт в водонепроницаемом корпусе, степень защиты − IP67
Стоимость БП зависит от их технических характеристик и типа исполнения, определяющих возможность использования этого устройства. Чем выше мощность и степень защиты – тем больше цена. Она может составлять от нескольких сотен до нескольких тысяч рублей. Наиболее дешёвые модели:
- ARDV-05-12A (12V, 0,4A, 5W) – 200 рублей;
- ARDV-12-12AW (12V, 1A, 12W) – 300 рублей;
- ARDV-24-12A (12V, 2A, 24W) – 400 рублей.
Модели в следующем сегменте:
- APS-100L-12BM (12V, 8.3A, 100W) – 800 рублей;
- APS-150-12BM (12V, 12.5A, 150W) – 1 000 рублей;
- APS-250-12BM (12V, 20.8A, 250W) – 1 400 рублей.
Наличие большого количества предложений на рынке вспомогательных устройств для бытовой техники и приборов позволяет выбрать блок питания в соответствии с предъявляемыми к нему требованиям. А наличие в свободном доступе различных схем, а также электронных компонентов позволяет изготовить БП своими руками даже начинающему любителю электроники, имеющему начальные навыки работы с паяльником.
Видео: блок питания для шуруповёрта на 12в из компьютерного БП.
Источник
Блоки питания для автомобильных компрессоров от сети
- Особенности
- Модели
- Как сделать своими руками?
- Как подключить автокомпрессор к компьютерному блоку?
Для автокомпрессора требуется адаптер или, как его в народе называют, переходник. Он необходим для подключения аппарата к сети в 220 В. Именно посредством такого адаптера напряжение в 220 В переходит в 12 В.
Особенности
Блок питания для автомобильного компрессора от сети на 12 В подходит для подключения техники через стандартную сеть, которая используется в быту. Благодаря этому устройству появляется возможность использовать автомобильный прибор в гараже или даже в доме.
В конструкции мощных адаптеров есть радиатор охлаждения, изготовленный из алюминия. Там же установлен вентилятор типа того, что стоит в системном блоке компьютера.
Последний охлаждает устройство, обеспечивая долговечность прибору. При увеличении нагрузки он активируется, а когда она остается на нормальном уровне, остается незадействованным. Если говорить о максимальной отдаче тепла, то это идеальное решение.
На рынке можно найти недорогие блоки питания для компрессоров автомобильного типа. Как показала практика, они не работают, поскольку сила тока должна быть от 12 А. Вот почему при покупке подобного оборудования, обязательно нужно обратить внимание на технические характеристики.
Модели
Из коммерческих предложений можно выделить три варианта, которые были протестированы и зарекомендовали себя на практике.
B-Power 220V-1.2A/12V-12.5A-150W
Это довольно мощный агрегат, который призван преобразовывать напряжение 220 В в 12 В. У него присутствует гнездо под прикуриватель. Отличается модель наличием активного охлаждения. Подходит для пылесосов, небольших моек.
B-Power 220V-1.5A/12V-15A-180W
Устройство того же типа, которое используется для автомобильных пылесосов и компрессоров. А также в системе есть активное охлаждение.
B-Power 220V-2A/12V-20A-250W
Бытовой адаптер, способный преобразовать напряжение 220 В в 12 В. Производитель предусмотрел гнездо под прикуриватель и активное охлаждение.
Как сделать своими руками?
Как бы это странно ни звучало, но такой адаптер можно сделать своими руками. В качестве основы стоит взять блок питания от компьютера, мощность которого составляет 305 Вт. Там имеется выход на 12 В с 18 А. И для изготовления блока питания для автомобильного компрессора такой блок идеально подходит по техническим параметрам.
Дополнительно в магазине необходимо приобрести прикуриватель, желательно, чтобы он был с подсветкой, и выключатель.
Сначала ведется работа по сборке корпуса блока питания. Потребуется небольшой кусок ДСП, из этого материала будет выпиливаться корпус.
