Меню

Что такое импульсный блок питания для умзч



Что такое импульсный блок питания для умзч

Импульсный блок питания мощностью 200 Вт для УМЗЧ

Автор: Алексей Малышев
Опубликовано 06.09.2012
Создано при помощи КотоРед.
Участник Конкурса «Поздравь Кота по-человечески 2012!»

Здравствуй уважаемый Кот! С днем рождения тебя и всех благ, так сказать! А в качестве подарка прими такую очень полезную вещь, как источник питания для усилка.

Часть элементов данного устройства находится под опасным для жизни напряжением сети! Некоторые элементы сохраняют опасный электрический заряд после отключения устройства от сети! Поэтому при монтаже, наладке и работе с устройством необходимо соблюдать требования электробезопасности. Повторяя устройство, вы действуете на свой страх и риск. Я, автор, НЕ несу никакой ответственности за любой моральный и материальный ущерб, вред имуществу, здоровью и жизни, причиненный в результате повторения, использования или невозможности использования данной конструкции.

Споры о том, благо ли или зло импульсный источник питания для УМЗЧ (далее ИИП), выходят за рамки данной статьи. Лично я считаю, что правильно спроектированный, спаянный и налаженный ИИП ничуть не хуже (а по некоторым показателям даже лучше), чем классический БП с сетевым трансформатором.

В моем случае применение ИИП было необходимо потому, что я хотел засунуть свой усилок в плоский корпус.

Прежде чем разрабатывать данный ИИП, мной было изучено много готовых схем, имеющихся в сети и в литературе. Так, среди радиолюбителей очень популярны разные варианты схемы нестабилизированного ИИП на микросхеме IR2153. Преимущество этих схем только одно – простота. Что же касается надежности, то она никакая – сама ИМС не имеет функции защиты от перегрузки и мягкого старта для зарядки выходных электролитов, а добавление этих функций лишает ИИП его преимущества – простоты. Кроме того, реализация мягкого старта на данной ИМС крайне сомнительна – ширину импульсов она менять не позволяет, а методы, основанные на изменении частоты работы ИМС малоэффективны в «обычном» полумостовом ИИП и применимы в резонансных преобразователях. Долбать же электролиты и ключи огромными токами при включении блока мне как-то не очень хотелось.

Также рассматривалась возможность использования всем известной ИМС TL494. Однако при более глубоком ее изучении выяснилось, что для надежной работы вокруг этой ИМС придется повесить кучу всяких транзисторов, резисторов, конденсаторов и диодов. А это уже «не наш метод» 🙂

В результате выбор пал на более современную и быструю микросхему под названием UC3825 (русский аналог К1156ЕУ2). Подробное описание данной ИМС можно найти в ее русском даташите [1] и в журнале «Радио» [2].

Для тех, кто поленился прочитать эти источники, скажу, что это быстродействующий ШИМ-контроллер, обладающий следующими возможностями:

  • Управление мощными МОП-транзисторами.
  • Работа в устройствах с обратной связью по напряжению и току.
  • Функционирование на частотах до 1МГц.
  • Задержка прохождения сигнала через схему 50нс.
  • Полумостовые выходы на ток до 1.5А.
  • Широкополосный усилитель ошибки.
  • Наличие ШИМ-защелки.
  • Ограничение тока в каждом периоде.
  • Плавный запуск. Ограничение величины максимальной длительности выходного импульса.
  • Защита от пониженного напряжения питания с гистерезисом.
  • Выключение схемы по внешнему сигналу.
  • Точный источник опорного напряжения (5.1В +/- 1%).
  • Корпус “DIP-16”

Ну прям то что надо! Рассмотрим теперь сам ИИП.

Технические характеристики

Входное напряжение, В. 176…265;

Номинальная суммарная мощность нагрузки, Вт. 217,5;

Уровень сигнала управления, при котором БП включен. Лог. 1 КМОП;

Уровень сигнала, при котором БП выключен. 50В, 1А. В качестве VD3, VD4 подойдут КД522. Диоды VD5 – VD8 – Шоттки на напряжение не менее 80 В и ток не менее 1 А, VD9 – VD12 – быстродействующие (ultrafast) на напряжение не менее 200 В, ток 10…15 А и временем обратного восстановления не более 35 нс (в крайнем случае 75…50 нс). Будет совсем шикарно, если найдете Шоттки на такое напряжение. Диод VD13 – любой Шоттки 40 В, 1А.

