Меню

Дежурное питание компьютерного блока питания

Дежурное питание компьютерного блока питания

Большинство рассказов про блоки питания начинается с подчеркивания их важнейшей и чуть ли не главенствующей роли в составе компьютера. Это не так. БП — просто один из компонентов системы, без которого она не будет работать. Он обеспечивает преобразование переменного напряжения из сети в необходимые для работы ПК стабилизированные напряжения. Все блоки можно разделить на импульсные и линейные. Современные компьютерные блоки выполнены по импульсной схеме.

Линейные блоки питания

Сетевое напряжение поступает на первичную обмотку трансформатора, а со вторичной мы снимаем уже пониженное до нужных пределов переменное напряжение. Далее оно выпрямляется, следом стоит фильтр (в данном случае нарисован обычный электролитический конденсатор) и схема стабилизации. Схема стабилизации необходима, так как напряжение на вторичной обмотке напрямую зависит от входного напряжения, а оно только по ГОСТу может меняться в пределах ±10 %, а в реальности — и больше.

Основные достоинства линейных блоков питания — простая конструкция и низкий уровень помех (поэтому аудиофилы часто используют их в усилителях). Недостаток таких БП — габариты и невысокий КПД. Собрать БП мощностью 400 и более Вт по такой схеме возможно, но он будет иметь устрашающие размеры, вес и стоимость (медь нынче дорогая).

Импульсные блоки питания

Далее в тексте сократим название «импульсный источник питания» до ИИП. Такие блоки питания более сложны, но гораздо более компактны. Для примера на фото ниже показана пара трансформаторов.

Слева — отечественный сетевой с номинальной мощностью 17 Вт, справа — выпаянный из компьютерного БП мощностью 450 Вт. Кстати, отечественный еще и весит раз в 5 больше.

В ИИП сетевое напряжение сначала выпрямляется и сглаживается фильтром, а потом опять преобразуется в переменное, но уже гораздо более высокой частоты (несколько десятков килогерц). А затем оно понижается трансформатором.

Источник



Источник дежурного напряжения питания — БП стандарта АТХ

Как известно, одним из отличий блоков питания (далее БП) стандарта АТХ от БП стандарта АТ является наличие в их составе источника дежурного напряжения питания. Напряжение «+5VSB», вырабатываемое этим источником через контакт 9 двадцатиконтактного разъема, т.н. Main ATX Power Connector, поступает на материнскую плату и используется для питания схемы управления БП. Схема управления осуществляет формирование сигнала «PS-ON» (контакт 14 Main ATX Power Connector), все выходные напряжения БП (+/-5 V; +/-12 V; +3.3 V) выключаются при установке лог. «1» на входе «PS-ON» БП.

Источник дежурного напряжения питания чаще всего выполняется в виде однотактного импульсного преобразователя по схеме блокинг-генератора. На рис.1 представлена схема источника дежурного напряжения питания БП «MaxUs» PM-230W Ver.2.01 фирмы «KEY MOUSE ELECTRONICS CO., LTD».

В данной схеме преобразователь работает на частоте, определяемой в основном параметрами трансформатора Т3 и номиналами элементов в базовой цепи ключевого транзистора Q5 — емкостью конденсатора С28 и сопротивлением резистора начального смещения R48 [1]. Положительная обратная связь на базу транзистора Q5 поступает с вспомогательной обмотки трансформатора Т2 через элементы С28 и R51. Отрицательное напряжение с этой же обмотки после выпрямителя на элементах D29 и С27, в случае если оно превышает напряжение стабилизации стабилитрона ZD1 (в данном случае 16 В) также подается на базу Q5, запрещая работу преобразователя. Таким способом выполняется контроль за уровнем выходного напряжения. Напряжение питания с сетевого выпрямителя на преобразователь поступает через токоограничительный резистор R45, который при его выходе из строя можно заменить предохранителем на ток 500 мА, либо исключить совсем. В схеме на рис.1 резистор R56 номиналом 0.5 Ом, включенный в эмиттер транзистора Q5 является датчиком тока, при превышении тока транзистора Q5 выше допустимого напряжение с него через резистор R54 поступает на базу транзистора Q9 типа 2SC945 (Uкбо=60 В; Iк=0.1 А; Pк=0.25 Вт; fгр=250 МГц; h21эmin=200; корпус TO-92; n-p-n) открывая его, и тем самым запрещая работу Q5. Подобным образом осуществляется дополнительная защита Q5 и первичной обмотки Т3. Цепочка R47C29 служит для защиты транзистора Q5 от выбросов напряжения. В качестве ключевого транзистора Q5 в указанной модели БП применяются транзисторы KSC5027-R (Uкбо=1100 В; Iк=3 А; Pк=50 Вт; fгр=15 МГц; h21эmin=15; корпус TO-220; n-p-n) фирмы «FAIRCHILD».