Лицевая и тыльная панель нашего адаптера вырезается из оцинкованного листа. На них закрепляют блок питания от компьютера.
Из оцинкованного листа вырезают лицевую и тыльную панели, на которые будут закреплены следующие элементы:
компьютерный блок питания;
Чтобы добавить самодельному изделию эстетический вид, стоит его покрасить. Для этого берем немного алкидной краски, которая продается в баллончиках, и покрываем детали корпуса. Когда краска высохнет, можно переходить к сборке.
Как подключить автокомпрессор к компьютерному блоку?
Если в быту потребовалось использовать автомобильный компрессор, то его можно подключить через блок питания старого компьютера, поскольку у него есть необходимое напряжение в 12 В.
Можно столкнуться с такой проблемой, что при извлечении блока питания и подключении его в сеть на 220 В ничего не произойдет, поскольку напряжение в клеммах будет отсутствовать. Проблема заключается в том, что потребуется имитировать включение компьютера. Можно изготовить небольшую перемычку из куска проволоки и соединить ей контакты на широкой шине. Теперь видно, что блок запускается без проблем.
Теперь присоединяем провода от компрессора к одной короткой шине. У нас работать в схеме должны черный и желтый провода. После таких несложных манипуляций компрессор заработал без проблем от сети 220 В.
Чтобы в дальнейшем использовать немного исправленный компрессор, необходимо задействовать дополнительные комплектующие. Если он нам пригодится для коллектора системы отопления в доме, тогда нам потребуется автомобильный ниппель и фитинг. Последний должен иметь выход на ½.
Стоит сказать, что мощности такого простого агрегата, как автомобильный компрессор, хватает даже на то, чтобы продуть контуры теплых полов в доме и не только. Некоторые умельцы используют агрегат для радиаторного отопления. Длина одного контура около 30-55 метров, и мощности компрессора вполне хватает для обслуживания подобной системы.
Очень важно понимать, что при слишком большой нагрузке на автомобильный компрессор есть вероятность перегрева, в результате чего он просто сгорит. Для этого рекомендуют включать его на 10-15 минут, и потом давать отдохнуть.
В принципе изготовить такое устройство самостоятельно своими руками не представляет труда. Нужно только убедиться, что все необходимое имеется под рукой. Никаких особенных знаний от человека не требуется, зато можно сэкономить собственные средства.
Если нет желания, возможности, или просто страшно экспериментировать, тогда лучше приобрести готовую модель адаптера или переходника для автомобильного компрессора – и не беспокоиться в дальнейшем о безопасности.
Источник
Блок питания для гаража
Современный автомобилист вооружен всеми благами технического прогресса и большинство из нас уже не помнит как накачать шину ручным автомобильным насосом или наложить и завулканизировать резиновую заплатку на автокамеру.
Давление в колесах мы выравниваем компрессором, салон чистим пылесосом, а домкрат, вместо изогнутого буквой «зю» рычага, приводим в действие шуруповертом с зажатым в патрон металлическим крючком. Но все бесчисленные электрические помощники автомобилиста питаются электричеством, вот и напрягаем мы в гараже свой автомобиль, заставляя его подолгу работать на гнездо прикуривателя во вред экологии и нашему кошельку. Нам нужен гаражный блок питания!
Нужен гаражный блок питания: +12 вольт, мощный, простой, надежный, безопасный и универсальный.
— +12 вольт (а лучше 12 – 15 вольт) — напряжение бортовой сети автомобиля и рабочее напряжение его бесчисленных аксессуаров;
— мощный — мощности такого блока должно хватить для подключения самых мощных гаражных потребителей и для подзарядки аккумулятора;
— простой — здесь главное в простоте изготовления, ведь разговор идет о самодельной конструкции автомобилиста, а не электронщика, двинутого на микроконтроллерах и SMD;
— безопасность эксплуатации — слова, говорящие сами за себя. Нагрузка должна быть гальванически разделена с питающей сетью (не ИБП, но старый проверенный трансформаторный блок питания);
— универсальность — это свойство гаражного блока питания предполагает, что к нему одинаково удобно должны подключаться нагрузки, рассчитанные на разъем прикуривателя, на разъем подсветки (в отечественных авто), на подключение крокодильчиками и так далее.
