Меню

Для чего нужна балансировка аккумуляторов



Для чего нужна балансировка аккумуляторов

  • НОВОСТИ
  • О НАС
  • ПРОЕКТЫ
  • БЛОГ
  • КОНТАКТЫ
  • С нами работают

Всем известно, что аккумуляторы имеют широкое применение в мехатронике, робототехнике, автоматических системах управления и промышленности в целом. Электроавтомобили, автономные роботы, системы резервного питания, мобильные средства связи и вычислительной техники – далеко не полный перечень вариантов их применения. Совершенствуются и сами аккумуляторы. В своих разработках в большинстве случаев мы применяем литий-ионные аккумуляторные батареи.

Особенности строения аккумуляторов (в частности химические процессы в них протекающие) диктуют необходимость применения разнообразных схем зарядных устройств и устройств контроля состояния аккумуляторов. Наиболее важное место здесь занимает система контроля и управления аккумуляторной батареей (далее — СКУ АБ, в иностранной литературе используется аббревиатура BMS – battery management syste).

Применение систем контроля и управления аккумуляторной батареей позволяет:

В ходе работы литий-ионных аккумуляторов возникает такое явление, как разбалансировка. Это связано с тем, что все аккумуляторы имеют различия в таких характеристиках, как ток саморазряда в режиме хранения, внутреннее сопротивление, скорость деградации электродных материалов и т.д. Соответственно различия в напряжениях аккумуляторов приводят к снижению их срока службы и выходу из строя. Для решения этой проблемы люди придумали системы балансировки аккумуляторов.

В данной статье мы постараемся рассказать о наших изысканиях в попытках разработать схему активной балансировки.

Так, определенные системы зарядки литий-ионных аккумуляторов построены на том, что зарядка прекращается в том момент, когда одна из батарей достигнет верхнего порога (для литий-ионных аккумуляторов он составляет 4,2 вольта, как правило). Соответственно, батареи, емкость которых ниже, не заряжаются в таком случае полностью и эффективность использования такой ячейки снижается (а ещё она быстрее выйдет из строя т.к. всё чаще и чаще может уходить в глубокий разряд если система позволяет).

Аналогично и с разрядкой аккумулятора – если система контроля отключает аккумуляторы, ориентируясь по первой ячейке, которая достигнет нижнего порога напряжения (3 вольта для литий-ионных аккумуляторов, как правило), то эффективность использования такой системы резко упадет. Говоря опять же, простым языком не будет использован весь потенциал аккумулятора. Заряжаться он будет, ориентируясь на самую «живую» ячейку, а отключаться при разрядке, ориентируясь на самую «дохлую».

Гораздо более катастрофичными могут оказаться последствия, если система ориентируется на среднее значения напряжения между ячейками при заряде или разряде аккумулятора. В таком случае ячейки с меньшей емкостью могут не успеть зарядиться до верхнего порога в 4,2 вольта, в то время, как другие ячейки зарядятся выше этого значения, что может привести к их взрыву. Аналогично, при разряде такие ячейки могут разрядиться ниже порога в 3 вольта, что приведет к серьезной потере емкости такой ячейки.

Поэтому литиевые аккумуляторы балансировать нужно. А если кто-то говорит, что и так работает, то рано или поздно он поедет в травму с ожогами. Ага. Вообще балансировку можно осуществлять активными методами и пассивными.

Балансировка с переключающимися емкостями (Рисунок 4) заключается в том, что энергия сначала закачивается в буферную емкость от i-ячейки, а затем передается из буферной емкости в соседнюю (i+1)-ячейку. Отсюда следует главный недостаток такой системы – передача заряда из ячеек, отдаленных друг от друга, крайне затруднительна.

Общий недостаток емкостных систем балансировки – броски тока при переключениях между ячейками, что может привести к выходу ключей из строя.

Потери энергии при этом невелики и в основном происходят в диоде и дросселе.

Аналогично катушкам индуктивности можно использовать трансформаторы (с разным числом обмоток). Эффективность метода не очень высокая, но данная система решает проблемы больших токов при разрыве в цепи. Если опять вернуться к примеру со 100 ячейками по 3,6 вольта, то при обрыве в цепи на транзисторах будет напряжение не 360 вольт, а всего 3,6, что не приведет к их сгоранию.

Существует три варианта построения систем балансировки на трансформаторах. Первый, buck-boost converter, основан на том, что энергия передается между двумя соседними фиксированными парами ячеек (между соседней четной и нечетной ячейкой). Данный метод изображен на Рисунке 8.

