Меню

Блоки питания с развязкой конденсатор

Чистое питание для каждой микросхемы, часть 1: Понятие конденсаторов развязки

Полное понимание конденсаторов развязки (блокировочных конденсаторов) поможет вам правильно включать эти критически важные компоненты в ваши проекты.

Конденсаторы, конденсаторы везде

Не исключено, что увлеченный, успешный инженерный студент закончил колледж, почти ничего не узнав об одном из самых распространенных и важных компонентов, которые можно найти в реальных схемах: о блокировочном конденсаторе (конденсаторе развязки). Даже опытные инженеры могут не совсем понимать, почему они включают керамические конденсаторы на 0,1 мкФ рядом с каждым выводом питания каждой микросхемы на каждой печатной плате, которую они проектируют. В данной статье содержится информация, которая поможет вам понять, почему необходимы блокировочные конденсаторы, и как они улучшают производительность схемы, а следующая статья будет посвящена деталям, связанным с выбором конденсаторов развязки и методам компоновки печатных плат, которые максимизируют их эффективность.

Опасности переходного тока

Любой компонент, в котором выходные сигналы быстро переходят из одного состояния в другое, будет генерировать переходные токи. Когда эти переходные токи тянутся непосредственно от источника питания, в результате импеданса источника питания, а также паразитной индуктивности, связанной с проводами и проводниками на печатной плате, создаются переходные напряжения. Этот эффект становится всё более проблематичным, когда компонент должен управлять низкоомной или высокоемкостной нагрузкой: низкоомные нагрузки создают высокие амплитуды переходных процессов, а высокоемкостные нагрузки могут приводить к звону или даже значительным колебаниям в линии питания. Конечным результатом может быть что угодно: от неоптимальной производительности схемы до отказа системы.

Давайте кратко рассмотрим эту проблему переходного тока, используя очень простое моделирование.

Схема моделирования Схема моделирования Временные диаграммы входного и выходного напряжений и тока источника питания Временные диаграммы входного и выходного напряжений и тока источника питания

Эта схема – это известный CMOS инвертор, что подтверждается связью между входным и выходным напряжениями. Хотя чрезвычайно умная конструкция этого инвертора не требует стабильного напряжения, нам нужно помнить, что значительный переходной ток протекает, когда входное напряжение проходит через область, в которой оба транзистора проводят ток. Этот ток создает помехи для напряжения питания инвертора, соответствующие падению напряжения на сопротивлении источника (в этом моделировании используется 2 Ом, примерно столько можно ожидать от внутреннего сопротивления батареи 9 вольт).

Пульсации напряжения питания Пульсации напряжения питания

Верно, что величина этих пульсаций будет очень мала, но помните, что интегральная микросхема может содержать сотни или тысячи или миллионы инверторов. Без надлежащей развязки кумулятивный эффект всех этих переходных токов привел бы к всерьез шумному (если к не катастрофически неустойчивому) источнику напряжения. Эксперименты, выполненные инженерами Texas Instruments, показали, что неправильно развязанная линия питания микросхемы, производящей коммутации на частоте 33 МГц, привела к тому, что амплитуда пульсаций достигала бы 2 вольт пик-пик на шине питания 5 вольт!

На следующем графике показано напряжение питания, когда схема симуляции расширяется, составляя теперь 8 инверторов, и включает паразитную индуктивность 1 нГн последовательно с внутренним сопротивлением источника.

Пульсации напряжения питания при восьми инверторах в схеме и паразитной индуктивности 1 нГн последовательно с сопротивлением источника Пульсации напряжения питания при восьми инверторах в схеме и паразитной индуктивности 1 нГн последовательно с сопротивлением источника

Величина переходных процессов увеличилась до почти 0,5 мВ, и оба возмущения проявляют некоторое колебательное поведение.

Пульсации напряжения питания при большем масштабе по оси времени Пульсации напряжения питания при большем масштабе по оси времени

Цифровые схемы, безусловно, имеют особую склонность к снижению качества электропитания, но аналоговые микросхемы также нуждаются в развязке, чтобы компенсировать быстрые переходные процессы на выходе и защитить их от шума источника питания, создаваемого другими устройствами. Например, коэффициент подавления пульсаций напряжения питания операционного усилителя (ОУ) уменьшается по мере того, как шум источника питания увеличивается по частоте; это означает, что операционный усилитель с некорректной развязкой может создавать высокочастотные возмущения на линии питания, которые распространяются на собственный выходной сигнал ОУ.