На фото изображен блок питания для гаража отвечающий всем этим требованиям. В качестве жесткого каркаса использованы останки какого-то электронного блока неизвестного назначения. Изготовители заботливо понаделали в его лицевой панели массу отверстий разных размеров, которые отлично подошли для установки измерительного прибора, индикаторных светодиодов, тумблеров и регулировочного резистора.
Металлическая скоба над ампервольтметром замечательно подходит для переноски. Два комплекта опорных ножек прибора позволяют работать с блоком питания и в вертикальном и в горизонтальном положении. Верхняя крышка блока питания вырезана из листа жести и покрашена.
Нижний тумблер слева — сетевой.
Верхний тумблер слева — подключение нагрузки.
Тумблер под измерительной головкой — переключение режимов работы прибора: амперметр-вольтметр.
Красный светодиод слева вверху — индикация выходного напряжения, справа вверху зеленый — сетевого.
Нагрузку можно подключить к гнезду прикуривателя, к гнезду лампы подсветки, штекерами к нижнему разъему или к нему же — проводами под зажим. Uвых = 3 – 15 вольт, Iвых = 8А
Для того чтобы можно было подключать к блоку питания не только простых потребителей типа лампы локальной подсветки, но и проверять интеллектуальные устройства вроде навигаторов GPS или видеорегистраторов схема блока слегка усложнена и представляет собой мощный параметрический стабилизатор.
Классическая схема параметрического стабилизатора на составном выходном транзисторе с защитой от короткого замыкания.
Это самая простая и самая удачная схема подходящая для гаражного блока питания. Она очень живуча, ее не выведет из строя ни случайное замыкание выходных контактов, ни переполюсовка нагрузки типа аккумулятора. При устранении короткого замыкания схема продолжит работу.
В блоке питания можно применить практически любые транзисторы соответствующей полярности и от этого будет зависеть только его нагрузочная способность (более того, если изменить полярность ВСЕХ транзисторов, поменять местами + и – , аноды и катоды ВСЕХ диодов и стабилитрона, то узел будет так же прекрасно работать).
Печатную плату можно и не делать из-за ее примитивности, а собрать схему навесным монтажом. Словом, все зависит от возможностей и желания автолюбителя.
В предлагаемой конструкции собрана именно такая схема, в выходном каскаде ее стоит в параллель четыре отечественных транзистора КТ829 и, для повышения стабильности Uвых, схема формирования опорного напряжения (VD1,VD2,VT1) питается от отдельной обмотки трансформатора.
В конструкцию блока питания для гаража отлично вписался трансформатор – «старый знакомый» ТСА-270-1 (буква А в названии говорит о том, что для обмоток использован алюминиевый провод). Его можно не перематывать, при использовании в параллельном соединении обмоток 8-18 и 8′-18′, блок питания без перегрузок питает компрессор длительное время (при этом измерительный прибор в режиме «амперметр» зашкаливает, то есть отдается в нагрузку ток более пяти ампер).
Чтобы самостоятельно собрать такой блок питания нужно найти трансформатор, не обязательно именно такой, как в предлагаемой конструкции (возможно его придется перемотать в таком случае), несколько недефицитных деталей и все это поместить в любой подходящий корпус с клеммами. Измерительный прибор можно не устанавливать, а контролировать параметры напряжения с помощью внешнего мультиметра.
Работать с таким гаражным блоком питания очень удобно – не сажается аккумулятор, не нужно заводить двигатель для подзарядки и открывать гараж для проветривания, можно проверить на работоспособность любые автоприборы или настроить автолюбительскую конструкцию. С его помощью легко подзаряжается подсевший аккумулятор, только не пробуйте использовать блок питания в качестве пускового устройства – сгорит непременно.
