Зарядные устройства 1020
Зарядные устройства для аккумуляторов – это тип электронных приборов, осуществляющих заряд аккумуляторных батарей, применяемых в различной портативной, бытовой и автомобильной технике. Модели зарядных устройств, представленные российскими и зарубежными производителями, отличаются по своей мощности и классификации.
К одному из типов источников восполнения утраченной в ходе работы батареей энергии, относятся изделия малой и средней мощности – зарядные устройства для никелевых и литиевых аккумуляторов. При выборе устройства следует обращать внимание на основные технические параметры, особенности и дополнительные опции которых определяют цену изделия. Приборы отличаются между собой количеством посадочных мест для заряжаемых батарей, размерами аккумуляторов, временем заряда и производителем. Большинство зарядных устройств укомплектованы дополнительными аккумуляторами большой емкости, некоторые оснащены адаптерами для использования устройства в автомобиле. Отдельные изделия, такие как, VARTA LCD, PB 60- BC 4, VLE 4, Ansmann Energy XC 3000 имеют многофункциональный LCD дисплей, индицирующий состояние и процесс заряда батарей. Каждое из зарядных устройств имеет защиту от переполюсовки устанавливаемых аккумуляторов, защиту от случайной установки обычных батареек, защиту от перезаряда.
К классу изделий средней и большой мощности относятся зарядные устройства для свинцовых аккумуляторов разной емкости, мощности, определяемой зарядным током, и напряжением заряда. Изделия осуществляют зарядный процесс свинцово-кислотных автомобильных аккумуляторов, а так же, герметичных аккумуляторных батарей, широко применяемых в бытовой технике и детских игрушках, напряжением 6В, 12В, 24В. Цена изделия зависит от его производственных способностей, о чем с уверенностью подтверждает производитель. Каждое зарядное устройство способно произвести полную зарядку батареи, индицировать процесс и окончание заряда, оснащено электронными защитами от переполюсовки и перегрузки.
Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Архангельск, Барнаул, Белгород, Владимир, Волгоград, Вологда, Воронеж, Гомель, Екатеринбург, Иваново, Ижевск, Казань, Калуга, Кемерово, Киров, Кострома, Краснодар, Красноярск, Курган, Курск, Липецк, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Орёл, Пермь, Псков, Ростов-на-Дону, Рязань, Самара, Саранск, Саратов, Смоленск, Ставрополь, Тверь, Томск, Тула, Тюмень, Уфа, Чебоксары, Челябинск, Ярославль. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Связной» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Владивосток, Махачкала, Томск, Оренбург, Новокузнецк, Астрахань, Пенза, Чебоксары, Калининград, Улан-Удэ, Сочи, Иваново, Брянск, Сургут, Нижний Тагил, Архангельск, Чита, Курган, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и еще в более чем 1000 городов и населенных пунктов по всей России.
Товары из группы «Зарядные устройства» вы можете купить оптом и в розницу.
Источник
Блоки питания электронных устройств — устройство и принцип работы основных схем
ектронные устройства можно условно разделить на две группы: мобильные и стационарные. Первые из них используют так называемые первичные источники питания, — гальванические батареи или аккумуляторы, которые имеют запас электроэнергии.
Здесь сразу вспоминаются мобильные телефоны, фотоаппараты, пульты дистанционного управления и много других портативных устройств. В этом случае аккумуляторы и батареи вне конкуренции, поскольку заменить их попросту нечем. Единственным неудобством, платой за мобильность является то, что время действия таких устройств ограничено емкостью батарей, и, как правило, невелико. Исключением из этого правила являются, разве что, наручные часы. Потребление энергии у них очень низкое, что заложено на стадии проектирования, поэтому на одной батарейке часы могут ходить целый год, а то и больше.
Стационарные устройства, как правило, получают питание от вторичных источников. Такие источники собственной энергии не вырабатывают, а лишь преобразуют электрический ток до требуемых параметров: из сетевого напряжения 220В блоки питания вырабатывают пониженные напряжения, необходимые для питания полупроводниковой аппаратуры. Такие блоки питания часто называются сетевыми.
Опасные сетевые блоки питания
Самыми простейшими являются блоки питания с гасящим конденсатором или резистором. Подобные блоки описывались в радиотехнических журналах в девяностые годы прошлого века. КПД таких блоков питания крайне мал не более 20%, поэтому они применяются для питания устройств, мощность которых не более единиц ватт: можно запитать одну – две микросхемы.
Основным недостатком подобных блоков является то, что они гальванически не развязаны от первичной сети, в результате чего вся схема – потребитель также находится под опасным потенциалом. Прикосновение к элементом такой схемы совсем нежелательно, и даже опасно. Поэтому налаживание подобных конструкций выполняется с использованием развязывающего трансформатора, описанного в статье «Как изготовить трансформатор безопасности».
Но даже при таком налаживании эти схемы все равно остаются опасными, поэтому рекомендовать их для применения не следует. Если все же такой схемы не избежать (какой смысл делать отдельный источник для питания фотореле, которое висит высоко на столбе?), то остается надеяться на аккуратность и грамотность пользователя.
Безопасные блоки с гасящим конденсатором
Схема блока питания с гасящим конденсатором и гальванической развязкой от сети описана в статье «Терморегулятор для сварки пластмасс» и показана на рисунке 1. Автор схемы В. Кузнецов.