Решение

Удобно, что такая серьезная проблема может быть эффективно разрешена с помощью простого, широкодоступного компонента. Но почему конденсатор? Простое объяснение заключается в следующем: конденсатор хранит заряд, который может быть подан на микросхемы через очень низкое последовательное сопротивление и очень низкую последовательную индуктивность. Таким образом, переходные токи могут подаваться от блокировочного конденсатора (через минимальные сопротивление и индуктивность). Чтобы лучше понять это, нам нужно рассмотреть некоторые базовые понятия, связанные с тем, как конденсатор влияет на схему.

Во-первых, короткая заметка о терминологии. Компоненты, обсуждаемые в данной статье, регулярно упоминаются и как «блокировочные конденсаторы», и как «конденсаторы развязки». Здесь есть тонкое различие: «развязка» относится к уменьшению степени, в которой одна часть схемы влияет на другую, а «блокирование» относится к обеспечению низкоимпедансного пути, который позволяет шуму «обходить» микросхему на своем пути к узлу земли. Оба термина могут быть правильно использоваться, поскольку блокировочный конденсатор / конденсатор развязки выполняет обе задачи. Однако в этой статье предпочтение отдается термину «блокировочный конденсатор», чтобы избежать путаницы с последовательным конденсатором развязки, используемым для блокирования постоянной составляющей сигнала.

Заряд и разряд

Основной эффект конденсатора заключается в хранении заряда и освобождении заряда таким образом, что он противостоит изменениям напряжения. Если напряжение внезапно уменьшается, конденсатор подает ток со своих заряженных пластин в попытке сохранить предыдущее напряжение. Если напряжение внезапно увеличивается, пластины конденсаторы сохраняют заряд от тока, созданного повышенным напряжением. Следующая симуляция может помочь вам визуализировать этот процесс.

Схема моделирования Схема моделирования Временная диаграмма сглаживания конденсатором изменений напряжения Временная диаграмма сглаживания конденсатором изменений напряжения

Обратите внимание, что ток является положительным (т.е. протекает от источника через R1 к C1), когда конденсатор заряжается, и отрицательным (т.е. протекает от C1 через R1 к источнику), когда конденсатор разряжается.

Это фундаментальное поведение заряда и разряда не меняется в зависимости от того, подвергается ли конденсатор воздействию низкочастотных или высокочастотных сигналов. Однако при обсуждении обхода источника питания полезно проанализировать влияние конденсатора двумя разными способами: один для низкочастотных случаев и один для высокочастотных случаев. В контексте низких частот или постоянного тока блокировочный конденсатор противостоит изменениям на линии напряжения путем заряда и разряда. Конденсатор функционирует как низкоомная батарея, которая может обеспечивать небольшую величину переходного тока. В контексте высоких частот конденсатор представляет собой низкоомный путь к земле, который защищает микросхему от высокочастотного шума на линии питания.

Стандартный подход

Приведенный выше анализ помогает понять классическую схему блокировки: конденсатор емкостью 10 мкФ находится в двух-пяти сантиметрах от микросхемы, а керамический конденсатор 0,1 мкФ находится как можно ближе к питающему выводу микросхемы.

Классическая схема блокировки пульсаций напряжения питания Классическая схема блокировки пульсаций напряжения питания

Больший конденсатор сглаживает низкочастотные колебания напряжения питания, а меньший конденсатор более эффективно фильтрует высокочастотный шум на линии питания.

Если мы включим эти блокировочные конденсаторы в схему моделирования с 8-ю инверторами, рассмотренную выше, звон будет устранен, а величина возмущений напряжения будет уменьшена с 1 мВ до 20 мкВ.

Читайте также:  Блок питания deepcool dn 500w dn500 обзор

Временная диаграмма напряжения питания после добавления блокировочных конденсаторов Временная диаграмма напряжения питания после добавления блокировочных конденсаторов

Идеал и реальность

На этом этапе вам может стать интересно, зачем нам нужен конденсатор 0,1 мкФ в дополнение к конденсатору 10 мкФ. В чем разница между 10 мкФ и 10,1 мкФ? В этом месте обсуждение блокировочных конденсаторов усложняется. Эффективность конкретной схемы блокировки тесно связана с двумя неидеальными характеристиками выбранных конденсаторов: эквивалентное последовательное сопротивление (ESR) и эквивалентная последовательная индуктивность (ESL). В рассмотренном моделировании параллельные конденсаторы 10 мкФ и 0,1 мкФ являются идеальными и дают в результате не более чем идеальный конденсатор 10,1 мкФ. Чтобы сделать симуляцию более близкой к реальности, нам нужно включить обоснованные значения ESR и ESL. После этой модификации мы получим следующее.