Системы активной балансировки, построенные на использовании преобразователей – повышающих, понижающих, прямоходовых и обратноходовых, а так же двунаправленных, считаются наиболее эффективными топологиями. В таких системах ключи находятся со стороны вторичной обмотки трансформатора (со стороны аккумулятора), то есть на ключи действует только напряжение ячеек, что не приведет к их выгоранию. В то же время усилители находятся со стороны первичной обмотки трансформатора (то есть с той стороны, к которой подключается зарядное устройство). Такой подход позволяет минимизировать потери в ключах, и одновременно с этим согласовывает разные уровни напряжений с обеих сторон трансформатора.

В частности, системы, построенные на повышающих преобразователях, передают энергию от одной ячейки ко всей группе ячеек. Пример такой системы показан на рисунке 11. Контроллер выбирает наиболее заряженную ячейку, включает соответствующий ей преобразователь, и энергия от ячейки начинает распределяться на всю группу.

Общей чертой обратноходовых преобразователей и buck-boost преобразователей является то, что они хранят энергию непосредственно в дросселе. В отличии от них, прямоходовой преобразователь только передает энергию через трансформатор, а для хранения энергии используются дополнительные элементы – катушки индуктивности. Сама энергия непосредственно передается с первичной обмотки от зарядного устройства.

Для создания системы активной балансировки был выбран метод балансировки на двунаправленном buck-boost преобразователе. Такой метод позволяет передавать энергию как от одной ячейки к группе ячеек (buck mode – передача энергии от наиболее заряженной ячейки), так и от группы ячеек к одной, наименее заряженной ячейке (boost mode). Для решения проблемы бросков тока будет использован контроллер тока, который позволяет формировать ШИМ-сигнал по току с постоянной амплитудой. Уникальность разрабатываемой системы заключается в том, что контроль преобразователя будет осуществляться одной единственной микросхемой, то есть микросхема будет непосредственно регулировать сигнал на первичной и вторичной обмотке трансформатора, а так же выполнять функции контроллера тока.

В области активной балансировки существует много наработок.

Известно изобретение «Устройство выравнивания напряжения на батарее» (патент США «Stackable Bi-directional Multicell Battery Balancer» №US8692516B2, МПК: H02J7/00, опубликован 08.04.2014).

Указанное устройство представляет собой систему из двунаправленных преобразователей энергии обратноходового типа, способную передавать энергию от всей батареи наименее заряженной ячейке и энергию от наиболее заряженной ячейки всей батарее. Так же устройство позволяет измерять напряжение каждого отдельного элемента литий-ионной АБ. Данной устройство построена на специализированных микросхемах компании Linear Technology (американская компания, производителей полупроводниковых элементов, микросхем, электроники и изделий на их основе) – LTC3300-1 и LTC6802-1 (Рисунок 12). Главным преимуществом данного изобретения является возможность его применения для высоковольтных батарей (напряжением до 1000 вольт). Недостатком данного устройства является сложность схемы управления, обуславливающая необходимость применения специализированной микросхемы LTC3300-1. Реализация логики работы данной микросхемы на элементной базе общего назначения достаточно сложна.

Другим примером изобретений в области активной балансировки является устройство контроля и балансировки литий-ионной аккумуляторной батареи, разработанное сотрудниками ЦНИИ РТК (Патент RU 176470 U1, опубликовано 22.01.2018, авторы: Гук М.Ю., Зыков Н.В., Иванов М.М., Кузнецов В.А.)

Данное устройство состоит из трансформатора с общим сердечников и одинаковыми по количеству витков рабочими обмотками, такими что, по крайней мере, две соседние ячейки имеют одну общую пару рабочих обмоток, которая своей общей точкой подключена к общей точке соединения этих ячеек, а свободными концами эта пара рабочих обмоток подключена через ключевые элементы к другим выводам соответствующих ячеек, а также генератора импульсов, выполненного в виде преобразователя постоянного напряжения и управляемых ключевых элементов, выпиленных на полевых транзисторах. Также в систему балансировки был введен коммутатор для измерения напряжения каждого элемента АБ в отдельности и микропроцессор для управления всей системой в целом. Микропроцессор с помощью коммутатора измеряет напряжение на ячейках АБ и выдает команду балансировочному устройству на проведение процедуры балансировки только при превышении разности напряжений на элементах АБ определённого порогового значения, что обеспечивает снижение потерь энергии и увеличение срока службы батареи.