Рисунок 1. Схема блока питания с гасящим конденсатором и гальванической развязкой от сети
Схема подробно описана в упомянутой статье, была многократно повторена (не один десяток раз) и показала отличные результаты. Поэтому здесь отметим только основные моменты. Сетевое напряжение через гасящий конденсатор C1 выпрямляется мостом VD1 и стабилизируется на уровне 24В стабилизатором на транзисторе VT3. От этого стабилизатора питается генератор, выполненный на транзисторах VT1, VT2. «Силовой» трансформатор Тр2 выполнен на ферритовом кольце диаметром 20 мм.
Такой трансформатор на частоте 40…50 КГц может выдать в нагрузку мощность до 7 ватт, что вполне достаточно для питания схемы, описанной в статье. Выходные напряжения стабилизируются простейшими параметрическими стабилизаторами на стабилитронах VD5, VD6. Благодаря наличию развязывающего трансформатора Тр2, питаемая нагрузка гальванически развязана от сети, что обеспечивает электробезопасность схемы.
Представьте себе, как бы выглядела термопара, находящаяся под потенциалом сети! Но следует заметить, что все, что изображено на схеме справа от сердечника трансформатора Тр2, находится под потенциалом сети, и требует аккуратного и осторожного обращения. Еще одна схема безопасного блока питания с гасящим конденсатором показана на рисунке 2.
Рисунок 2. Схема безопасного блока питания с гасящим конденсатором
Первичная обмотка трансформатора малогабаритных блоков питания содержит несколько (четыре…семь) тысяч витков сверхтонкого провода,- 0,05…0,06мм . Чтобы такую обмотку не мотать предлагается с помощью гасящего конденсатора снизить напряжение на первичной обмотке до 30…40В. В этом случае первичная обмотка содержит не более 600…700 витков достаточно толстого провода (0,1…0,15мм). Вторичная обмотка рассчитывается как обычно на требуемое напряжение.
Трансформатор можно намотать на магнитопроводе Ш12*15 от абонентского громкоговорителя. Более точно значение напряжений можно подобрать при помощи конденсатора C1. За счет использования трансформатора выход блока питания гальванически развязан от сети. Мощности подобного блока питания вполне хватало, чтобы запитать простенький генератор (шесть или семь микросхем серии К561) для настройки телевизоров. Напряжение питания было сделано 9 В. Подробно об устройстве и налаживании этого блока питания можно прочитать в журнале «Радио» №12_98.
Блоки питания современной аппаратуры
Современная аппаратура промышленного изготовления, например, компьютеры, музыкальные центры, телевизоры, — большей частью имеет импульсные источники питания.
Основная идея таких источников в следующем. Выпрямленное напряжение сети преобразуется инвертором в переменное частотой в несколько десятков, а иногда и сотен килогерц. На таких частотах трансформаторы получаются очень малых размеров, что позволяет значительно уменьшить габариты и массу блоков питания.
После трансформатора импульсные напряжения выпрямляются и сглаживаются фильтрами, размер которых за счет высокой частоты также невелик по сравнению с традиционными блоками питания, работающих на частоте сети. Стабилизация выходных напряжений осуществляется в первичной цепи при помощи широтно-импульсной модуляции – ШИМ, что также способствует повышению КПД и уменьшению габаритов блока питания.
Не столь давно считалось, что импульсные источники питания оправдывают себя лишь начиная от мощности не менее 100 Ватт. При этом основным критерием считалась удельная мощность, т.е. мощность, приходящаяся на 1 кубический дециметр объема блока питания. При мощности импульсного источника ниже 100 Вт, удельная мощность импульсного источника получалась ниже, чем у обычного блока питания. Попросту сказать, габариты импульсного источника могли получиться больше, чем у обычного трансформаторного.
Но техника не стоит на месте, элементная база электроники развивается очень быстро. Современная промышленность освоила производство импульсных источников мощностью всего в несколько ватт, достаточно вспомнить хотя бы зарядные устройства для сотовых телефонов и «пальчиковых» аккумуляторов.
Здесь уже просто на глаз видно, что удельная мощность таких источников выше, чем аналогичных «зарядников» (совсем недавно были и такие) с сетевым трансформатором. Вот так хорошо дело обстоит в промышленном производстве: на одном только обмоточном проводе, да трансформаторном железе и миниатюрных корпусах получается огромная экономия.
В условиях же любительского технического творчества для изготовления конструкции в единственном экземпляре вполне подходит традиционный источник питания с сетевым трансформатором. Хотя изредка приходится искать нестандартные решения проблемы электропитания, например при ремонте аппаратуры.
Импульсный блок питания из электронного трансформатора
Вот, пожалуйста, наглядный практический пример. В звуковом микшере импортного производства почему-то произошел обрыв первичной обмотки силового трансформатора, который был выполнен на кольцевом магнитопроводе.
Мощность данного трансформатора была около 20 Вт, что наводило на грустные размышления о том, что количество витков первичной обмотки, скорее всего, не одна тысяча витков (чем меньше размеры трансформатора, тем большее количество витков приходится на один вольт, и провод тоньше). А перематывать вручную на кольце… Но и это было не главным: высота кольцевого трансформатора была настолько мала, что заменить другим, уже готовым Ш-образным возможности не представлялось, не позволяли габариты корпуса.
Решить вопрос позволило применение электронного трансформатора, правда, потребовалась некоторая доработка, которая описана в статье «Как сделать блок питания из электронного трансформатора?». Смысл переделки в том, что электронный трансформатор рассчитан на работу с лампами накаливания, которые к нему подключены постоянно, то есть запуск трансформатора происходит под нагрузкой. Если же нагрузки нет, то схема не запускается. Тот же эффект наблюдается при незначительной нагрузке.