Результаты моделирования после включения ESR и ESL конденсаторов Результаты моделирования после включения ESR и ESL конденсаторов

Несмотря на то, что это по-прежнему лучше, чем без использования блокировочных конденсаторов, эти результаты значительно хуже, чем мы видели с идеальными конденсаторами.

Эта простая симуляция не может учесть всех паразитных импедансов и других скрытых влияний, присутствующих в реальных микросхемах на реальных печатных платах (особенно те, что включают высокочастотные цифровые сигналы). Дело в том, чтобы продемонстрировать здесь, что проектирование цепи блокировки предполагает тщательное рассмотрение ESR и ESL конденсатора. Не менее важными являются и правильное размещение компонентов, и методы компоновки печатной платы. Все эти подробности мы рассмотрим в следующей статье.

Источник



Принцип работы бестрансформаторного блока питания на гасящем конденсаторе

Не для кого не секрет, что источник вторичного электропитания является неотъемлемой частью любого прибора. В данной статье я постараюсь описать довольно распространенный тип источников питания — бестрансформаторные на гасящем конденсаторе.

Основными достоинствами его являются малые габариты, дешевизна и простота устройства, именно по этому его часто используют например, в терморегуляторах тёплого пола, блоках управления бытовыми холодильниками, блоках дистанционного управления люстрами, базы электрочайников с сенсорным управлением и подобных малогабаритных устройствах с сетевым питанием. Не смотря на все положительные качества есть и недостатки, пожалуй самый большой из которых это отсутствие гальванической развязки с питающей сетью и невысокий ток нагрузки.

Для начала рассмотрим типовую схему такого источника

фото1.jpg

Это самый стандартный вариант, встречающийся в 80% случаев, в остальных 20% могут присутствовать изменения которые не меняют принципа диагностики и ремонта.

Назначение элементов схемы:

-> Резистор(R1) является токоограничивающим, он ограничивает ток заряда конденсатора в момент включения в сеть т.к. разряженный конденсатор имеет низкое сопротивление, а следовательно потребляет значительный ток, так же в некоторых схемах он используется разрывной и одновременно служит плавким предохранителем
-> Конденсатор (С1) является основным элементом схемы. За счет своего реактивного сопротивления он гасит излишний ток. Напряжение же получается лишь тогда, когда появляется нагрузка, его величина подчиняется закону ома.
-> Резистор(R2) – разряжающий. Он служит для того чтобы разрядить конденсатор, иначе при отключении от сети вилка устройства будет биться током, во многих схемах не имеющих разъемных соединений, например в термостате теплого пола, датчиках движения его не ставят.
-> Диодный мост(Br1) служит для выпрямления тока, в целях экономии его часто заменяют на однополупериодный выпрямитель состоящий из одного диода.
-> Конденсатор(С2) необходим для сглаживания пульсаций выпрямленного тока.
-> Стабилитрон(D1) стабилизирует напряжение. Т.к. конденсатор ограничивает ток, то напряжение в отсутствии нагрузки было бы равно сетевому, а так же при изменении тока нагрузки скакало в широких пределах, стабилитрон же является постоянной нагрузкой в цепи и не позволяет напряжению превышать определенный порог, равный его напряжению стабилизации

Самая частая неисправность с которой подобные устройства заходят на ремонт «Не включается, не светится» и подобные выражения, которые сообщает клиент мастеру.
При данных признаках в большинстве случаев происходит пробой стабилитрона, т.к. он «сдерживает» напряжение при изменении нагрузки или скачках напряжения в сети, а в отсутствии нагрузки вся выработанная мощность БП рассеивается на нем в виде тепла.

С такой проблемой был принят в ремонт термостат тёплого пола Electrolux

фото2.jpg

Подключаем к питанию, проводим замеры питающего напряжения. Удобнее и быстрее всего произвести замер в очевидных точках, если есть микросхемы, на питающих выводах, на сглаживающем конденсаторе, и т. д.