Читайте также:  Телефон быстро разряжается с новым аккумулятором айфон

Аналогичным к вышеописанному, но не имеющим возможности измерения напряжения каждого элемента АБ в отдельности, является устройство выравнивания напряжения на батарее (патент на изобретение США «Charge Redistribution Method For Cell Arrays», №US2014103857A1, МПК: H02J7/00, опубликован 17.04.2014).

В общем, посмотрели, поискали и решили, что интересно сделать всё-таки своё. Потому что кроме общего описания в этих патентах в общем-то и нет. Патентов на самом деле есть побольше, но привели несколько… Да и не о патентах вообще речь, а о том, что велосипеды изобретаются и делиться ими никто особо не хочет. Ну или нам не повезло просто.

Для создания системы активной балансировки был выбран метод балансировки на двунаправленном buck-boost преобразователе. Такой метод позволяет передавать энергию как от одной ячейки к группе ячеек (buck mode – передача энергии от наиболее заряженной ячейки), так и от группы ячеек к одной, наименее заряженной ячейке (boost mode). Вообще поиск показал, что есть решение у Texas Instruments, которое мы и попробуем реализовать. Зарядное устройство и нагрузка подключаются к первичной обмотке трансформатора, а батареи – ко вторичной обмотке.

Для реализации используются специализированные микросхемы от Texas Instruments – EMB1428 и ЕМВ1499. EMB1428 – драйвер, который управляет матрицей полевых транзисторов, коммутирующих нужную ячейку к вторичной обмотке трансформатора. ЕМВ1499 – двунаправленный контроллер тока, выполняющий также функции контроллера ШИМ сигнала на обеих обмотках buck-boost преобразователя.

Разрабатываемое устройство состоит из двух функциональных частей – коммутатора (Рисунок 13) и непосредственно устройства балансировки. Коммутатор построен на основе матрицы транзисторов и драйвера EMB1428 . Устройство балансировки построено на трансформаторе и микросхеме ЕМВ1499, образующими buck-boost преобразователь с системой управления.

Матрица транзисторов (Рисунок 14) состоит условно из двух частей. Одна состоит из транзисторов, которые напрямую подключаются к выводам ячеек аккумулятора – назовем ее «переключатель ячеек». Транзисторы ставятся парами, у них общий исток и общий затвор, такое построение блокирует протекание тока в обе стороны при закрытых транзисторах, что позволяет уменьшить потери. Можно пронумеровать такие пары транзисторов от 0 до 7 снизу вверх. Один сток подключатся к выводу батареи, второй сток – подсоединяется к общей линии, четной (ODD, линия красного цвета на Рисунке 14) или нечетной (EVEN, линия синего цвета на Рисунке 14), в зависимости от номера.

Вторая часть находится между » переключателем ячеек» и DC/DC преобразователем – назовем ее » переключатель полярности». EMB1428Q связан с микроконтроллером через интерфейс связи SPI (EMB1428Q получает от MCU команду, какая батарея требует заряда/разряда, докладывает об ошибках). Получив команду, EMB1428Q выбирает нужную ячейку в аккумуляторе, подключает ее через транзисторы к четной и нечетной линии и к нужному каналу, чтобы была нужная полярность (сначала EMB1428Q закрывает ненужные транзисторы, потом открывает нужные транзисторы). Например, выделение ячейки 1: открываются транзисторы Vg0 и Vg1, Vg11 и Vg8 (верх – к плюсу, низ – к минусу). Ячейка 2: открываются транзисторы Vg1 и Vg2, Vg9 и Vg10.

Источник

Балансировка батареи — Battery balancing

Балансировка батарей и перераспределение батарей относятся к методам, которые увеличивают доступную емкость батарейного блока с несколькими ячейками (обычно последовательно) и увеличивают срок службы каждой ячейки. Батареи балансира или регулятор батареи представляет собой электрическое устройство в аккумуляторной батарее , которая выполняет батареи балансировки. Балансиры часто встречаются в литий-ионных аккумуляторных батареях для портативных компьютеров, электромобилей. и т.п.