Выходное напряжение источника «+5 VSB» формируется при помощи интегрального стабилизатора U2 типа PJ7805 (аналог LM7805 фирмы «NATIONAL SEMICONDUCTOR»). Напряжение величиной 10 В на вход стабилизатора U2 поступает с одной из вторичных обмоток трансформатора Т3, после выпрямления диодом D31 типа FR154 (Iпр=1.5 А; Uобр=400 В; tвост=250 нс; Fast Recovery Diode, т.н. быстро восстанавливающийся диод;) и фильтрации конденсатором C31. Выпрямленное напряжение с другой вторичной обмотки Т3 используется для питания микросхемы KA7500B фирмы «FAIRCHILD» (аналог TL494 фирмы «TEXAS INSTRUMENTS») в дежурном режиме работы БП. Его величина составляет 21 В.

Читайте также:  Главный параметр блока питания

Встречается еще один вариант подобного БП — «Turbo — Power» PM-230W этой же фирмы «KEY MOUSE ELECTRONICS CO., LTD», его схема имеет следующие отличия: могут отсутствовать элементы Q9, R54, R56, J17; сопротивление резистора R51 — 100 Ом/0.125 Вт; сопротивление R50 — 1 кОм; установлен резистор R49 — 51 Ом/0.125 Вт; трансформатор Т3 — 22.10201003; транзистор Q5 — 2SC3150 (Uкбо=900 В; Iк=3 А; Pк=40 Вт; fгр=15 МГц; h21эmin=10; корпус TO-220АВ; n-p-n) фирмы «SANYO».

К сожалению, cледует отметить, что в целях максимального уменьшения себестоимости БП (это относится к обеим упоминавшимся выше моделям БП, но в большей мере — к модели «Turbo — Power» PM-230W), а также в связи с тем, что описываемые БП выполнены в корпусах размерами меньше стандартных, фирма устанавливает в источнике дежурного напряжения малогабаритные элементы работающие на пределе (а скорее всего и с превышением) своих электрических характеристик. В результате, после непродолжительного времени работы эти элементы выходят из строя. В частности в ремонт поступило достаточно большое количество БП «Turbo — Power», в которых вышли из строя резисторы R49, R51, R52, конденсатор С27, диоды D29 и D30, стабилитрон ZD1. Кроме того, от постоянного нагрева, «подгорает» участок платы БП, на котором выполнен источник. При ремонте БП с такой неисправностью рекомендуется заменять резисторы R49, R51, R52 (а по возможности и все остальные) на резисторы мощностью 0.5 Вт например, МЛТ-0.5. Кроме указанных на схеме можно применять резисторы следующих номиналов: R49 — 51 или 62 Ома; R52 — 620 или 680 ом. Стабилитрон TZX16В фирмы «VISHAY»- (Uст=15.7:16.5 В; Rст=45 Ом (при Iст=5 мА); Pмакс=500 мВт) можно заменить на два включенных последовательно стабилитрона Д814А, Д814Б, или одним — типа КС515А, диоды D29 и D30 — 1N4148А (Iпр=150 мА; Uобр=100 В; tвост=4 нс; импульсный диод) на КД522А. Электролитический конденсатор С27 следует выбирать из температурной группы 105°С. Транзистор Q9 можно, например, заменить на транзисторы КТ3102, КТ315 и др. На месте Q5 также был практически опробован транзистор BUT11AF (Uкбо=850 В; Iк=5 А; Pк=30 Вт; fгр=10 МГц; h21эmin=25; изолированный корпус TO-220; n-p-n) фирмы «PHILIPS», возможно также применение 2SC5353 (Uкбо=900 В; Iк=3 А; Pк=25 Вт; h21эmin=10; корпус TO-220АВ; n-p-n) фирмы «TOSHIBA».