Представьте себе, что нагрузка мощный усилитель звуковой частоты: как только прекратился звук, — пауза, так блок питания выключился и больше не запустился. Вот доработка электронного трансформатора и сводится к тому, чтобы блок питания на его основе включался и работал даже без нагрузки.
Электронный трансформатор как раз тот случай, где изготовление импульсного источника упрощено до предела: все уже сделано, детали все на месте, трансформаторы уже все намотаны, а цена просто смешная. Просто набор «Сделай сам»! Даже в случае неудачного эксперимента, выбросить будет совсем не жалко. Если детали покупать в розницу, получится намного дороже. Поэтому в домашних условиях проще изготовить обычный трансформаторный блок питания.
Сетевые адаптеры из Китая
В случае, когда мощность нагрузки невелика, спасти положение вполне может сетевой адаптер китайского производства. Это всем известный блок, выполненный в виде большой сетевой вилки с хвостом, оканчивающимся разъемом, который, почему-то называют «джек». Внутри вилки находится сетевой трансформатор мощностью не более 5…7 ватт, выпрямительный мостик и сглаживающий конденсатор.
В некоторых блоках имеется движковый переключатель, позволяющий ступенчато изменять выходное напряжение в пределах 5…15В. Выходное напряжение, указанное на переключателе, соответствует работе под нагрузкой. Например, если указано 12В, то без нагрузки можно намерять почти 18В. Просто конденсатор заряжается до амплитудного значения. Но под нагрузкой, все-таки, будет 12В, что соответствует величине действующего значения переменного напряжения.
Конструкция подобных адаптеров упрощена до предела: китайцы не удосужились даже установить предохранитель. Да по большому счету не слишком он тут и нужен. Первичная обмотка намотана таким тонким проводом, что он сам по себе является неплохим предохранителем. Если первичная обмотка сгорит, то остается этот адаптер просто выбросить и купить новый.
Цена таких адаптеров невелика, чтобы заниматься их ремонтом. Экономия обмоточного провода в этих адаптерах очень заметна. Такие блоки питания заметно греются даже на холостом ходу, без нагрузки.
В следующей статье будет рассказано, как можно самостоятельно сделать простой и надежный блок питания для домашней лаборатории.
Любите умные гаджеты и DIY? Станьте специалистом в сфере Internet of Things и создайте сеть умных гаджетов!
Записывайтесь в онлайн-университет от GeekBrains:
Изучить C, механизмы отладки и программирования микроконтроллеров;
Получить опыт работы с реальными проектами, в команде и самостоятельно;
Получить удостоверение и сертификат, подтверждающие полученные знания.
Starter box для первых экспериментов в подарок!
После прохождения курса в вашем портфолио будет: метостанция с функцией часов и встроенной игрой, распределенная сеть устройств, устройства регулирования температуры (ПИД-регулятор), устройство контроля влажности воздуха, система умного полива растений, устройство контроля протечки воды.
Вы получите диплом о профессиональной переподготовке и электронный сертификат, которые можно добавить в портфолио и показать работодателю.
Источник
ПРИМЕНЕНИЕ И УСТРОЙСТВО БЛОКОВ ПИТАНИЯ
В общем случае любой блок питания (БП) это прибор, который при подключении к электрической сети формирует необходимые для дальнейшего использования напряжение и ток.
Чаще всего такие устройства преобразуют переменный ток электрической сети общего пользования (
220В, частота 50 Гц.) в постоянный.
Все блоки питания можно разделить на:
- трансформаторные (линейные);
- импульсные.
В свою очередь трансформаторные блоки могут быть:
- стабилизированными;
- нестабилизированными.
Нестабилизированный источник — это самый простой прибор, в состав которого входят:
- понижающий трансформатор с первичной обмоткой, рассчитанной на сетевое напряжение;
- двухполупериодный выпрямитель, с помощью которого напряжение переменного тока преобразуется в постоянное (пульсирующее);
- конденсатор большой емкости, сглаживающий пульсации.
В таких блоках питания номинальные значения выходных параметров (напряжение, ток) обеспечиваются только при нормальных значениях входных электрических параметров и тока, потребляемого нагрузкой. Используются они для работы с устройствами, оснащенными собственными стабилизаторами.
В импульсных блоках питания переменное напряжение выпрямляется, а затем преобразуется в высокочастотные импульсы прямоугольной формы и заданной скважности.
Стабилизация в них обеспечивается применением отрицательной обратной связи, которая может быть организована как с помощью гальванической развязки от питающей цепи (трансформатор), так и путем подачи импульсов на фильтр низкой частоты.
В зависимости от колебаний сигнала обратной связи регулируется скважность выходных импульсов и таким образом поддерживается стабильность выходного напряжения.
Для каждого электронного или радиотехнического прибора разработчиками подбирается наиболее оптимальный вид блока питания. Так, например, для работы с приборами, работающими с максимальным током нагрузки:
- до 5А применяют линейные БП;
- свыше 5А используют импульсные БП.
Сравнивая аналогичные по выходным характеристикам источники питания необходимо отметить преимущества импульсных устройств, среди которых наиболее значимыми являются:
- Высокий коэффициент полезного действия (КПД), достигающий в некоторых случаях 98%.
- Небольшой вес, что связано с уменьшением размеров трансформаторов при использовании токов высокой частоты.
- Широкий диапазон питающего напряжения и частоты.
- Наличие большого количества встроенных элементов защиты и др.
Оба вида блоков в широком ассортименте представлены на отечественном рынке радиоэлектронной аппаратуры (РЭА). При этом большой популярностью пользуются универсальные БП, которыми оснащаются рабочие места работников предприятий, специализирующихся на производстве или ремонте РЭА. Имеются они и у каждого радиолюбителя.