СОДЕРЖАНИЕ

  • 1 Обоснование
    • 1.1 Последствия для безопасности
  • 2 Технологии
    • 2.1 Пассивная балансировка
    • 2.2 Активная балансировка
  • 3 См. Также
  • 4 ссылки
  • 5 Дальнейшее чтение
    • 5.1 Патенты

Обоснование

Отдельные элементы в аккумуляторной батарее, естественно, имеют несколько разную емкость, и поэтому в течение циклов зарядки и разрядки могут находиться в разном состоянии заряда (SOC). Различия в производительности связаны с производственными отклонениями, отклонениями в сборке (например, элементы из одного производственного цикла, смешанные с другими), старением элементов, загрязнениями или воздействием окружающей среды (например, некоторые элементы могут подвергаться дополнительному нагреву от близлежащих источников, таких как двигатели, электроника. и т. д.), и может усугубляться кумулятивным эффектом паразитных нагрузок, таких как схемы контроля ячеек, часто встречающиеся в системе управления батареями (BMS).

Балансировка многоэлементной батареи помогает максимизировать емкость и срок службы батареи, поддерживая эквивалентный уровень заряда каждой ячейки в максимально возможной степени с учетом их различной емкости в самом широком диапазоне. Балансировка необходима только для пакетов, содержащих более одной ячейки в серии. Параллельные ячейки будут естественным образом сбалансированы, поскольку они напрямую связаны друг с другом, но группы ячеек с параллельным подключением, подключенные последовательно (параллельная проводка), должны быть сбалансированы между группами ячеек.

Последствия для безопасности

Чтобы предотвратить нежелательные и часто небезопасные условия, система управления батареями должна отслеживать состояние отдельных ячеек на предмет рабочих характеристик, таких как температура, напряжение, а иногда и потребляемый ток, хотя последний часто измеряется только для каждой упаковки, а не для каждой ячейки. возможно, с одноразовой защитой на уровне ячейки от аномально высокого тока (например, при коротком замыкании или другом отказе).

При нормальной работе разрядка должна прекращаться, когда в любой из ячеек заканчивается заряд, даже если другие элементы все еще могут удерживать значительный заряд. Точно так же зарядка должна прекращаться, когда любая ячейка достигает максимального безопасного зарядного напряжения. Невыполнение этого требования может привести к необратимому повреждению ячеек или, в крайних случаях, может привести к изменению полярности ячеек, вызвать внутреннее газообразование, тепловой разгон или другие катастрофические сбои. Если элементы не сбалансированы, так что отсечка по верхнему и нижнему пределу, по крайней мере, совмещена с состоянием элемента с наименьшей емкостью, энергия, которая может быть взята и возвращена в аккумулятор, будет ограничена.

Литий-ионные аккумуляторные батареи более чувствительны к перезарядке, перегреву, неправильному уровню заряда во время хранения и другим формам плохого обращения, чем наиболее часто используемые химические составы аккумуляторов (например, NiMH). Причина в том, что литиевые батареи различного химического состава подвержены химическому повреждению (например, загрязнение катода, молекулярный распад и т. Д.) Только из-за очень незначительных перенапряжений (например, милливольт) во время зарядки или большего зарядного тока, чем может выдержать внутренняя химия при зарядке. этот момент в его цикле зарядки / разрядки и т. д. Тепло ускоряет эти нежелательные, но пока неизбежные химические реакции, а перегрев во время зарядки усиливает эти эффекты.

Поскольку химический состав лития часто допускает гибкие мембранные структуры, литиевые элементы могут быть размещены в гибких, хотя и герметичных пакетах, что обеспечивает более высокую плотность упаковки внутри аккумуляторной батареи. При неправильном обращении с литиевым элементом некоторые продукты распада (обычно электролитические химические вещества или добавки) улетучиваются. Такие клетки станут «пухлыми» и очень скоро выйдут из строя. В герметичных литий-ионных батареях цилиндрического формата такое же выделение газа вызвало довольно большое давление (сообщалось, что 800+ фунтов на квадратный дюйм); такие ячейки могут взорваться, если не оснащены механизмом сброса давления. Опасность усугубляется тем, что многие химические вещества литиевых элементов включают углеводородные химические вещества (точная природа которых обычно является запатентованной), и они легко воспламеняются. Следовательно, помимо риска неправильного обращения с ячейками, потенциально вызывающего взрыв, простая невзрывоопасная утечка может вызвать пожар.

Большинство химических компонентов батарей имеют менее драматические и менее опасные виды отказов. Химические вещества в большинстве батарей часто до некоторой степени токсичны, но редко бывают взрывоопасными или легковоспламеняющимися; многие из них вызывают коррозию, поэтому рекомендуется не оставлять батареи внутри оборудования на длительное время, так как батареи могут протечь и повредить оборудование. Свинцово-кислотные батареи являются исключением, поскольку при их зарядке образуется газообразный водород, который может взорваться при воздействии источника возгорания (например, зажженной сигареты), и такой взрыв приведет к разбрызгиванию серной кислоты во всех направлениях. Поскольку это вызывает коррозию и может вызвать ослепление, это особая опасность.