Случай из практики:
– на автомобиле было необходимо заменить аккумулятор и при этом сохранить настройки электронного блока управления и всех систем авто. Блок питания был подключен параллельно аккумулятору с помощью проводов «для прикуривания» и спокойно держал бортовую сеть пока шла замена аккумулятора старого на новый.
Замечания по приведенной конструкции блока питания для гаража:
— на фото виден компьютерный вентилятор 60-мм для обдува радиатора с выходными транзисторами, практика показала, что вполне можно обойтись без него;
— расчет шунтов и калибровка прибора делалась вручную заранее, не попал – отдаваемый блоком ток оказался выше расчетного. В планах поставить шунт на 5 ампер, тогда вся шкала будет десятиамперной;
— уже после фотосессии, которая была довольно давно, были перемотаны обмотки трансформатора: смотана одна верхняя и на ее место в один слой до заполнения ряда уложен медный провод 1,5 мм, получилось по 46 витков, около 19 вольт. В работе блока ничего не изменилось, только выходное напряжение стало проседать немного меньше. Вывод: перематывать только под какие-то конкретные цели, так просто — потеря времени.
Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!
Записывайтесь в онлайн-университет от GeekBrains:
Изучить C, механизмы отладки и программирования микроконтроллеров;
Получить опыт работы с реальными проектами, в команде и самостоятельно;
Получить удостоверение и сертификат, подтверждающие полученные знания.
Starter box для первых экспериментов в подарок!
После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.
Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.
Источник
Подключил автомобильный компрессор к сети 220V (через компьютерный блок питания) и продул с его помощью теплые полы в доме
Начал кумекать, как бы его задействовать для осуществления моего плана.
Решил, что можно будет попробовать подключить компрессор через блок питания от старого компьютера, который давно пылился без дела в кладовке. Ведь компьютерный блок питания выдает напряжение в 12V, столько же, сколько требуется компрессору. При этом, максимальный ток потребления компрессора составляет 15А, а мой блок питания способен выдать до 12А.
Однако, когда я извлек блоку питания из системного блока компьютера и подключил его к сети 220V — ничего не произошло, вентилятор блока питания не включился и напряжение на клемах не появилось.
Для того, чтобы сымитировать включение компьютера я сделал небольшую перемычку из проволоки и соединил этой перемычкой 2 контакта на широкой шине (тот, к которому подходит зеленый провод и один из черных, какой именно — не важно). Получилось вот так:
Проверил, — блок питания начал включаться. Далее, я подсоединил провода, идущие от компрессора к одной из коротких шин, таким образом, чтобы были задействованы контакты от желтого и черного проводов. Вот как это выглядело:
Тогда я переместился поближе к коллектору системы отопления:
Далее, воспользовался простым автомобильным ниппелем и фитингом с переходом на 1/2, подключив таким образом компрессор к коллектору системы отопления:
Остальное было уже делом техники. Мощностей автомобильного компрессора хватило вполне для того, чтобы поочередно продуть все контуры теплого пола, а также трубы радиаторного отопления. И это, при том, что длина каждого контура у меня составляет от 30 до 55 метров.
Конечно, при этом, я делал небольшие перерывы (минут по 10-15), чтобы не перегревать компрессор.
Результатом, в итоге, я доволен на все 100%. Смело могу рекомендовать данный способ тем, у кого нет под рукой более серьезного компрессора.
А вам доводилось продувать систему отопления? Какой инструментарий для этих целей использовали вы? Делитесь своим опытом в комментариях.
Источник
Обзор импульсных блоков питания и электронных трансформаторов. Часть 1
В продолжение темы Электронные трансформаторы на сайте ПАЯЛЬНИК начинается серия статей, в которых будут тестироваться как Электронные Трансформаторы, так и Импульсные Блоки Питания, купленные администрацией сайта на площадке AliExpress специально для этих целей.
Под «Электронными Трансформаторами» подразумеваются устройства с переменным напряжением на входе и переменным напряжением на выходе, а под «Импульсными Блоками Питания» — с переменным напряжением на входе и постоянным стабилизированным напряжением (или током) на выходе.