УНИВЕРСАЛЬНЫЕ БЛОКИ ПИТАНИЯ
Универсальный БП — это надежный источник электропитания, обладающий стабильными выходными параметрами и имеющий двойной запас по мощности. На его передней панели в общем случае должны размещаться:
1. Стрелочные и цифровые измерительные приборы (вольтметр, амперметр). При этом: стрелочный даст возможность оценить динамические изменения контролируемых параметров; цифровой позволит с высокой точностью контролировать выходные характеристики БП.
2. Органы управления, с помощью которых регулируют выходные параметры в режимах «грубо» и «точно», индикатор режима работы, тумблер или клавишный выключатель питающей электросети.
Теоретически возможно, но практически нецелесообразно разработать и изготовить универсальный блок питания, который подойдет, как говорят, «на все случаи жизни». Такое устройство будет иметь огромные размеры и вес, а его стоимость превысит все допустимые пределы.
Поэтому современные универсальные источники вторичного напряжения классифицируются по мощности, по номинальному значению выходного напряжения и по количеству выходов питающего напряжения. Исходя из этих градаций и осуществляют выбор необходимого прибора.
По номинальному значению выходного напряжения универсальные блоки питания бывают:
- низковольтные до 100 В;
- средневольтные до 1000 В;
- высоковольтные свыше 1000 В.
По выходной мощности они делятся на:
- микромощные, выходная мощность которых не превышает 1 Вт;
- малой мощности от 1 до 10 Вт;
- средней мощности 10. 100 Вт;
- повышенной (от 100 до 1000 Вт) и высокой (свыше 1000 Вт) мощности.
Блок питания с регулировкой.
Одним из самых простых универсальных источников электропитания является регулируемый. Например, для начинающих радиолюбителей таким устройством может быть блок питания с током нагрузки в несколько ампер и позволяющий регулировать выходное напряжение в пределах от 1 до 36 В.
К нему можно подключить не только радиотехническое устройство или электродвигатель, но и автомобильный аккумулятор для зарядки.
В основе электрической схемы такого блока питания лежит мощный силовой трансформатор, а на выходе устанавливается мощный транзистор, установленный на теплоотводящий радиатор. Управляет транзистором специальная микросхема. Имеющиеся низкочастотные пульсации и высокочастотные шумы сглаживаются электролитическими конденсаторами большой емкости.
ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ
Лабораторный блок питания ни что иное как высококачественный универсальный источник питания с нормированными и термостабильными характеристиками. Эти устройства имеются на любом предприятии, которое занимается разработкой, изготовлением или ремонтом и/или ремонтом радиоэлектронной аппаратуры.
Используют их во время проверки и/или калибровки различных приборов. Кроме того они необходимы в тех случаях, когда нужно с высокой точностью подать питающее напряжение и ток на радиотехническое устройство.
Как правило, лабораторные блоки питания оснащаются всевозможными устройствами защиты (перегрузка, защита от короткого замыкания и пр.) и органами регулировки выходных параметров (напряжение и ток).
Серийно выпускаемые лабораторные источники питания могут быть как линейными, так и импульсными.
Линейные лабораторные БП строятся на базе больших низкочастотных трансформаторов, которые понижают сетевое напряжение
220 В частотой 50 Гц до определенного значения. Частота переменного тока при этом остается без изменений. Затем синусоидальное напряжение выпрямляется, сглаживается емкостными фильтрами и доводится до заданного значения линейным полупроводниковым стабилизатором.
Приборы, работающие по такому принципу обеспечивают требуемое значение выходного напряжения с высокой точностью. Оно отличается стабильностью и отсутствием пульсаций. Однако они имеют ряд недостатков:
- большие габаритные размеры и вес, который может быть больше 20 кг. Из-за этого мощность на нагрузке у таких БП редко превышает 200 Вт.;
- низкий КПД (не более 60%), что обусловлено принципом работы линейного стабилизатора, где все избыточное напряжение преобразуется в тепло;
- наличие высокочастотных помех, проникающих из сети
220 в, 50 Гц., для устранения которых необходим сетевой фильтр;
В основу работы импульсных лабораторных блоков питания положен принцип заряда сглаживающих конденсаторов импульсным током. Он образуется в момент подключения/отключения индуктивного элемента. Переключение происходит под действием специально оптимизированных транзисторов, а выходное напряжение регулируется путем изменения глубины широтно импульсной модуляции (ШИМ).
Основные преимущества импульсных лабораторных источников обеспечиваются за счет:
- плавного изменения глубины ШИМ, что в свою очередь, позволяет закачивать в сглаживающие конденсаторы такое количество энергии, которое соизмеримо с энергопотреблением нагрузки БП. При этом КПД блока питания может достигать 90 и более процентов;
- высокочастотной составляющей, которая дает возможность использования сглаживающих конденсаторов значительно небольшой емкости.
За счет этого габаритные размеры корпуса невелики. Кроме того, за счет более высокого КПД значительно уменьшается выделение тепла и улучшается температурный режим работы источника питания.
Существенным недостатком импульсных лабораторных блоков, несколько ограничивающих их применение являются:
- высокочастотные пульсации на выходе, которые достаточно тяжело отфильтровать;
- радиочастотные наводки и их гармоники, вызванные периодическими токовыми импульсами.
Основным техническим параметром лабораторных источников электро энергии является мощность. Здесь существует такое подразделение:
- стандартные, мощностью до 700 Вт. Их максимальный вес не превышает 15 кг.;
- большой мощности.