Читайте также:  Аккумулятор для canon ixus 132

Технология

Балансировка может быть активной или пассивной . Термин « регулятор батареи» обычно относится только к устройствам, которые выполняют пассивную балансировку.

Полная BMS может включать в себя активную балансировку, а также мониторинг температуры, зарядку и другие функции, чтобы максимально продлить срок службы аккумуляторной батареи.

Балансировка аккумуляторов может выполняться преобразователями постоянного тока в постоянный в одной из трех топологий:

  • От ячейки к батарее
  • От батареи к ячейке
  • Двунаправленный

Обычно мощность, потребляемая каждым преобразователем постоянного тока в постоянный, на несколько порядков ниже мощности, потребляемой аккумуляторным блоком в целом.

Пассивная балансировка

При пассивной балансировке энергия отбирается от наиболее заряженной ячейки и рассеивается в виде тепла, обычно через резисторы .

Пассивная балансировка уравновешивает состояние заряда в некоторой фиксированной точке — обычно это либо «верхний баланс», когда все ячейки достигают 100% SOC одновременно; или «сбалансированный по дну», когда все ячейки достигают минимального значения SOC одновременно. Это может быть достигнуто путем отвода энергии из ячеек с более высоким уровнем заряда (например, контролируемое короткое замыкание через резистор или транзистор) или шунтирования энергии по пути, параллельному элементу во время цикла заряда, так что меньше (обычно регулируемый постоянный) ток потребляется элементом. Пассивная балансировка по своей сути расточительна, поскольку часть энергии батареи расходуется в виде тепла для выравнивания уровня заряда между ячейками. Накопление отработанного тепла также может ограничивать скорость балансировки.

Активная балансировка

При активной балансировке энергия отбирается от наиболее заряженного элемента и передается наименее заряженным элементам, обычно через конденсаторные, индуктивные или DC-DC преобразователи .

Активная балансировка пытается перераспределить энергию от ячеек с полным зарядом к элементам с более низким уровнем заряда. Энергию можно отвести из ячейки с более высоким SOC, переключив накопительный конденсатор в цепи с ячейкой, затем отключив конденсатор и повторно подключив его к ячейке с более низким SOC, или через преобразователь постоянного тока в постоянный, подключенный ко всей батарее. . Из-за неэффективности часть энергии все еще расходуется в виде тепла, но не в такой степени. Несмотря на очевидные преимущества, дополнительные затраты и сложность активной балансирующей топологии могут быть значительными и не всегда имеют смысл в зависимости от приложения.

Другой вариант, который иногда используется в аккумуляторных блоках EAPC, использует многоконтактный соединитель с последовательно соединенными резистором и диодом на каждом узле: поскольку капли известны, зарядное устройство затем подает либо подходящий разрядный ток, либо заряжает слабые элементы, пока все они не будут считывать одинаково загруженные напряжение на клеммах. Это дает преимущество небольшого уменьшения веса упаковки и уменьшения паразитного натяжения, а также позволяет осуществлять многоточечную балансировку.

Источник

Что такое разбалансировка батарей и как с ней бороться?

Безусловно, многие юзеры по ходу эксплуатации своих электрических средств передвижения сталкивались с теми или иными проблемами, которые преподносят им аккумуляторные батареи. У кого-то не получается выйти на показатель пробега на одном заряде гарантированный производителем, у кого-то АКБ выдохлась намного раньше заявленного срока, а у кого-то накопитель и вовсе самовоспламенился либо взорвался. Одной из причин таких неприятностей может стать разбалансировка элементов аккумулятора. Что это такое и как с этим бороться, обсудим далее в статье.

Разбалансировка аккумуляторной батареи — что это?

Как правило, в любой системе, в которую входят несколько последовательно, параллельно или смешано подключённых электронакопителей, даёт о себе знать разбалансировка заряда отдельных составляющих. Это приводит к перегреву либо перезаряду, что сокращает срок службы и может повлечь за собой самовозгорание или изделие может даже взорваться. Естественно, падает и ёмкость АКБ.