фото3.jpg

Когда выяснено, что проблема с питающими линиями, более детально осматриваем цепи питания и воспроизводим схему питания устройства

фото4.jpg

фото5.jpg

фото6.jpg

Данная схема очень типичная, кроме наличия 2 стабилитронов, включенных последовательно, Это необходимо для питания напряжением 12В цепей управления и 17В для запитки реле.(Реле в этом регуляторе используется на 24В, выбранное производителем пониженное напряжение 17В позволяет реле уверенно срабатывать и при этом иметь минимальный нагрев)

Диагностируется данная проблема просто: Находим стабилитрон и мультиметром в режиме прозвонки производим измерение на его выводах При исправном стабилитроне на экране прибора будет какое либо значение много больше нуля, при не исправном раздастся писк свидетельствующий о коротком замыкании.
Если при диагностике обнаружен перегоревший плавкий предохранитель, то в первую очередь проверяем сам гасящий конденсатор на пробой.

Далее удаляем стабилитрон и прозваниваем без него. Короткое скорее всего пропадёт.

фото7.jpg

Так же, чтобы убедиться проверяем стабилитрон.

фото8.jpg

фото9.jpg

А далее заменяем его на исправный, если есть следы свидетельствующие о перегреве (потемнение платы) то заменяем его на стабилитрон с большей мощностью рассеяния или заменяем на включенные параллельно с выравнивающими резисторами

фото10.jpg

Далее проверяем результат нашего ремонта
При включении в сеть загорелся светодиод «Нагрев» и отчетливо слышен щелчок реле.

Источник

Малогабаритный блок питания с гасящим конденсатором и гальванической развязкой

Блоки питания с гасящим конденсатором известны давно, но широкого применения они не получили. Главная причина – отсутствие гальванической развязки с сетью, что создает определенную (и немалую) опасность не только при ремонте, но и во время эксплуатации приборов с таким питанием. С другой стороны подобные блоки питания подкупают своей простотой (намотать сетевую обмотку, состоящую из 5 — 6 000 витков провода 0.05 – та еще задача). Основное отличие этого блока питания от схем с гасящим конденсатором – гальваническая развязка с питающей сетью, которая сводит практически к нулю возможность поражения электрическим током при питании радиоэлектронных устройств. Еще одно — простота изготовления, поскольку сетевая обмотка трансформатора в этом случае может иметь на порядок меньшее количество витков.

В приведенной схеме благодаря конденсатору С1 напряжение на I обмотке трансформатора не превышает 30 В, поэтому число витков ее можно уменьшить до 600 (диаметр провода 0.16). Вторичная обмотка для приведенного на схеме напряжения содержит 140 витков того же провода, но, конечно, количество витков может быть любым в соответствии с необходимым выходным напряжением.

Читайте также:  Panasonic th 42pv60rh блок питания

Трансформатор можно выполнить на любом малогабаритном магнитопроводе сечением не менее 150 мм2 (к примеру, Ш 12х15). Вполне подойдет даже магнитопровод от выходных и согласующих трансформаторов усилителей ЗЧ. Между обмотками необходимо проложить слой изоляции, которая обеспечит электрическую прочность не менее 2 кВ (несколько слоев трансформаторной бумаги или лавсановой пленки). Конденсатор С1 должен быть рассчитан на напряжение не менее 400 В, конденсаторы С2 и С3 выдерживать двойное напряжение, которое будет присутствовать на них фактически.

Схема, изображенная на рисунке в состоянии отдать в нагрузку ток до 0.3А, но имеет единственный недостаток – ее нельзя включать без нагрузки. Чтобы устранить его, параллельно С2 необходимо включить стабилитрон, с напряжением стабилизации, превышающем нормальное напряжение на блоке под нагрузкой. Если нагрузка будет отключена, излишек напряжения будет погашен открывшимся стабилитроном (в нашем случае это может быть Д815Г). Для большей безопасности высоковольтный конденсатор С1 имеет смысл зашунтировать резистором в 220 кОм – это позволит не попасть под остаточное напряжение на С1 при отключении блока питания от сети.