Стандартные исполнения могут быть как трансформаторными, так и импульсными. Предназначены они для работы с напряжениями в диапазоне от 15 до 150 В. При этом максимальный ток ограничивается величиной порядка 25 А. Как правило, они имеют от одного до трех каналов, из которых два являются регулируемыми.
© 2012-2020 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
Источник
Блоки питания для устройств промышленной автоматики
Широкий класс устройств промышленной автоматики сильно отличается от обычной бытовой техники, и соответственно качественные требования к таким устройствам значительно выше. Объекты энергетики, промышленные сооружения, транспортные средства и транспортное оборудование в целом — во всех этих сферах присутствует сегодня автоматизация процессов, реализуемая благодаря применению устройств особой стойкости, надежности, повышенной безопасности.
Нефтяная, газовая, энергетическая отрасли, — требуют надежного и безопасного электроснабжения. Такие устройства обязаны обладать стойкостью к вибрациям, иметь широкий температурный диапазон, а иногда быть стойкими к действию радиации.
Само собой, блоки питания данных устройств промышленной автоматики всегда отвечают требованиям, предъявляемым к конкретному устройству целиком, ибо блок питания — есть часть этого устройства. Если блок питания уступает требованиям, — все устройство становится уязвимым.
Блоки питания в промышленности монтируют традиционно в шкафах на DIN-рейки, и корпуса блоков питания поэтому предназначены для такого монтажа. Некоторые производители выпускают специальные наборы адаптеров для монтажа блоков питания на DIN-рейку.
Безусловно, блоки питания для промышленной автоматики имеют характерные особенности, и в зависимости от задач, которые с помощью того или иного блока питания решаются, можно все их подразделить на несколько типов: изолированные AC/DC — преобразователи, модули резервирования, блоки питания с поддержкой UPS, изолированные DC/DC — конвертеры. Все эти типы блоков питания объединяет одно — их параметры стабильны в различных внешних условиях.
Разные электронные узлы промышленных установок требуют своего рабочего напряжения, то есть не у всех узлов напряжение питания одно и то же. По этой причине производители блоков питания для промышленной автоматики заботятся о том, чтобы было несколько каналов с различными напряжениями, включая и двухполярное, на одном блоке. Есть и управляемые блоки питания, которые включаются или выключаются сигналом с внешних промышленных датчиков, принимая логический уровень на специальный вход.
Тройка лидирующих производителей блоков питания для промышленности: MW, Chinfa и TDK-Lambda – почти полностью перекрывают своим ассортиментом потребности сегодняшних устройств промышленной автоматики. При этом блоки питания данных марок удовлетворяют как требованиям по надежности и безопасности, так и требованиям по электромагнитной совместимости.
Изолированные AC/DC — преобразователи
Блоки питания данного типа служат традиционно в качестве основных стабилизированных источников питания. Они получают питание от сети (трехфазной или однофазной), либо от источника постоянного тока, при этом диапазон питающих напряжений довольно широк — от 120 до 370 вольт по постоянному току.
Данный тип блоков питания является наиболее распространенным в цепях питания промышленной автоматики, поскольку сетевое питание присутствует практически везде.
Кроме того, диапазон характеристик весьма широк — выходное напряжение, максимальный ток, конструктивное исполнение, — все эти параметры варьируются, и производители на своих сайтах предоставляют потребителю возможность выбора.
Особого внимания заслуживают блоки питания с пожизненной гарантией (например серия HWS от TDK-Lambda), с возможностью компенсации просадки напряжения на проводах, с подстройкой выходного напряжения, и с опцией удаленного выключения/включения.
Некоторые серии изолированных AC/DC — преобразователей обладают способностью выдерживать двукратные перегрузки номинальной мощности в течение нескольких секунд (например серия ZWS/BP от TDK-Lambda), что очень актуально для питания двигателей, когда в режиме перегрузки двигатели потребляют на протяжении нескольких секунд значительную мощность, но в основном режиме потребление вдвое ниже. Налицо возможность сэкономить на покупке мощного преобразователя.
Фирмы Chinfa и MW главным образом поставляют преобразователи специально для монтажа на DIN-рейку. Блоки питания Chinfa традиционно имеют выходы на 15 и на 5 вольт, и могут работать даже в мороз до -40°C. Все блоки питания данных производителей могут питаться напряжением от 85 до 264 вольт. Для систем автоматики повышенной мощности предусмотрены и трехфазные версии блоков питания.
В большинстве своем блоки питания для промышленных применений имеют в своей конструкции блок активной коррекции коэффициента мощности PFC и возможность подстройки выходного напряжения в пределах +-15% от номинала.
Иногда необходимо параллельно соединить несколько блоков питания, чтобы подать к нагрузке мощность выше номинала одного блока питания, для этой цели некоторые модели изолированных AC/DC — преобразователей оснащены специальным переключателем, позволяющим скорректировать цепи обратной связи нескольких источников, при этом один из блоков получается ведущим, а остальные ставятся в режим ведомых. Такая схема отличается от схемы, применяемой для задачи резервирования, решение которой будет рассмотрено далее.
Такие блоки предназначены для повышения надежности системы, когда имеется риск выхода из строя одного из преобразователей. К одной общей шине подключаются с диодной развязкой несколько блоков питания, и в случае выхода из строя одного источника, тут же подключается второй. Внешне это выглядит как подключение развязывающих диодов к резервируемым блокам питания.
Модули резервирования обеспечивают непрерывную работу оборудования на протяжении длительного времени, не нарушая технологического цикла — вот их главная задача. Развязывающие диоды начинают проводить строго тогда, когда это необходимо, поэтому есть отличие между встроенными в блок питания диодами и диодами вынесенными в модуль резервирования.