Тут вся проблема в том, что нет двух одинаковых электронакопителей: все изделия имеют различия между собой. Это правило относится ко всем элементам, даже если они одного и того же типа, от одного изготовителя и из одной партии. Всегда имеет место небольшая разница в состоянии заряда, саморазряда, ёмкости, сопротивлении и т. д., а при создании блока АКБ, разница может усиливаться. Конечно, собирая такие блоки, разработчики стараются подбирать максимально идентичные элементы, скрупулёзно сравнивая напряжение на них, но, разница всё-равно присутствует и с течением времени даже увеличивается.

Допустим, в системе находится компонент с сопротивлением намного превышающим таковое у других компонентов. В процессе зарядки, напряжение на нём будет несколько больше и может даже активироваться защита от его избытка. Когда элемент начнёт отдавать энергию, напряжение на нём будет самым низким, так же как и ёмкость. Из это следует вывод: система не обеспечивает 100-процентной отдачи! Итог далеко не радостный: по ходу эксплуатации, будет происходить деградация и усиление дефекта. Слабое звено вызовет ухудшения в работе всего аккумуляторного блока.

Повышенное напряжение такого элемента после окончания зарядных процедур, является свидетельством его интенсивной деградации. По причине значительного внутреннего сопротивления и уменьшенной ёмкости, при разряде, на таком изделии наблюдается самое маленькое напряжение. При зарядке, на слабом элементе может активироваться защита от переизбытка напряжения, а вот другие составляющие аккумуляторного блока при этом не будут «заправлены» под завязку. Естественно, в такой ситуации аппаратура не сможет предложить пользователю 100-процентную отдачу.

Что же делать, если у вас такие проблемы? Заниматься выравниванием заряда надобно, о чём мы и поговорим далее.

Выравнивание заряда — практика

Устройство выравнивания заряда электронакопителя, обслуживает АКБ соединённые последовательно, при подзарядке их от одного источника питания. Компоненты соединённые последовательно образуют одну цепь либо линейку и в зависимости от направленности системы, их может быть разное количество. Приспособление имеет возможность выставлять токи на конкретных АКБ параллельно, в нескольких цепях.

В состав системы входит контроллер, отвечающий за уравновешивание заряда комплекта, устройство подсоединяется к общему источнику электроэнергии. Присутствуют в оборудовании и отдельные датчики, которые разработчики устанавливают на аккумуляторах. Элементы системы синхронизируются между собой посредством спецшлейфа.

Компоненты включённые в одну цепь должны быть одинаковой ёмкости, если это не так, балансировочное оборудование не сможет эффективно уровнять заряд АКБ. Чем больше будут отличаться между собой компоненты по ёмкости, тем большее количество циклов заряда/разряда батарей потребуется для осуществления надлежащей балансировки электронакопителей.

Как работает балансировщик заряда аккумулятора?

Контроллер производит анализ напряжения и активируется, если оно повышается. Оснащение вычисляет усреднённый показатель и по спецшлейфам берёт данные от каждой отдельной АКБ. Когда напряжение на электронакопителе превосходит усреднённую цифру, контроллер подаёт сигнал на компенсацию нагрузки, если же оно ниже — элемент будет разгружаться. Данные действия завязаны на циклы заряда/разряда и с каждым циклом, напряжение всё больше доводится до средних показателей.

В случае если общее напряжение не повышается в течение 3-х часов, контроллер начинает подавать сигналы о том, что работа окончена и отключает датчики на накопителях. Однако контроль напряжения на этом не заканчивается, а продолжается. Датчики контроля напряжения устанавливают на все АКБ, а что касается конкретно подключения, то самым лучшим вариантом будет установка рядом с контактами, затем подсоединить «+» к «+», «-» к «-». После того, как установка была произведена должным образом, датчик будет мигать, а если сигнал отсутствует, то либо подключение выполнено не верно, либо батарея вышла из строя. Посредством COM-порта контроллер имеет возможность выводить данные каждого накопительного элемента на ПК. Помимо этого, контроллер оповещает о падении или повышении напряжения на компонентах системы.

Выравнивание напряжения элементов лучше всего осуществлять тогда, когда они полностью заряжены. Балансировать АКБ можно посредством пары методик: активной и пассивной. Вторая вариация отличается своей простотой: разряд батареек, требующих балансировки, осуществляют посредством байпасных цепей, обеспечивающих рассеивание мощности. Данные цепи могут находиться в аккумуляторном блоке либо располагаться во внешней плате. Почти вся лишняя энергия от элементов с повышенным зарядом превращается в тепло и это является основным недостатком пассивной методики, ведь происходит сокращение времени работы АКБ без подзарядки. Однако в данном случае, превосходство активного метода не бесплатно: в ход идут дополнительные дорогостоящие компоненты.