Источник

О развязке питания с примерами

Когда я участвовал в проведении конкурса 7400, я понял, что многим из представленных логических схем для надежной работы не хватает простейших защитных элементов. Одним из самых часто встречающихся недостатков конструкции было отсутствие блокировочных емкостей. Позже, прочитав статью о законе Мёрфи, я решил немного написать о развязке и блокировочных конденсаторах.

Как человек, которого можно назвать старожилом в области электроники, я познакомился с проблемой отсутствия развязки на собственном опыте. Свою первую высокоскоростную схему я собрал, будучи стажером в крупной фирме по производству электроники. Та схема, цифровой частотомер, была собрана на логике семейства 74Fxx и работала на частоте 11 МГц (по тем временам это считалось очень много). Это была плата размером 23 × 16 см (Double Eurocard), содержащая около 40 микросхем, соединенных монтажом накруткой (wire wrap). Когда пришло время ее включать, я увидел, что схема не работает, как надо, а выдает полную ерунду.

Проверив несколько раз сборку, я рассказал о проблеме своему руководителю, а он взглянул на плату и сказал: «Не хватает блокировочных конденсаторов. Поставь их на питание около каждой микросхемы, тогда и поговорим.» Совершенно растерянный, я сделал, как было сказано, и — о чудо! — все сразу заработало. Почему, казалось бы, ни на что не влияющая емкость заставила схему работать? Мой руководитель рассказал мне о бросках тока при переключении, об индуктивности проводников и о развязке. Я признаю, что прошло несколько лет, прежде чем я действительно понял, что он тогда говорил, но урок был усвоен: всегда ставить конденсаторы на питание цифровых микросхем.

Термины «блокировочный конденсатор» и «развязка» — не случайные слова, а имеют в данном контексте вполне определенное значение:
развязка — действие, направленное на (частичное) отделение цепей питания микросхемы от общего источника питания;
блокировочный конденсатор — конденсатор, установленный таким образом, что он шунтирует питание микросхемы и действует как местный источник питания.

Почему это всё так важно? Взгляните, например, сюда:


Рисунок 1. Отсутствие блокировочноых конденсаторов.

Разве это похоже на цифровой сигнал? Такую ерунду вы получите без блокировочных конденсаторов.

Пожалуйста, обратите внимание, что тактовая частота не важна. Проблема заключается в восходящих и спадающих фронтах сигнала. Так, одни и те же соображения применимы для систем, работающих на частоте 1 Гц, 20 кГц или 50 МГц. Используемые частоты в примерах ниже выбраны такими, чтобы их было удобно наблюдать на осциллографе.

Следует отметить, что на высокой частоте сбой наступает быстрее, чем на низкой, за счет большего числа фронтов в единицу времени. Однако это не означает, что низкочастотные схемы будут работать надежно. Это далеко не так, они будут сбоить так же легко, согласно закону Мёрфи. Да, и кстати, вы подумали о ваших маленьких микроконтроллерах, работающих на частоте 16 МГц?

Измерение всплесков тока

Чтобы увидеть, что происходит, нужно измерить токи, протекающие через схему. Вот простая экспериментальная установка, собранная для иллюстрации:


Рисунок 2. Подключение инвертора.

Рисунок 3. Измерительная схема.

Генератор импульсов подключен к инвертору 74HC04, нагруженному на емкость 10 пФ. Сигнал на выходе инвертора, TP1, показан на верхней осциллограмме. Источник питания подключен к выводам микросхемы 7 и 14. В разрыв земляного проводника включен токоизмерительный резистор 10 Ом.

Напряжение в точке TP2 пропорционально потребляемому микросхемой току и отображается на нижней осциллограмме. Блокировочный конденсатор может быть подключен или отключен при необходимости. Щупы осциллографа снабжены делителями 1:10, так что масштаб осциллограммы по вертикали нужно умножить на 10. Все неиспользуемые входы 74HC04 заземлены. Установка выглядит так:


Рисунок 4. Установка, собраннная на макетной плате.

Рисунок 5 показывает проблемы, возникающие на высоких и низких частотах. Картинки слева — без блокировочного конденсатора, справа — с ним.


Рисунок 5. Выходное напряжение (верхний канал) и потребляемый ток (нижний канал).
Сверху — тактовая частота 330 кГц, снизу — 3,3 МГц.
Слева — без блокировочного конденсатора, справа — с ним.