В модуле А1 применены SMD-резисторы и конденсаторы типоразмера 0805. На позиции J1 устанавливается перемычка 0805. С5 должен быть обязательно из диэлектрика NPO или аналогичного, С6 – не хуже X7R. С1 – танталовый типа С или D – площадки на плате рассчитаны на любой из них. Транзисторы VT1, VT2 – любые n-p-n в корпусе SOT23. Диоды VD1 – VD4 – любые Шоттки на ток 3А в корпусе SMC. DA1 можно заменить на 7812.

XP3 – разъем с ATX-материнки.

Трансформатор Т1 типа ТП121-8, ТП131-8 . Подойдет любой с выходным напряжением под нагрузкой 15 В и мощностью 4,5 ВА. Намоточные данные других индуктивных элементов приведены ниже.

Трансформатор управления Т2

Обмотка

№ контакта (Н-К)

Число витков

Провод

Магнитопровод

Ферритовое кольцо Т90 (К22,9х14,0х9,53) зеленого цвета, u=4600

Каждая из обмоток занимает 1 слой и равномерно распределена по кольцу. Сначала мотают обмотку I и покрывают ее слоем изоляции, например, фторопластовой ленты или лакоткани. Изоляция на этой обмотке определяет безопасность ИИП. Далее мотают обмотки II и III. Кольцо вертикально приклеивают к пластмассовой панельке с контактами, которую потом впаивают в плату. Следует отметить, что для нормальной работы этот трансформатор должен иметь минимальную индуктивность рассеяния, поэтому сердечник для него должен быть тороидальный и с максимальной магнитной проницаемостью. Я пробовал мотать этот транс на сердечнике Е20/10/6 из N67 – импульсы на затворах имели выбросы, которые приоткрывали второй транзистор полумоста:

Голубой график – импульсы на затворе VT2, желтый – напряжение на стоке VT2.

С тороидальным трансформатором, намотанным как написано выше, осциллограмма имеет такой вид:

При монтаже трансформатора управления необходимо соблюдать фазировку обмоток! При неправильной фазировке при включении сгорят транзисторы полумоста!

Трансформатор тока Т3

Обмотка

№ контакта (Н-К)

Число витков

Провод

Магнитопровод

2 кольца К12х8х6 из феррита М3000НМ

Обмотку II мотают в 2 провода, после намотки конец одной полуобмотки соединяют с началом другой и контактом 2. Обмотка I представляет собой отрезок провода, пропущенный через кольцо в виде буквы «П». Для повышения электрической и механической прочности изоляции на провод надета фторопластовая трубка.

Силовой импульсный трансформатор Т4

Обмотка

№ контакта (Н-К)

Число витков

Провод

Магнитопровод

EI 33,0/24,0/12,7/9,7 из феррита PC40 TDK

Трансформатор рассчитан в программе ExcellentIT(5000) [7]. Сердечник извлечен из компового БП. Сначала мотается первая половина обмотки I. Поверх нее укладывается слой изоляции (я использую лавсановую пленку от фоторезиста) и экран – незамкнутый виток медной ленты, обернутой скотчем. Экран соединен с выводом 2 трансформатора. Далее кладется несколько слоев пленки или лакоткани и мотается обмотка III жгутом из 10 проводов. Мотать надо виток к витку сжав жгут пальцами так, чтобы все 10 проводов расположились в один ряд – иначе не влезет. Конец одной полуобмотки (5 проводов) соединяется с началом другой и выводом 11 каркаса. Обмотка III покрывается одним слоем лавсановой пленки, поверх которой укладывается обмотка II аналогично III. После этого укладывается еще несколько слоев пленки или лакоткани, незамкнутый виток изолированной медной фольги, соединенный с выводом 2, слой пленки, и мотается вторая половина первичной обмотки.

Такая намотка трансформатора позволяет уменьшить индуктивность рассеяния в четыре раза.