Читайте также:  Аккумулятор зверь кислотный или щелочной

Как уже было сказано выше — это самый простой способ выравнивания напряжения аккумуляторов. Возьмём за пример плату BQ77PL900, защищающую аккумуляторные блоки в состав которых входит 5-10 последовательно подключённых электронакопителей. Она применяется в инструментах без наличия кабеля, электроскутерах, ИБП и медоборудовании. Данная микросхема может использоваться для обработки аккумуляторного отсека:

Она сравнивает напряжение АКБ с установленными порогами и при надобности, активирует балансировочный режим:

Если напряжение какой-то батарейки превышает установленное ограничение, то процесс подзарядки останавливается, включаются байпасные цепочки. Заряд не возобновится до того момента, пока напряжение элемента не упадёт ниже порогового уровня и процедура балансировки закончится.

Балансировка ориентируемая только на расхождение в напряжении, может не полностью уравновешивать характеристики по причине внутреннего импеданса аккумуляторов (смотрим изображение):

Здесь беда в том, что внутренний импеданс влияет на разность напряжений при подзарядке накопителя. Плата защищающая батареи от дисбаланса не может вычислить, чем конкретно вызвана разность напряжений: отличиями в ёмкости или во внутренних сопротивлениях. По итогу, данная разновидность балансировки не гарантирует, что все элементы получат полный заряд.

По энергоэффективности данная метода переигрывает предыдущий способ, так как для передачи электроэнергии от накопителя-донора к более нуждающемуся компоненту, вместо резисторов применяются ёмкости и индуктивности, у которых минимально возможные потери энергии. Этому методу уместно отдавать предпочтение в тех случаях, когда есть потребность в обеспечении максимального времени функционирования аккумулятора без подзарядки.

За пример можно взять микросхему BQ78PL114, в основе которой лежит технология PowerPump. Её работа приведена на рисунке ниже:

Энергетические потери при этом не существенны и в основном происходят в дросселе и диоде. Плата BQ78PL114 может предложить пользователю три балансировочных алгоритма:

1. По напряжению на выводах аккумулятора. Данный способ имеет схожесть с пассивной вариацией описанной ранее.

2. По напряжению холостого хода. Этот способ подразумевает компенсацию различия во внутренних сопротивлениях элементов.

3. По заряду АКБ. В данном случае будет точно высчитываться заряд, требуемый для передачи от одной батарейки к другой. Выравнивание осуществляется в конце заряда, а применение этого балансировочного алгоритма обеспечивает самый лучший результат.

По причине высоких балансировочных токов, PowerPump является более эффективной, чем обыкновенная балансировка пассивной разновидности. Технология имеет большие возможности по балансировке: процесс может осуществляться когда батарея заряжается, разряжается и даже тогда, когда компонент с которого берётся энергия, имеет в своём распоряжении меньшее напряжение, чем АКБ принимающая электричество. Поэтому, если сравнивать с пассивной методой, то энергии будет теряться намного меньше.

Общие советы по выбору аккумуляторов для системы

Конечно, лучше не допустить разбалансировки аккумуляторов с самого начала, чем потом раскладывать всё по полочкам, затрачивая на это время, силы, финансы, да и нервы стоит брать в расчёт. Поэтому отдаём предпочтение АКБ от одного и того же производителя, одной и той же серии, ёмкости, идентичного типа, а также выпущенным в одно время. Если перечисленные условия не будут соблюдены, при расширении системы, уравнивать заряд батарей придётся в обязательном порядке.

Если по ходу эксплуатации аппаратуры появляется потребность в расширении ёмкости, то при подборе дополнительных аккумуляторов, следует учитывать вышеприведённые требования, а что касается даты производства, то разница должна быть не больше года. Почему определены именно такие сроки? К примеру, по прошествии года, в свинцовых АКБ глубокого разряда, могут возникать необратимые процессы и на адекватное совместное функционирование в этом случае, рассчитывать не приходится. Новенький аккумулятор могут свести на нет более старые изделия. Если разница в дате выпуска значительная, год и более, гарантия на новый аккумулятор может быть утрачена.