Сначала все устройства кратковременно (10…30 минут) проверялись на максимальных заявленных токах, потом некоторым преобразователям нагрузка уменьшалась, так как они сильно нагревались, и затем проводились дальнейшие эксперименты.
Нагрузкой в основном были резисторы ПЭВ-15. ПЭВ-50, набранные до нужного сопротивления или галогенные лампы разной мощности. Ток контролировался по падению напряжения на резисторе 0,1 Ом. Графики снимались с помощью программы SpectraPLUS и звуковой карты с открытыми входами.
Первый импульсный блок питания — бескорпусный AC/DC 220/24, 3 Вт
Внешний вид показан на рисунке 1, а плата более подробно — на рисунке 2. Под трансформатором видна цифробуквенная маркировка «B02B» и «20180403». Возможно, что последнее – это дата изготовления печатной платы.
Принципиальная схема показана на рис.3 (ёмкость керамических конденсаторов неизвестна, но примерное их значение можно определить по другим подобным схемам). Микросхема преобразователь – OB2512NJP. Частота преобразования – около 35 кГц. Какие-либо элементы защиты и фильтрации в высоковольтной части отсутствуют – скорее всего, подразумевается установка модуля в плату, где они уже присутствуют.
Преобразователь был нагружен на нагрузку, обеспечивающую ток 0,12 А (2,88 Вт) и проработал с ней около 3-х часов. Трансформатор Tr1 нагрелся примерно до 40-45 градусов. При изменении напряжения питания в пределах от 180 В до 240 В выходное напряжение менялось в пределах +/- 35 мВ (рис.4). Уровень ВЧ пульсаций в выходном напряжении зависит от тока нагрузки и при 0,12 А превышает 250 мВ.
При нагрузке 3 Вт и напряжении питания 240 В в выходном напряжении появлялись пульсации 100 Гц – видимо, преобразователь начинал «уходить в защиту».
На наклейке написано 12 В и 5 A . Внешний вид показан на рисунке 5, вид на внутренности и обратная сторона печатной платы на рисунке 6. Плата имеет маркировку «NxPs60W-V02A».
Вид на детали более подробно на рисунках 7, 8 и 9.
При вынимании печатной платы из корпуса оказалось, что силовой транзистор KF5N60F приклеен к алюминиевой стенке корпуса на силиконовый герметик (тот, что с характерным уксусным запахом). Герметик нанесён неровно и таким толстым слоем (рис.10), что прижимная пластина не смогла обеспечить нормальный прижим транзистора к стенке корпуса.
Второй транзистор (CS5N60F, рис.11) «был посажен» на обычную белую термопасту и намного лучше прижат к алюминиевой стенке.
Схема этого блока питания показана на рисунке 12. Необычные маркировочные обозначения деталей (E, MOS, DO) оставлены «родные». Интересно включение полевого транзистора DO в качестве выпрямительного диода во вторичной цепи преобразователя.
При токе в нагрузке 5 А и при изменении сетевого напряжения от 180 В до 240 В выходное напряжение 12,3 В было очень стабильно, мультиметр ВР-11А изменений не видел, т.е. они не более нескольких милливольт (рис.13). На рисунке 14 показано, в каких пределах менялось выходное напряжение при изменении сопротивления подстроечного резистора VR – от 11,41 В до 13,14 В. Пульсации на выходе при токе в нагрузке 5 А не более 200 мВ, их частота следования около 63 кГц.
Глядя на транзисторы, видно, что такой способ их прижима неправилен из-за того, что алюминиевая стенка корпуса имеет толщину всего 1,2 мм и прогибается под головкой винта, что приводит к искривлению плоскости стенки. Решить эту проблему можно, подложив под головку винта большую толстую пластину (рис.15). Для дополнительного охлаждения транзисторов пластину можно заменить радиатором – «выпрямительный» транзистор CS5N60 при токе 5 А нагревается достаточно быстро (наклейку в этом случае следует убрать).