На все выводы первичной обмотки надевают фторопластовые трубки.

Читайте также:  Блок питания для камеры самсунг

Дроссель групповой стабилизации L3

Обмотка

Число витков

Провод

Магнитопровод

Кольцо T106 (К26,9х14,5х11,1) из распыленного железа -26 (желто-белое)

ДГС рассчитан в программе «CalcGRI» [8].

Сначала мотаются обмотки L3.3 и L3.4 одновременно в 2 провода. Они займут 2 слоя. Поверх них аналогично мотаются обмотки L3.1 и L3.2 в один слой. При монтаже ДГС на плату необходимо соблюдать фазировку обмоток!

Все моточные изделия рекомендуется пропитать лаком PLASTIK-71.

Транзисторы VT1, VT2 установлены на алюминиевом ребристом радиаторе размерами 60х15х40 мм и площадью поверхности 124 см2. Диоды VD9 – VD12 установлены на аналогичном радиаторе размерами 83х15х40 мм и площадью 191 см2. С указанной площадью теплоотводов блок питания способен работать длительное время под постоянной нагрузкой не более 100 Вт! Если ИИП предполагается использовать не для усилителя, а для питания нагрузки с постоянной потребляемой мощностью до 200 Вт, площадь радиаторов необходимо увеличить или применить принудительное охлаждение!

Выглядит собранный ИИП так:



Сборка и настройка

Сначала на плату устанавливают все элементы, кроме VD1, VT1, VT2, T4, R7, C8, FU1. Включают ИИП в сеть и проверяют наличие напряжения +5 В на контакте 11 разъема XP3. После этого соединяют 1 и 11 контакты разъема XP3 и подключают двухлучевой осциллограф параллельно резисторам R3 и R4 (землю осцила на нижние концы резисторов, сигнальные щупы – на верхние. С установленными транзисторами и поданным силовым питанием так делать нельзя. ). Осциллограмма должна иметь такой вид:

Если вдруг импульсы оказались у вас синфазными, значит вы накосячили при распайке обмоток трансформатора Т2. Поменяйте местами начало и конец нижней или верхней обмотки. Если этого не сделать, то при включении ИИП с ключами будет большой и красочный салют 🙂

Если у вас нет двухлучевого осциллографа, можно по очереди проверить форму и наличие импульсов однолучевым, но при этом остается полагаться только на собственную внимательность при распайке трансформатора Т4.

Если у вас до сих пор ничего не взорвалось, не нагрелось, импульсы есть и правильно сфазированы, можно впаять все недостающие элементы и произвести первое включение. На всякий случай рекомендую это сделать через лампочку Ильича ватт на 150 (если сможете купить :D). По-хорошему, чтобы ничего не сжечь, ее конечно надо включать в разрыв цепи между плюсом С5 и полумостом. Но так как у нас печатная плата, это сделать затруднительно. При включении в разрыв сетевого провода от нее толку мало, но все-таки как-то спокойнее)). Включаем ИИП на холостом ходу и замеряем выходные напряжения. Они должны быть приблизительно равны номинальным.

Подключаем между выходами «+25 В» и «-25 В» нагрузку 100 Вт. Для этих целей удобно использовать обычный чайник 220 В 2,2 кВт, предварительно наполнив его водой. Один чайник нагружает ИИП примерно на 90 – 100 Вт. Снова замеряем выходные напряжения. Если они значительно отличаются от номинальных, вгоняем их в допустимые пределы подборкой резисторов R4 и R6 в модуле А1.

Если ИИП работает неустойчиво – выходное напряжение колеблется с некоторой частотой, необходимо подобрать элементы компенсации обратной связи C6, R9, R10. Увеличение емкости С10 увеличивает инерционность ИИП и повышает стабильность, однако чрезмерное увеличение его емкости приведет к замедлению ОС и возрастанию пульсаций выходного напряжения. Теперь можно проверить ИИП на максимальной нагрузке. Если ИИП под нагрузкой запускается неустойчиво, либо переходит в «икающий» режим, можно попробовать увеличить емкость конденсатора С3, однако слишком увлекаться этим не рекомендую – это приведет к снижению быстродействия защиты по току и возрастанию ударных перегрузок элементов ИИП при КЗ. Также можно попробовать уменьшить номинал R8. При указанном на схеме значении защита срабатывает при амплитуде тока первичной обмотки Т4 около 5 А. К слову скажу, что максимально допустимый ток стока примененных транзисторов – 8 А.