Бесспорно, всем нужна продолжительная и качественная работа аккумуляторного блока, однако весьма существенно будет препятствовать такой радостной жизни разбалансировка элементов единой структуры, которые в любом случае придётся настраивать на общий лад. Такие «уравниловки» увеличат срок службы электронакопителей, и повысят безопасность при их эксплуатации. Для этих целей разработчики создали специальные балансировочные платы, на которые возложена обязанность приводить напряжение во всех элементах АКБ к общему знаменателю.

Есть пассивная методика, а есть и активная. Первая, предлагает пользователю простоту, но эффективностью она похвастать не может. Совсем по другому обстоят дела с активным методом: он более дорогостоящий, однако и результат соответствующий. Для сборки полноценного аккумуляторного комплекта, нужно использовать максимально похожие накопительные компоненты, иначе их придётся в обязательном порядке доводить до общего знаменателя. Вздумаете это игнорировать — проблем с вашим набором не избежать.

Учитывайте, что такое обстоятельство, как разбалансировка элементов аккумуляторного блока, вещь реальная и если вы не будете предавать этому обстоятельству надлежащего значения — на долгую, стабильную, а также безопасную эксплуатацию, не рассчитывайте. При обнаружении проблем подобного рода в вашей системе, незамедлительно обращайтесь в специализированный сервис — там вам помогут разрешить ситуацию, если сами не в силах.

Источник

Балансиры для аккумуляторов.

И так, наконец то я поставил себе балансиры на АКБ, те, что стоят на солнечной электростанции. Что это и как работает расскажу дальше, а пока процесс установки. Берем балансир, клеммы для АКБ, провод (на фото с крокодилами) использовался как перемычка для разных надобностей, ключ, чашку кофе и приступаем к работе. Сложного ничего нет, балансир из себя представляет продолговатую металлическую коробочку, с торцов у нее выходят провода, красный это плюс, черный минус, посередине коробочки светодиод. Провода можно укоротить если вам этого хочется, но одно НО, они должны быть одинаковой длинны.

Итак устанавливаем балансиры на АКБ. Если есть желание можно их положить сверху, или приклеить на двухсторонний скотч к АКБ где нибудь сбоку, у меня пока будут стоять так (АКБ разные по маркам, кому интересно почему, расскажу отдельно). На правом балансире сразу зажегся светодиод, это значит, что АКБ заряжен и балансир подключил нагрузочное сопротивление. Корпус является радиатором этого сопротивления и начинает греться, ничего страшного, всего то градусов до 40 по Цельсию.

Ну и для примера, что у меня сейчас выдают панели. Верхний амперметр это поликристаллическая панель, нижний это монокристаллическая панель. Сейчас 12 марта, около 14 часов, небольшая облачность. А, забыл, панели стоят под летним углом, примерно 40 градусов.

Ну а теперь поподробнее, что такое балансир, зачем нужен и как работает.
У каждого АКБ, внутренне сопротивление отличается друг от друга, соответственно когда АКБ соединены последовательно, контроллер солнечных панелей, или иное зарядное устройство, «видит» только суммарное напряжение всей группы АКБ, при этом на каждом аккумуляторе может отличаться на 2-3В друг от друга. Соответственно один может «закипеть» пока второй еще заряжается.

В балансире стоит плата отслеживающая напряжение и нагрузочный резистор, который потребляет примерно 0.17А. То есть как только напряжение на аккумуляторе достигает 14В, балансир «подключает» нагрузочный резистор и включает светодиод, тем самым как бы «притормаживает» этот аккумулятор. В идеале когда светодиоды на балансирах всех АКБ загораются одновременно. Кстати производитель балансиров утверждает, что после некоторого срока эксплуатации так и происходит, и АКБ «выровнялись». Еще интересный нюанс о котором говорит производитель, если светодиод на балансире, при отключении заряда тухнет моментально, значит АКБ скоро можно выбрасывать, так как они быстро набирает заряд и так же быстро разряжается, при нормальном АКБ светодиоды балансиров должны гореть еще несколько секунд после того как зарядка отключена.

Понравилось мне в этом балансире его простота, два провода + и — , и все, ошибиться трудно. Минус один, это цена, так как на каждый аккумулятор нужен отдельный балансир.
Для систем у которых свыше 4 АКБ я бы взял балансиры с отдельным контроллером и балансировочными модулями, как на схеме (для примера с набором АКБ 48В). Цена модуля чуть больше тысячи рублей, а это по цене уже более или менее нормально. Во временем конечно по тестирую и такую систему, а пока у меня все, можно пинать и спрашивать.

Источник