Еще одной характерной неисправностью БП «Turbo — Power» PM-230W можно считать выход из строя электролитических конденсаторов С31 (220 мкФ_16 В) и реже С32 (220 мкФ_10 В). Судя по всему, их выход из строя обусловлен тяжелым температурным режимом работы, поскольку конденсаторы расположены очень близко от радиатора, на котором установлены выпрямительные диоды цепей +5 и +12 В, полевой транзистор схемы формирования напряжения +3.3 В, а также интегральный стабилизатор PJ7805. При замене С31, С32 рекомендуется использовать конденсаторы LOW E.S.R. (Equivalent Series Resistance — эквивалентное последовательное сопротивление) из температурной группы 105°С.

Все вышеуказанные замены были проверены на практике, при ремонте БП «Turbo — Power» PM-230W, как впрочем, и некоторых других БП, схемы которых весьма похожи и отличаются лишь позиционными обозначениями элементов и некоторыми вариациями их номиналов.

Все вышесказанное имеет смысл лишь в случае исправности импульсного трансформатора Т3. Если же трансформатор поврежден, то можно попытаться его восстановить, аккуратно разобрав и перемотав поврежденную (чаще всего первичную) обмотку. Но данная процедура достаточно сложна и требует некоторого опыта. Поэтому другим, зачастую более доступным вариантом ремонта БП с вышедшим из строя импульсным трансформатором является отказ от импульсного преобразователя напряжения и применение понижающего трансформатора на напряжение 9:12 В, ток понижающей обмотки следует выбирать исходя из того, что согласно новой спецификации стандарта АТХ версии 2.01 ток потребления по цепи +5VSB может достигать 720 мА. Главным параметром при выборе будут являться его габариты, поскольку трансформатор необходимо установить в корпусе БП.

Вариант с использованием в АТХ БП понижающего трансформатора не является чем-то особенным, например, один ранних БП этого стандарта СWT-250ATX фирмы «CHANNEL WELL TECNOLOGY CO., LTD» выполнен подобным образом (см.рис.2).

Читайте также:  Блок питания tl494 нет питания

А на рис.3 приведена схема подключения понижающего трансформатора в схеме БП «MaxUs» и «Turbo — Power» PM-230W, красным цветом показаны вносимые в схему изменения.

Выводы первичной обмотки понижающего трансформатора удобнее всего подключить на плате БП в свободные отверстия, предназначенные для конденсатора сетевого фильтра Cx, поскольку в большинстве случаев этот конденсатор не устанавливается. В качестве диодного моста DB можно использовать практически любые выпрямительные диоды с Iпр_1 А и Uобр_50 В.

Родин А.В., Тюнин Н.А., Воронов М.А. Ремонт мониторов. М.: Солон, 1997. — 288 с., ил. — (Серия «Ремонт»; Вып. 12)

Кишков Дмитрий Владимирович
Инженер фирмы «MM-Company» (г.Омск)

Вы не зарегистрированы?
Нажмите здесь для регистрации.

Забыли пароль?
Запросите новый здесь.

Источник

РЕМОНТ БП ПК — ДЕЖУРНОЕ НАПРЯЖЕНИЕ

В прошлой статье мы рассмотрели, какие действия нужно предпринять, если у нас предохранитель блока питания ATX в коротком замыкании. Это означает, что проблема где-то в высоковольтной части, и нам нужно прозванивать диодный мост, выходные транзисторы, силовой транзистор или мосфет, в зависимости от модели блока питания. Если же предохранитель цел, мы можем попробовать подсоединить шнур питания к блоку питания, и включить его выключателем питания, расположенным на задней стенке блока питания.