Если и теперь ничего не взорвалось, все транзисторы и конденсаторы остались на своих местах, блок питания удовлетворяет приведенным в начале статьи характеристикам, а чайник согрелся, подключаем к БП усилок и наслаждаемся музыкой, попивая свежеприготовленный чаек 🙂

PS: Я испытал свой ИИП совместно с усилителем на LM3886. Никакого фона в колонках я не заметил (что не скажешь о комповых колонках с «классическим» трансформатором). Звук очень понравился.

Источник

Простой импульсный БП для УМЗЧ

Содержание / Contents

  • 1 Краткие характеристики ИБП
  • 2 Схема импульсного блока питания
  • 3 Конструкция и детали ИБП
  • 4 Наладка ИБП
  • 5 Форум
  • 6 Ссылки, источники

↑ Краткие характеристики ИБП

Входное напряжение — 220В;
Выходное напряжение — ±25В;
Частота преобразования — 27кГц;
Максимальный ток нагрузки — 3,5А.

↑ Схема импульсного блока питания

Она представляет из себя полумостовой инвертор с переключающим насыщаюшимся трансформатором. Конденсаторы С1 и С2 образуют делитель напряжения для одной половины полумоста, а так же сглаживают пульсации сетевого напряжения. Второй половиной полумоста являются транзисторы VT1 и VT2, управляемые переключающим трансформатором Т2. В диагональ моста включена первичная обмотка силового трансформатора Т1, который рассчитан так что он не насыщается во время работы.

Для надёжного запуска преобразователя, применён релаксационный генератор на транзисторе VT3, работающем в лавинном режиме.
Кратко принцип его работы. Конденсатор С7 заряжается через резистор R3, при этом напряжение на коллекторе транзистора VT3 пилообразно растёт. При достижении этого напряжения примерно 50 – 70В, транзистор лавинообразно открывается, и конденсатор разряжается через транзистор VT3 на базу транзистора VT2 и обмотку III трансформатора Т2, тем самым запуская преобразователь.

↑ Конструкция и детали ИБП

По моему, утюжить такую плату не имеет смысла, она слишком простая.

В качестве транзисторов VT1 и VT2 можно применить отечественные КТ812, КТ704, КТ838, КТ839, КТ840, то есть с граничным напряжением коллектор-эмиттер не менее 300В, из импортных знаю только J13007 и J13009, они применяются в компьютерных БП. Диоды можно заменить любыми другими мощными импульсными или с барьером шоттки, я, например, использовал импортные FR302.

Трансформатор Т1 намотан на двух сложенных кольцах К32×19Х7 из феррита марки М2000НМ, первичная обмотка намотана равномерно по всему кольцу и составляет 82 витка провода ПЭВ-1 0,56. Перед намоткой необходимо скруглить острые кромки колец алмазным надфилем или мелкой наждачной бумагой и обмотать слоем фторопластовой ленты, толщиной 0,2 мм, так же нужно обмотать и первичную обмотку. Обмотка III намотана сложенным вдвое проводом ПЭВ-1 0,56 и составляет 16+16 витков с отводом от середины. Обмотка II намотана двумя витками провода МГТФ 0,05, и расположена на свободном от обмотки III месте.

Трансформатор Т2 намотан на кольце К10×6Х5 из феррита той же марки. Все обмотки намотаны проводом МГТФ 0,05. Обмотка I состоит из десяти витков, а обмотки II и III намотаны одновременно в два провода и составляют шесть витков.

↑ Наладка ИБП

ВНИМАНИЕ. ПЕРВИЧНЫЕ ЦЕПИ БП НАХОДЯТСЯ ПОД СЕТЕВЫМ НАПРЯЖЕНИЕМ, ПОЭТОМУ НУЖНО СОБЛЮДАТЬ МЕРЫ ПРЕДОСТОРОЖНОСТИ ПРИ НАЛАДКЕ И ЭКСПЛУАТАЦИИ.