Далее — бескорпусный блок питания AC/DC 220/24, 1 A
Внешний вид – на рисунке 16. Маркировка печатной платы — «GMY-001F». Имеет заявленные выходные параметры 24 В и 1 А (24 Вт). Схема приведена на рисунке 17.
При изменении входного напряжения, мультиметр изменений в выходном +24,13 В не заметил (рис.18).
Уровень пульсаций не превышает 100 мВ при токе в нагрузке 0,7 А (рис.19) и менее 50 мВ при токе 1 А. И при этом пульсации носят низкочастотный характер – анализатор спектра определил их как колоколообразные полосы с центральными частотами 750 Гц при токе 0,7 А и 600 Гц при 1 А.
Ещё один блок питания — AC/DC 220/24, 1,5 A
Внешне похож на предыдущий, но имеет другую схемотехнику и, соответственно, маркировку печатной платы — «XPJ-030» (рис.20, 21, 22). На АЛИ выставлена фотография с маркировкой «GMY-030». Заявленные параметры — 24 В и 1,5 А (36 Вт). Схема приведена на рисунке 23. Даташит на микросхему ШИМ контроллера (с нанесёнными надписями «63J04a» и «909») найти не удалось, но по выводам и схемотехническому включения она очень похожа на FAN6862.
При токе в нагрузке 1,5 А и изменении питающего напряжения от 180 В до 240 В, в выходном напряжении +24,3 В мультиметр никаких изменений не видит (рис.24). ВЧ пульсации не более 20 милливольт. После двух часов работы преобразователь сильно нагрелся.
Два электронных трансформатора «YAM» AC/AC 220/12
Первый — модель «YMET80C» (рис.25) с выходным переменным напряжением 12 В и заявленной на этикетке мощность 80 Вт (ток 6,7 А). Маркировка печатной платы «JM-792A». Схема на рисунке 26.
Второй преобразователь — модель «YLET60C» (рис.27). Те же 12 В «переменки» на выходе, но указана меньшая мощность — 60 Вт (ток 5 А). В пластиковом корпусе отсутствуют какие-либо отверстия для вентиляции и при кажущейся внешней аккуратности, на печатной плате были обнаружены брызги припоя и повреждённая изоляция вторичной обмотки трансформатора. На фотографии со стороны дорожек видны капля, замыкающая коллектор Т2 с правым выводом R2 и «длинная сопля» между его же эмиттером и тем же правым выводом R2. Маркировка печатной платы «JM-797». Схема – на рисунке 28.
Оба преобразователя при первых включениях не заработали. У «YMET80C» был сколот край корпуса динистора (возможно, что это я «зацепил» его пинцетом, когда выпаивал соседние резисторы, но изгибов выводов не было – стоял ровно и на некотором расстоянии от платы), а в «YLET60C», скорее всего, были установлены транзисторы без защитных диодов и они оба «ушли в обрыв». После замены транзисторов и установки диодов (как на рис.26), «YLET60C» запустился и проработав около получаса с током в нагрузке 5 А сильно нагрелся. Далее ток был уменьшен до 4,5 А и был снят график стабильности выходного переменного напряжения и просмотрена его форма (рис.29). Видно, что никакой стабильности нет, так как нет никаких цепей стабилизации, и видно, что выходное напряжение состоит из 100-герцовых пачек, заполненных импульсами частотой около 70 кГц (сигнал в звуковую карту брался через случайный делитель и для сдвига спектра пропущен через смеситель, поэтому шкала вольт не соответствует действительности и, возможно, что и разница в амплитудах полуволн с этим связана).
После перестановки рабочего динистора в «YMET80C», тот тоже заработал. Частота преобразования около 55 кГц, выходное напряжение зависит от тока нагрузки и находится в пределах 11,5 В…12,5 В и имеет такой же вид, как и у «YLET60C». Этот преобразователь тоже сильно греется. Даже не верится, что в корпусах без охлаждения они долго проработают при указанных на них мощностях. Возможно, что в данных случаях указана или кратковременная мощность, или максимально возможная потребляемая от сети 220 В.
Источник