Некоторые наблюдения из рисунка 5:

  • Измеренный ток — это только ток через ногу GND и блокировочный конденсатор. Он не в точности соответствует току, потребляемому микросхемой. Сложно измерять ток через ноги Vcc и GND одновременно (ограничения, накладываемые конструкцией осциллографа. — Прим. перев.). Однако, измерение тока через вывод GND достаточно для иллюстративных целей.
  • При логической «1» на выходе наблюдается высокочастотный «звон». Его размах больше 2 В, и выбросы превосходят напряжение питания. Добавление блокировочного конденсатора снижает «звон» до практически несущественного уровня. Выброс все еще остается, но затухает гораздо быстрее
  • Фронтам сигнала соответствуют выбросы («иголки») потребляемого тока. Добавление блокировочного конденсатора уменьшает эти выбросы и делает их симметричными при восходящем и спадающем фронтах. Диапазон выбросов от -22 до +45 мА без блокировочного конденсатора и от -32 до +36 мА — с ним.
  • Симметричная форма тока при наличии блокировочного конденсатора говорит, что энергия запасается и извлекается обратно. Это очень важная особенность.
  • Остаточный ВЧ звон во многом зависит от положения щупа осциллографа (не показано), что говорит о том, что схема содержит паразитные LC-элементы и радиочастотные антенны. Расположение на плате и взаимное положение соединительных проводов оказывает значительное влияние на амплитуду и частоту колебаний. Эти помехи не могут быть полностью устранены, но их можно сильно уменьшить, правильно разведя печатную плату.

Взглянем на фронты сигнала поближе:

Читайте также:  Какой нужен блок питания для gtx 650 ti


Рисунок 6. Фронты выходного напряжения (верхний канал) и потребляемого тока (нижний канал).
Сверху — задний (спадающий) фронт, снизу — передний (восходящий) фронт.
Слева — без блокировочного конденсатора, справа — с ним.

Оценка потребляемого тока

Микросхема 74HC04 выполнена по технологии КМОП. Это означает, что статический потребляемый ток близок к нулю. Ток потребляется только при переключениях из «0» в «1» и из «1» в «0». При переключении все нагрузочные и паразитные емкости должны быть перезаряжены. Для экспериментальной схемы нагрузка имеет емкость 10 пФ. Сюда нужно добавить емкости выводов и паразитные емкости, которые составляют примерно 5+2 пФ. Щуп осциллографа имеет емкость 10 пФ, которую тоже нужно учесть. Таким образом, суммарная емкость нагрузки на выходе инвертора примерно 27 пФ.

Выходную емкость нужно зарядить от 0 до 5 В примерно за 4,3 нс. Приняв для простоты, что зарядный ток постоянный, оценим его величину:
Q = I · t = C · U
I = (5 · 27 · 10 -12 )/(4,3 · 10 -9 ) = 31,4 мА

Это означает, что через выход инвертора при каждом переключении втекает или вытекает огромный (по меркам КМОП. — Прим. перев.) ток. Откуда черпается энергия на это? Конечно, из источника питания. На рисунке 6 хорошо видно, что ток не возникает мгновенно, а нарастает до определенного уровня, а затем падает снова. Такое поведение явно указывает на наличие индуктивных элементов.

Лучше всего это видно на рисунке 6 справа, где ток достигает максимума в тот момент, когда выходное напряжение падает до нуля. Затем ток падает, вызывая провал выходного напряжения. Расчетный ток достаточно хорошо совпадает с измеренным, учитывая, что была проведена лишь простейшая оценка.

Так зачем же нужен блокировочный конденсатор?

Еще раз внимательно взглянем на нижнюю половину рисунка 6. Слева выходное напряжение не доходит до 5 В в течение некоторого времени, а справа — достигает почти сразу. Без блокировочного конденсатора микросхеме не хватает мощности питания для формирования крутого фронта, и напряжение застревает на уровне 4 вольт. Блокировочный конденсатор выдает необходимую мгновенную мощность на некоторое время.

Блокировочный конденсатор примерно в 4000 раз больше, чем емкость нагрузки, значит, следует ожидать, что падение напряжения питания будет в 4000 раз ниже (чем размах выходного напряжения. — Прим. перев.) — порядка 1-2 мВ.

При обратном переключении, из «1» в «0», как на рисунке 6 сверху, блокировочный конденсатор выступает в роли резервуара для принятия выделившейся энергии. Емкость нагрузки разряжается, и ток должен стечь на землю. Тем не менее, энергия не может быть мгновенно передана в источник питания, и блокировочный конденсатор будет временно хранить ее.