РЕМОНТ БП ПК - ДЕЖУРНОЕ НАПРЯЖЕНИЕ

И вот здесь нас может поджидать сюрприз, сразу как только мы щелкнули выключателем, мы можем услышать высокочастотный свист, иногда громкий, иногда тихий. Так вот, если вы услышали этот свист, даже не пытайтесь подключать блок питания для тестов к материнской плате, сборке, или устанавливать такой блок питания в системный блок!

Дело в том, что в цепях дежурного напряжения (дежурки) стоят все те же знакомые нам по прошлой статье электролитические конденсаторы, которые теряют емкость, при нагреве, и от старости, у них увеличивается ESR, (по-русски сокращенно ЭПС) эквивалентное последовательное сопротивление. При этом визуально, эти конденсаторы могут ничем не отличаться от рабочих, особенно это касается небольших номиналов.

Дело в том, что на маленьких номиналах, производители очень редко устраивают насечки в верхней части электролитического конденсатора, и они не вздуваются и не вскрываются. Такой конденсатор не измерив специальным прибором, невозможно определить на пригодность работы в схеме. Хотя иногда, после выпаивания, мы видим, что серая полоса на конденсаторе, которой маркируется минус на корпусе конденсатора, становится темной, почти черной от нагрева. Как показывает статистика ремонтов, рядом с таким конденсатором обязательно стоит силовой полупроводник, или выходной транзистор, или диод дежурки, или мосфет. Все эти детали при работе выделяют тепло, которое пагубно сказывается на сроке работы электролитических конденсаторов. Дальнейшее объяснять про работоспособность такого потемневшего конденсатора, думаю будет лишним.

Остановившийся кулер блока питания

Если у блока питания остановился кулер, из-за засыхания смазки и забивания пылью, такой блок питания скорее всего потребует замены практически ВСЕХ электролитических конденсаторов на новые, из-за повышенной температуры внутри блока питания. Ремонт будет довольно муторным, и не всегда целесообразным. Ниже приведена одна из распространенных схем, на которой основаны блоки питания Powerman 300-350 ватт, она кликабельна:

Схема БП АТХ Powerman

Давайте разберем, какие конденсаторы нужно менять, в этой схеме, в случае проблем с дежуркой:

какие конденсаторы нужно менять в схеме

Итак, почему же нам нельзя подключать блок питания со свистом к сборке для тестов? Дело в том, что в цепях дежурки стоит один электролитический конденсатор, (выделено синим) при увеличении ESR которого, у нас возрастает дежурное напряжение, выдаваемое блоком питания на материнскую плату, еще до того, как мы нажмем кнопку включения системного блока. Иными словами, как только мы щелкнули клавишным выключателем на задней стенке блока питания, это напряжение, которое должно быть равно +5 вольт, поступает у нас на разъем блока питания, фиолетовый провод разъема 20 Pin, а оттуда на материнскую плату компьютера.

В моей практике были случаи, когда дежурное напряжение было равно (после удаления защитного стабилитрона, который был в КЗ) +8 вольт, и при этом ШИМ контроллер был жив. К счастью блок питания был качественный, марки Powerman, и там стоял на линии +5VSB, (так обозначается на схемах выход дежурки) защитный стабилитрон на 6.2 вольта.

Почему стабилитрон защитный, как он работает в нашем случае? Когда напряжение у нас меньше, чем 6.2 вольта, стабилитрон не влияет на работу схемы, если же напряжение становится выше, чем 6.2 вольта, наш стабилитрон при этом уходит в КЗ (короткое замыкание), и соединяет цепь дежурки с землей. Что нам это дает? Дело в том, что замкнув дежурку с землей, мы сохраняем тем самым нашу материнскую платы от подачи на нее тех самых 8 вольт, или другого номинала повышенного напряжения, по линии дежурки на материнку, и защищаем материнскую плату от выгорания.