Первый запуск блока желательно производить подключив его через токоограничивающий резистор, представляющий из себя лампу накаливания мощностью 200 Вт и напряжением 220 В. Как правило, правильно собранный БП в наладке не нуждается, исключение составляет лишь транзистор VT3. Проверить релаксатор можно подключив эмиттер транзистора к минусовому полюсу. После включения блока, на коллекторе транзистора должны наблюдаться пилообразные импульсы частотой около 5 Гц.

Читайте также:  Что можно придумать с блоком питания

↑ Форум

↑ Ссылки, источники

1. Журнал «Радио», 1981, №10, с.56, «Экономичный блок питания», В. Цибульский, г. Тернополь
2. Журнал «Радио», 1985, №6, с.51, «Усовершенствованный экономичный блок питания», Д. Барабошкин, г. Свердловск
3. «Источники вторичного электропитания радиоэлектронной аппаратуры», М: Радио и связь, 1981
4. Журнал «Радио», 1981, №12, с.54, «Блок питания цифрового частотомера», С. Бирюков

Спасибо Федору (fedor14@rambler.ru) за предоставленные ссылки на связанные материалы!

Камрад, рассмотри датагорские рекомендации

🌻 Купон до 1000₽ для новичка на Aliexpress

Никогда не затаривался у китайцев? Пришло время начать!
Камрад, регистрируйся на Али по нашей ссылке. Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.

🌼 Полезные и проверенные железяки, можно брать

Куплено и опробовано читателями или в лаборатории редакции.

Источник

Импульсный блок питания для усилителя мощности звуковой частоты.

Решил попробовать «накормить» усилитель стабилизированным питанием.
В сети интернет как оказалось не так уж и много схем таких БП, все завалено нестабилизированными БП на базе IR2153, был печальный опыт с этим контроллером и затею эту забросил
* После тестов данного БП понял, что беда была не в контроллере *

Решил переработать под свои нужды схему предложенную другом Сашей из группы в «Одноклассниках».

Это лабораторный регулируемый по напряжению и току ИИП на самой известной микросхеме TL494.

Сначала решил повторить оригинал и посмотреть как он работает — работает он отлично, — плату всунул в корпус своего старого лабораторного БП — построенного так-же на этом контроллере но в низковольтной части.

Стабилизация напряжения отменная и ток до 8А ограниченный корпусом устройства, увеличив радиатор и 20А не потолок.
Погоняв БП с разными нагрузками и при разном напряжении в сети, было решено собирать на этой схеме двух-полярник.

На данном этапе от контроля тока отказался, — стабилизация напряжения «следит» за плюсовым плечом, отрицательное живет само по себе но «старается» быть зеркальным своему «соседу». Поскольку нагрузка на оба плеча симметрична то и перекоса напряжения в реальных условиях не наблюдается.

Монтаж осуществлен на трех платах:
1. Основной — силовой блок.
2. Субмодуль ШИМ контроллера.
3. Маломощный импульсный источник для питания схемы ШИМ.

Для экономии пространства плата с ШИМкой установлена перпендикулярно основной плате рядом с силовыми ключами (транзисторами, ПП триодами, «Вентилями»), а низковольтный «питальник» прикручен к торцу основной платы слева, рядом с фильтром сетевого выпрямителя.

В качестве низковольтного БП применен ранее описанный блок питания .

В данном применении его родной сетевой выпрямитель не задействован, а схема питается от выпрямителя силовой части схемы.

В дальнейшем планирую задействовать цепь ограничения тока, напряжение управления буду снимать с трансформатора тока включенного в первичную обмотку трансформатора.
Импульсный трансформатор заимствован из АТХ блока питания.
Первичная обмотка импульсного трансформатора содержит 40 витков провода диаметром 0,67мм, обязательно разделена на две части, половина под, половина над вторичной обмоткой. Вторичная намотана тем-же проводом но сложенным вдвое — количество витков зависит от требуемого напряжения, ориентировочно — 3,8В на одном витке.