Во втором случае КПД блоков питания повышается. Если один из блоков питания выйдет из строя, произойдет горячая замена, и система продолжит работать. Оператору останется отследить неисправность блока (по схеме отслеживания напряжения на выходе отдельного блока) и обеспечить его своевременную замену или сервисное обслуживание.
Чаще всего в целях промышленной автоматизации применяют напряжение 24 вольта, и модули резервирования выпускаются главным образом на это номинальное напряжение. Если напряжение будет 12 вольт, то модуль будет не в состоянии проконтролировать напряжение на своем входе, и тогда нужно прибегнуть к выбору блоков питания со встроенной системой контроля.
Блоки питания с поддержкой UPS
Это блоки питания с функцией мониторинга за состоянием аккумуляторов и с функцией их заряда. Блоки питания для UPS подключаются параллельно основному источнику питания, и поддерживают надлежащий уровень напряжения в случае исчезновения напряжения в сети, либо при выходе из строя этого основного источника питания. Одновременно поддерживается заряд резервного аккумулятора. Такие приложения очень востребованы в промышленной автоматизации с резервными источниками, особенно — с аккумуляторными батареями.
Контроллер блока (подобные выпускают Chinfa и Mean Well) поддерживает заряд аккумулятора всегда на правильном уровне, не допускает разряда, и не приводит к перезаряду. То есть блок питания сочетает в себе функцию UPS (источника бесперебойного питания).
Каждое изделие, из предлагаемых производителями, предназначено для аккумуляторов определенной емкости, в соответствии с номиналом, и может иметь два выходных напряжения: 24 и 12 вольт. Более дорогие контроллеры имеют настраиваемый ток заряда аккумуляторов, более дешевые — постоянный уровень зарядного тока, например 2 ампера.
Изолированные DC/DC — конвертеры
Изолированные DC/DС — конвертеры (преобразователи) предназначены для изменения уровня постоянного напряжения. Они устанавливаются внутри шкафов или функциональных модулей, ведь иногда в системах промышленной автоматики необходимо разное постоянное напряжение для разного оборудования.
Так, например, если уже имеется изолированный AC/DC — преобразователь, но требуется получить еще и другое напряжение, отличное от того, которое дает уже установленный в шкафу прибор, можно обойтись DC/DC — преобразователем, это будет дешевле, чем покупать еще один AC/DC.
Изолированные DC/DС — конвертеры для монтажа на DIN-рейку выпускает фирма TDK-Lambda, представляющая ряд преобразователей с различным количеством выходных каналов на мощность от 15 до 60 Вт. Устройства имеют защиту от подачи напряжения обратной полярности и схему ограничения пускового тока, также есть традиционная защита от КЗ. Светодиодный индикатор показывает наличие номинального напряжения на выходах каналов. Имеется возможность удаленного выключения-включения.
Так, современный рынок блоков питания для промышленной автоматики изобилует устройствами с любыми параметрами, какие только могут понадобиться. Ассортимент позволит выбрать любые напряжение, мощность, форм-фактор, опции удаленного управления, функцию UPS и т. п.
Мощность более 1500 ватт может быть получена параллельным объединением нескольких блоков. Модули резервирования помогут наладить безотказную работу цепей. Устройства с поддержкой UPS не дадут прерваться технологическому процессу. DC-DC – конвертер позволит получить необходимое напряжение постоянного тока.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Не пропустите обновления, подпишитесь на наши соцсети:
Источник
Все о блоках питания. Часть 1
Не секрет, что от правильного выбора блока питания (далее БП), его конструкции и качества сборки зависит работа устройства, на которое он нагружен. Здесь я постараюсь рассказать об основных моментах выбора, расчета, конструирования и применения блоков питания.
1. Выбор блока питания
Первым делом следует четко уяснить, что именно будет подключено к БП. Главным образом нас интересует ток нагрузки. Это будет основным пунктом ТЗ. По этому параметру будет подобрана схема и элементная база. Приведу примеры нагрузок и их средние потребляемые токи
1. Световые эффекты на светодиодах (20-1000мА)
2. Световые эффекты на миниатюрных лампах накаливания (200мА-2А)
3. Световые эффекты на мощных лампах (до 1000А)
4. Миниатюрные полупроводниковые радиоприемники (100-500мА)
5. Портативная аудиотехника (100мА-1А)
6. Автомобильные магнитолы (до 20А)
7. Автомобильные УМЗЧ (по линии 12В до 200А)
8. Стационарные полупроводниковые УМЗЧ (при выходной мощности не выше 1кВт до 40А)
9. Ламповые УМЗЧ (10мА-1А – анод, 200мА-8А – накал)
10. Ламповые КВ трансиверы [выходной каскад в классе С характеризуется наибольшим КПД] (при мощности передатчика до 1кВт, до 5А – анод, до 10А – накал)
11. Полупроводниковые КВ трансиверы, Си-Би (при мощности передатчика до 100Вт, 1 – 5А)
12. Ламповые УКВ радиостанции (при мощности передатчика до 50Вт, до 1А – анод, до 3А — накал)
13. Полупроводниковые УКВ радиостанции (до 5А)
14. Полупроводниковые телевизоры (до 5А)
15. Вычислительная техника, оргтехника, сетевые устройства [концентраторы LAN, точки доступа, модемы, роутеры] (500мА — 30А)
16. Зарядные устройства для АКБ (до 10А)
17. Управляющие блоки бытовой техники (до 1А)
Следует отметить, что во многих устройствах потребляемый ток в процессе работы может значительно колебаться. Это УМЗЧ, трансиверы (особенно в телеграфном режиме), мощные СДУ. Поэтому при выборе БП следует ориентироваться ни на средний потребляемый ток и уж тем более ни на ток в режиме молчания, а на пиковую потребляемую мощность. Для питания аналоговой электроники с потребляемой мощностью до 500Вт, я рекомендую линейные блоки питания. При чем многоканальные (с несколькими выходными напряжениями). Как правило, цепи с большим потребляемым током позволяют обойтись без стабилизации напряжения. Так же следует обратить внимание на развязку напряжений. Это, прежде всего, относится к аудиотехнике и аппаратуре радиосвязи. В ряде случаев может потребоваться даже гальваническая развязка между цепями (например при конструировании ламповых УМЗЧ класса Hi-End гальваническая развязка анодных цепей позволит избежать влияния выходного каскада на усилитель напряжения. В том числе перекроет паразитные ОС по питанию). Как это делается будет рассказано ниже. Для более мощной аналоговой техники, а так же любой цифровой можно рекомендовать импульсные БП, ибо тепловой режим и массогабаритные характеристики линейных БП такой мощности оставляют желать лучшего. Вообще мощные узлы аппаратуры не особенно взыскательны к питанию, за то от качества питания во многом зависит работа помехонеустойчивых слаботочных узлов. Итак, рассмотрим кормушку изнутри.