Читайте также:  Блок питания 20а для зарядного устройства

Но это не является 100% вероятностью, что у нас в случае проблем с конденсаторами сгорит стабилитрон, есть вероятность, хотя и не очень высокая, что он уйдет в обрыв, и не защитит тем самым нашу материнскую плату. В дешевых блоках питания, этот стабилитрон обычно просто не ставят. Кстати, если вы видите на плате следы подгоревшего текстолита, знайте, скорее всего там какой-то полупроводник ушел в короткое замыкание, и через него шел очень большой ток, такая деталь очень часто и является причиной, (правда иногда бывает, что и следствием) поломки.

Кондеры в дежурке БП

После того, как напряжение на дежурке придет в норму, обязательно поменяйте оба конденсатора на выходе дежурки. Они могут придти в негодность из-за подачи на них завышенного напряжения, превышающего их номинальное. Обычно там стоят конденсаторы номинала 470-1000 мкф. Если же после замены конденсаторов, у нас на фиолетовом проводе, относительно земли появилось напряжение +5 вольт, можно замкнуть зеленый провод с черным, PS-ON и GND, запустив блок питания, без материнской платы.

Если при этом начнет вращаться кулер, это значит с большой долей вероятности, что все напряжения в пределах нормы, потому что блок питания у нас стартанул. Следующим шагом, нужно убедиться в этом, померяв напряжение на сером проводе, Power Good (PG), относительно земли. Если там присутствует +5 вольт, вам повезло, и остается лишь замерить мультиметром напряжения, на разъеме блока питания 20 Pin, чтобы убедиться, что ни одно из них не просажено сильно.

Как видно из таблицы, допуск для +3.3, +5, +12 вольт — 5%, для -5, -12 вольт — 10%. Если же дежурка в норме, но блок питания не стартует, Power Good (PG) +5 вольт у нас нет, и на сером проводе относительно земли ноль вольт, значит проблема была глубже, чем только с дежуркой. Различные варианты поломок и диагностики в таких случаях, мы рассмотрим в следующих статьях. Всем удачных ремонтов! С вами был AKV.

Источник

Как работает блок питания компьютера

Большинство рассказов про блоки питания начинается с подчеркивания их важнейшей и чуть ли не главенствующей роли в составе компьютера. Это не так. БП — просто один из компонентов системы, без которого она не будет работать. Он обеспечивает преобразование переменного напряжения из сети в необходимые для работы ПК стабилизированные напряжения. Все блоки можно разделить на импульсные и линейные. Современные компьютерные блоки выполнены по импульсной схеме.

Линейные блоки питания

Сетевое напряжение поступает на первичную обмотку трансформатора, а со вторичной мы снимаем уже пониженное до нужных пределов переменное напряжение. Далее оно выпрямляется, следом стоит фильтр (в данном случае нарисован обычный электролитический конденсатор) и схема стабилизации. Схема стабилизации необходима, так как напряжение на вторичной обмотке напрямую зависит от входного напряжения, а оно только по ГОСТу может меняться в пределах ±10 %, а в реальности — и больше.

Основные достоинства линейных блоков питания — простая конструкция и низкий уровень помех (поэтому аудиофилы часто используют их в усилителях). Недостаток таких БП — габариты и невысокий КПД. Собрать БП мощностью 400 и более Вт по такой схеме возможно, но он будет иметь устрашающие размеры, вес и стоимость (медь нынче дорогая).

Импульсные блоки питания

Далее в тексте сократим название «импульсный источник питания» до ИИП. Такие блоки питания более сложны, но гораздо более компактны. Для примера на фото ниже показана пара трансформаторов.

Слева — отечественный сетевой с номинальной мощностью 17 Вт, справа — выпаянный из компьютерного БП мощностью 450 Вт. Кстати, отечественный еще и весит раз в 5 больше.

В ИИП сетевое напряжение сначала выпрямляется и сглаживается фильтром, а потом опять преобразуется в переменное, но уже гораздо более высокой частоты (несколько десятков килогерц). А затем оно понижается трансформатором.

Источник