Дроссели фильтра намотаны на желто-белых кольцах дросселей групповой стабилизации компьютерных БП сложенным вдвое эмаль проводом 0,5мм и содержат по 75 витков.
Кстати — у усилителя с таким БП улучшилась атака, из-за отсутствия просадки питания.
Тех радиаторов, что на фото вполне достаточно для долгой работы на половинной громкости, — на полной долго не гонял ни разу ибо 50+Вт с самодельными АС на основе 50ГДН 3-30 в комнате 3,5Х4м реально громко и более одного трека уши не вывозят.
* При тестах в УМЗЧ при нагрузке более 2А в плече вылетали транзисторы. А все по тому, что додумался трансформатор воткнуть из неудачного проекта на IR2153.

После перемотки трансформатора БП стал работать как положено, — пару раз на средней мощности усилителя коротились провода по пути к АС, искры, паника, вилку из розетки. Все обошлось удачно и для «Хитачиуса» и для блока питания.*

Вот ТУТ архив со схемой и печаткой.
На печатке цепь контроля тока на падении напряжения на шунте задействована, но в реальной конструкции она у меня отключена, а 16я ножка ШИМки заземлена, ибо как будет вести себя эта цепь при «сквозняках» УМЗЧ я не знаю.
Спасибо за внимание и удачи!

Просили рисунки плат в графическом формате.

Источник

Что такое импульсный блок питания для умзч

Основа всех электронных устройств — блок питания. Именно он является камнем преткновения когда речь заходит о конструировании усилителя или приемника, подзарядке фонарика, устройстве освещения подвала или гаража. Всюду требуется снижать подводимое от сети сетевое напряжение. После изобретением Теслы катушки переменного тока и внедрение ее в промышленность — повсюду стали применяться сетевые трансформаторы. Идея проста — закон электромагнитной индукции плюс усиление с помощью сердечника. Применение трансформаторов сократило потери электричества при передаче тока по линиям и дало возможность как угодно преобразовывать напряжение одной амплитуды в другое.

С развитием электроники возможным стало конструирование блока питания не на трансформаторе, а с помощью импульсов высокой частоты. Идея в том, что если подавать и прекращать подачу постоянного тока на прибор с достаточно высокой частотой, то снятое на приборе напряжение будет не постоянным, а переменным высокой частоты. Возможно, что силовые трансформаторы высокого напряжения тоже заменят на импульсные трансформаторы высокого напряжения. Уже в продаже имеется огромный выбор импульсных сварочных аппаратов (инверторов) токи в которых достигают 300 ампер и выше.

Источники импульсного питания применяются во многих радиоэлектронных устройствах. Источник питания может быть выполнен в виде сетевого трансформатора, диодного моста и конденсатора фильтра. Чем больше мощность сетевого трансформатора, тем тяжелее и массивнее получается блок. К примеру, трансформатор на 1 кВА может достигать 10 килограммов, а импульсный блок – едва достигнет 800 граммов. Ясно, что сэкономить на массе можно лишь в том случае, если мощность источника составляет сотни ватт.

В феврале 2000 года в журнале «Радио» вышла статья «Импульсный блок питания мощного УМЗЧ». Автор статьи — А. Колганов из г. Калуга. Представленный Колгановым блок питания прост. В нем используется генератор и силовые ключи. Стабилизации выходного напряжения нет.

В импульсном блоке существует пара ошибок. В июльском номере «Радио» за 2000 год написано про ошибку в схеме генератора. По неизвестной причине все пишут про ошибку и приводят стандартную схему без исправления ошибки. При этом напечатанную журналом корректировку выдают за сугубо свои радиоэлектронные познания.

Спустя почти 2 года в апрельском журнале «Радио» за 2002 год выходят консультации журнала «Радио» о том, почему нельзя заменять транзисторы кт3102ж на другие. На мой взгляд, написано неубедительно, да к тому же на моем местном радиорынке даже не знали о существовании таких транзисторов. Пришлось мне заменить их на буржуйские BC548.

Читайте также:  Lg 27ea63 блок питания

Спустя еще полгода в сентябрьском журнале «Радио» за 2002 год печатаются разъяснения о применении транзисторов КП707В2. Как оказалось, их можно заменить на буржуйские.