2. Правила безопасности
Не будем забывать, что БП это самый высоковольтный узел в любом устройстве (за исключением разве что телевизора). При чем опасность представляет не только промышленная электросеть (220В). Напряжение в анодных цепях ламповой аппаратуры может достигать десятков и даже сотен (в рентгеновских установках) киловольт (тысяч вольт). Поэтому все высоковольтные участки (включая общий провод) должны быть изолированы от корпуса. Это хорошо знает тот, кто поставив ногу на системный блок трогал батарею. Электрический ток может быть опасен не только для человека и животных, но и для самого устройства. Имеются ввиду пробои и короткие замыкания. Эти явления не только выводят из строя радиокомпоненты, но и весьма пожароопасны. Мне попадались некоторые изолирующие элементы конструкций, которые в следствии подачи высокого напряжения были пробиты и выгорели до угля при чем выгорели не полностью, а каналом. Уголь проводит ток и создает таким образом короткое замыкание (далее КЗ) на корпус. При чем внешне это не видно. Поэтому между двумя проводами, припаянными к плате, должно быть расстояние из расчета примерно 2мм на вольт. Если речь идет о смертельно опасных напряжениях, то в корпусе должны быть предусмотрены микропереключатели, которые автоматически обесточивают прибор при удалении стенки с опасного участка конструкции. Элементы конструкции, которые в процессе работы сильно нагреваются (радиаторы, мощные полупроводниковые и электровакуумные приборы, резисторы мощностью свыше 2Вт) должны быть вынесены с платы (наилучший вариант) или хотя бы приподняты над ней. Так же не допускается касание корпусов разогревающихся радиоэлементов, за исключением тех случаев, когда второй элемент является датчиком температуры первого. Такие элементы не разрешается заливать эпоксидной смолой и другими компаундами. Более того, должен быть обеспечен приток воздуха к участкам с большой рассеиваемой мощностью, а при необходимости и принудительное охлаждение (вплоть до испарительного). Так. Страху нагнал, теперь о работе.
3. Законы Ома и Кирхгофа были и будут основой разработки любого электронного устройства.
3.1. Закон Ома для участка цепи
Сила тока на участке цепи прямо пропорциональна напряжению, приложенному к участку и обратно пропорциональна сопротивлению участка. На этом принципе основана работа всех ограничительных, гасящих и балластных резисторов.
Эта формула хороша тем, что под «U» можно подразумевать как напряжение на нагрузке, так и напряжение на участке цепи, последовательно соединенном с нагрузкой. Например у нас есть лампочка на 12В/20Вт и источник 17В, к которому нам нужно подключить эту лампочку. Нам нужен резистор, который понизит 17В до 12.
Рис.1
Итак, мы знаем что при последовательном соединении элементов напряжения на них могут отличаться, но ток всегда одинаковый на любом участке цепи. Вычислим ток, потребляемый лампочкой:
Значит, через резистор протекает такой же ток. В качестве напряжения берем падение напряжения на гасящем резисторе, ведь это действительно то самое напряжение, которое действует на этом резисторе ()
Из приведенного примера совершенно очевидно, что . Причем это относится не только к резисторам, но и, например, к динамикам, если мы вычисляем какое напряжение нужно подвести к динамику с заданной мощностью и сопротивлением, чтобы он развил эту мощность.
3.2. Закон Ома для полной цепи
Прежде, чем мы перейдем к нему, нужно четко уяснить физический смысл внутреннего и выходного сопротивлений. Предположим, у нас есть некоторый источник ЭДС. Так вот, внутреннее (выходное) сопротивление это мнимый резистор, включенный последовательно с ним.
Рис.2
Естественно, фактически в источниках тока таких резисторов нет, но у генераторов есть сопротивление обмоток, у розеток – сопротивление проводки, у АКБ – сопротивление электролита и электродов и т.д. Это сопротивление при подключении нагрузки ведет себя именно как последовательно включенный резистор.
где: ε – ЭДС
I – сила тока
R – сопротивление нагрузки
r – внутреннее сопротивление источника
Из формулы видно, что с возрастанием внутреннего сопротивления уменьшается мощность вследствие просадки во внутреннем сопротивлении. Это видно и из закона Ома для участка цепи.