Вторая ошибка связана с намоткой импульсного трансформатора, из-за которой полевые транзисторы сильно перегревались. Про эту ошибку речь пойдет дальше.

Проектирование схемы

Правильная схема представлена на рисунке. Общий вид схемы электрической принципиальной импульсного блока питания УМЗЧ А. Колганова.

Схема электрическая принципиальная

По ходу пьесы можно немножко упростить схему. Например, блок стабилизации на транзисторах VT1, VT2 и стабилитроне VD6 смело можно заменить на микросхему 142ЕН8А, это обеспечивает лучшую стабилизацию выходного напряжения для генератора.

Две симметричные вторичные обмотки импульсного трансформатора можно соединить вместе, выделив при этом среднюю точу. В результате можно сэкономить на одном высокочастотном диодном мосту, правда при этом упадет максимально отдаваемая мощность.

Схема электрическая принципиальная импульсного блока питания.

Схема электрическая принципиальная

Для построения печатной платы можно применять сложные графические пакеты, которые сами смоделируют разводку, а можно ручками при помощи программы Sprint-Layout нарисовать все компоненты и соединить все проводниками-дорожками.

Схема электрическая принципиальная

Насколько можно понять из журнала, автор А. Колганов точно спаял этот блок, но вот печатную плату никто нигде не выкладывал. Поэтому мне пришлось разработать печатную плату. Схема получилась громоздкой, некоторые узлы не встали на свои места. Тем, кто будет повторять этот блок, нужно увеличить размеры для R16, R17.

Печатная плата ИБП

Резисторы

Резисторы все либо советские МЛТ либо зарубежные, достаточно низковаттные. Исключением идут резисторы R16 и R17, номиналом 10 кОм при мощности в 10 Вт, их делают из высокоомной проволоки, которую навивают на каркас.

На схеме

Параметры

Кол-во

Замена

Закупка

Трансформаторы

В самом начале укажу на еще одну ошибку в статье. Эта ошибка связана с намоткой трансформатора. В статье сказано: «Обмотка 1 содержит 2×42 витка провода ПЭВ-2 1,0 (наматывают в два провода)». Если взять провод диаметром 1 мм, сложить в два раза и намотать 84 витка с выводом на 42 витке, то блок может и будет работать, но полевые транзисторы выходного каскада даже на холостых оборотах будут греться так, что просто ставь сковородку и жарь яичницу. К сожалению нужного специалиста по импульсным блокам я не нашел, поэтому методом тыка пришел к тому, что лажа в самом трансформаторе. С применением программы SPS для расчета импульсных блоков питания можно пересчитать трансформатор, тогда получится, что мотать нужно проводом ПЭВ диаметром 1 мм 84 витка с выводом на 42 витке, но не в два провода, а в один. Блок работает на частоте 90 кГц. При этом полевые транзисторы практически не греются при нагрузке в 100 Вт. Сознательно была допущена эта ошибка или журнал «Радио» что-то неправильно напечатал — неизвестно.

Еще одна хитрость схемы – подключение вентилятора от вторичной обмотки импульсного трансформатора. Кажется, что все логично, что охлаждать транзисторы вроде как и надо, но ведь можно же подключить кулер и после стабилизатора питания для генератора. Кулер для охлаждения и не обязателен, но нужен, и именно во вторичной обмотке импульсного трансформатора. Дело в том, что импульсники не могут работать без нагрузки – нет ограничения безудержного роста тока в первичной обмотке. Обычно в импульсных блоках питания применяются нагрузочные сопротивления для включения блока без нагрузки. В этом блоке роль нагрузки возложена на кулер. Если мотать трансформатор без обмотки для кулера, то на выход обязательно нужно вешать либо лампы накаливания, либо сопротивление.

Основа импульсного блока – высокочастотный трансформатор. Такой трансформатор можно делать на ферритовых кольцах или на прямоугольном каркасе. Блок питания предназначен для питания музыкального усилителя звуковой частоты (УМЗЧ), поэтому предпочтительнее применять ферромагнитные кольца (тороиды) – у них малы внешние излучения, что положительно сказывается на применении блока питания в качестве источника питания усилителя звуковой частоты.

Для нужной мощности нужно использовать три кольца марки М2000НМ1-В размером 45x28x12, составленные вместе они образуют сплошной феррит размером 45x28x36, что примерно соответствует мощности в 1 кВА. Для справки: мощность трансформатора измеряется в вольт-амперах, потому что трансформатор — не потребитель энергии, а только преобразователь ее.

Склеивать кольца нужно сильным клеем, например эпоксидным. Эпоксидка дает время на тщательное приготовление смеси. Для более низкого электромагнитного сопротивления между кольцами в клей нужно добавить ферромагнитный порошок, добытый из сломанного феррита.

Подготовка клея

После подготовки клея обмазываются три кольца и склеиваются вместе. Клей наносится тонким слоем на обе склеиваемые половины.

Нанесение клея на феррит

При склеивании колец нужно склеить все ровно. Зазоров быть не должно. Смещений также нужно избежать.

Склеивание двух ферритовых колец

Склеивание двух ферритовых колец

Склеивание трех ферритовых колец

Ферриты – тоже металлы. Поэтому если на феррит намотать изолированный эмалевый провод (ПЭВ) – пробоя не избежать. Дело в том, что эмалевая изоляция не любит трения о твердые предметы и даже если очень аккуратно наматывать, то все равно со временем провод замкнет на корпус.

Пробитый входной фильтр из-за плохой изоляции феррита

Чтобы избежать пробоя, необходимо изолировать феррит, но нужно помнить, что сам трансформатор может нагреваться, и поэтому простой изолентой явно не обойтись. Для изоляции можно применять стеклоткань или, как в моем случае, лакоткань. Можно попробовать изолировать и изоляционной хлопчатобумажной лентой, но что получится – не знаю.

Изолирование лакотканью ферритового трансформатора

Наматывать провод на тор приходится вручную, поэтому аккуратно виток к витку с натягом неспешно нужно проделать эту работу. Внутренний диаметр меньше наружного, поэтому виток к витку должен быть на внутреннем кольце.

Намотка ферритового трансформатора

Трансформатор имеет одну первичную обмотку со средней точкой, поэтому дойдя до 42 витка нужно сделать отвод, чтобы потом к нему припаять провод для среднего вывода.

После намотки каждого слоя следует проходить изоляцией весь феррит, т.е. каждый слой одной и той же обмотки должен быть отделен слоем изоляции. Изоляция сильно сокращает внутренний диаметр, поэтому экономить на жизненном пространстве приходится с каждым витком.

Намотка ферритового трансформатора

После намотки первичной обмотки следует пройти слоем изоляции по всему ферриту 3 раза, т.е. изоляция между первичной и вторичной обмотками должна быть толще, чем та, которая разделяет слои первичной обмотки.

Межслойное изолирование обмоток

Намотку всех обмоток трансформатора следует производить в одну сторону. Если начали просовывать провод первичной обмотки сверху вниз тора, то и вторичную обмотку следует мотать сверху вниз тора. Если наматывать в обратную сторону, то вместо трансформации трансформатор нагрузит обе обмотки друг на друга примерно как электрофорная машина.

Общий вид намотанного трансформатора

Блок питания рассчитан на напряжение ±50 В, но можно и пересчитать на любое другое напряжение через коэффициент трансформации по обычной пропорции. Мне от блока питания требуется ±36 В, и таблица с параметрами имеет следующий вид.

К примеру, трансформатор L2 изготавливается из феррита марки М2000НМ1-В, типоразмер кольца К45 X 28 X 12, колец нужно 3 штуки, по расчетным данным первую обмотку нужно выполнять проводом ПЭВ, диаметр провода d=1 мм, проводов в параллель 1, количество витков 86 с выводом точки на 86/2=43 витке, при этом можно совершить замену и первую обмотку выполнить проводом ПЭВ, диаметр провода d=0,6 мм, проводов в параллель 2, количество витков 86 с выводом точки на 86/2=43 витке. Аналогично читаются все остальные ячейки.

Источник