3.3 Правило Кирхгофа нас будет интересовать только одно: сумма токов, входящих в цепь равна току (сумме токов), выходящему из нее. Т.е. какой бы не была нагрузка и из скольки бы ветвей она не состояла, сила тока в одном из питающих проводов будет равна силе тока во втором проводе. Собственно, этот вывод вполне очевиден, если мы говорим о замкнутой цепи.
С законами протекания тока вроде все ясно. Посмотрим как это выглядит в реальном «железе».
4. Начинка
Все БП во многом схожи по схеме и элементной базе. Это вызвано тем, что по большому счету они выполняют одни и те же функции: изменение напряжения (всегда), выпрямление (чаще всего), стабилизация (часто), защита (часто). Теперь рассмотрим способы реализации этих функций.
4.1. Изменение напряжения чаще всего реализуется при помощи различных трансформаторов. Этот вариант наиболее надежен и безопасен. Существуют так же безтрансформаторные БП. В них для понижения напряжения используется емкостное сопротивление конденсатора, включенного последовательно между источником тока и нагрузкой. Выходное напряжение таких БП полностью зависит от тока нагрузки и ее наличия. Даже при кратковременном отключении нагрузки такие БП выходят из строя. Кроме того, они могут только понижать напряжение. Поэтому я не рекомендую такие БП для питания РЭА. Итак, остановимся на трансформаторах. В линейных БП используются трансформаторы на 50Гц (частота промышленной сети). Трансформатор состоит из сердечника, первичной обмотки и нескольких вторичных обмоток. Переменный ток, поступая на первичную обмотку создает в сердечнике магнитный поток. Этот поток, как магнит, наводит ЭДС во вторичных обмотках. Напряжение на вторичных обмотках определяется количеством витков. Отношение количества витков (напряжения) вторичной обмотки к количеству витков (напряжению) первичной обмотки называется коэффициентом трансформации (η). Если η>1 трансформатор называют повышающим, в противном случае – понижающим. Есть трансформаторы у которых η=1. Такие трансформаторы не меняют напряжение и служат только для гальванической развязки цепей (цепи считаются гальванически развязанными, если у них нет непосредственного общего электрического контакта. Хотя токи, протекающие через них, могут действовать друг на друга. Например «Blue Tooth» или лампочка и поднесенная к ней солнечная батарея или ротор и статор электродвигателя или неоновая лампа, поднесенная к антенне передатчика). Поэтому использовать их в БП нет смысла. Импульсные трансформаторы работают по такому же принципу с той лишь разницей, что на них не подается напряжение непосредственно из розетки. Сначала оно преобразуется в импульсы более высокой частоты (обычно 15-20кГц) и уже эти импульсы подаются на первичную обмотку трансформатора. Частота следования этих импульсов называется частотой преобразования импульсного БП. С возрастанием частоты увеличивается индуктивное сопротивление катушки, поэтому обмотки импульсных трансформаторов содержат меньшее количество витков по сравнению с линейными. Это делает их более компактными и легкими. Однако импульсные БП характеризуются бОльшим уровнем помех, худшим тепловым режимом и схемотехнически более сложны, следовательно менее надежны.
4.2. Выпрямление подразумевает преобразование переменного (импульсного) тока в постоянный. Этот процесс заключается в разложении положительных и отрицательных полуволн на соответствующие полюса. Есть достаточно много схем, позволяющих это сделать. Рассмотрим те, которые наиболее часто используются.
4.2.1. Четвертьмост
Рис.3
Самая простая схема однополупериодного выпрямителя. Работает следующим образом. Положительная полуволна проходит через диод и заряжает С1. Отрицательная полуволна блокируется диодом и цепь оказывается как бы оборванной. В этом случае нагрузка питается за счет разрядки конденсатора. Очевидно, что для работы на 50Гц емкость С1 должна быть сравнительно велика, чтобы обеспечивать низкий уровень пульсаций. Поэтому схема применяется в основном в импульсных БП ввиду более высокой рабочей частоты.
4.2.2 Полумост (удвоитель Латура-Делона-Гренашера)
Рис.4
Принцип работы похож на четвертьмост, только здесь они соединены как бы последовательно. Положительная полуволна проходит через VD1 и заряжает С1. На отрицательной полуволне VD1 закрывается и С1 начинает разряжаться, а отрицательная полуволна проходит через VD2. Таким образом между катодом VD1 и анодом VD2 появляется напряжение, в 2 раза превосходящее напряжение вторичной обмотки трансформатора (рис.4а). Этот принцип можно использовать для построения расщепленного БП. Так называются БП, выдающие 2 одинаковых по модулю, но противоположных по знаку напряжения (рис.4б). Однако не следует забывать, что это 2 соединенных последовательно четвертьмоста и емкости конденсаторов должны быть достаточно велики (из расчета, как минимум, 1000мкФ на 1А потребляемого тока).
4.2.3. Полный мост
Самая распространенная схема выпрямителя имеет наилучшие нагрузочные характеристики при минимальном уровне пульсаций и может применяться как в однополярных (рис.5а), так и в расщепленных БП (рис.5б).
Рис.5
На рис.5в,г показана работа мостового выпрямителя.
Как уже говорилось, различные схемы выпрямителей характеризуют разные значения коэффициента пульсаций. Точный расчет выпрямителя содержит громоздкие вычисления и на практике редко бывает необходим, поэтому ограничимся ориентировочным расчетом, который можно выполнить по таблице
Схема
Uобр
Источник