Локальный источник питания

Основной источник питания не может обеспечить микросхему достаточной мощностью из-за индуктивности проводников. Каждый провод обладает паразитной индуктивностью, которая препятствует изменению тока. Из определения индуктивности:
U = L · dI / dt ⇒ dI = U · dt / L

Из этого уравнения видно, что изменение тока обратно пропорционально индуктивности. Иными словами, если возрастает индуктивность, становится труднее изменить ток за заданный промежуток времени, при прочих равных параметрах. Кроме того, изменение тока вызывает падение напряжения на индуктивности. Чем длиннее провод (или дорожка на плате) тем более высокую индуктивность он имеет, тем сильнее он сопротивляется быстрому изменению тока, и тем больше будет падение напряжения.

Блокировочный конденсатор является локальным накопителем энергии. Он всегда должен быть установлен как можно ближе к выводам питания микросхемы, чтобы свести к минимуму индуктивность проводников от конденсатора до микросхемы. Такая схема развязывает общие и локальные цепи питания.

Увеличиваем нагрузку

Микросхема состоит из шести инверторов, поэтому схему можно изменить так, чтобы увеличить потребляемый ток:


Рисунок 7. Экспериментальная схема с дополнительной нагрузкой.


Рисунок 8. Выходное напряжение (верхний канал) и потребляемый ток (нижний канал) для схемы с дополнительной нагрузкой.
Сверху — тактовая частота 330 кГц, снизу — 3,3 МГц.
Слева — без блокировочного конденсатора, справа — с ним.

Обратите внимание на другой масштаб по оси Y для канала измерения тока, по сравнению с рисунками 5 и 6.

Ток через вывод GND теперь имеет выбросы около 70 мА при отсутствии блокировочного конденсатора. Если же последний установлен, снова наблюдаем симметричную форму выбросов амплитудой ±50 мА при восходящих и спадающих фронтах.

Обратите внимание, что фронт сигнала, как видно на рисунке 8 внизу слева, теперь гораздо более пологий. Микросхеме просто-напросто не хватает энергии для быстрого переключения. Установка блокировочного конденсатора (рисунок 8 справа) восстанавливает крутизну фронта до приемлемого уровня.


Рисунок 9. Фронты выходного напряжения (верхний канал) и потребляемого тока (нижний канал).
Слева — задний (спадающий) фронт, справа — передний (восходящий) фронт.
Блокировочный конденсатор установлен.

Подробное рассмотрение фронтов сигнала выявляет увеличенный по продолжительности выброс тока, что вызвано большими потребностями в энергии. Нагрузка микросхемы примерно в шесть раз выше, чем раньше (первый инвертор нагружен на входные емкости остальных инверторов, которые составляют 5 раз по 5 пФ).

Это был лишь простой пример — микросхема из шести инверторов. А теперь экстраполируйте вышесказанное на сложную логическую схему, содержащую множество элементов и множество внутренних соединений. В ней очень много паразитных емкостей, которые должны перезаряжаться при каждом изменении входных сигналов. Наконец, представьте себе микроконтроллер, состоящий из многих тысяч вентилей.

Заземление

Изложенные выше объяснения и иллюстрации должны дать ясное понимание того, что блокировочный конденсатор — важный элемент, выполняющий свою специальную функцию. Он запасает энергию источника питания локально, выдает её при необходимости, а также принимает избытки энергии.

Локальное хранилище энергии постоянно пополняется из основного источника питания через проводник Vcc. В то же время, избыточная энергия должна быть сброшена в источник питания через проводник GND. Сброс энергии в блокировочный конденсатор повышает напряжение на нем, и, по сути, кратковременно создает на схеме локальную область с другим потенциалом. Устранение этого дисбаланса является очень важным и осуществляется при помощи заземления. (Здесь под заземлением понимается не подключение к массе нашей планеты, а соединение с общим проводом источника питания. — Прим. перев.)

Печатные платы часто имеют отдельные заземленные слои, которые очень эффективны для соединения элементов с общим проводником источника питания. Хорошо проработанная разводка земли имеет первостепенное значение для сброса избыточной энергии. Но будьте осторожны, в сплошном заземленном слое могут возникать вихревые токи, а многочисленные связи с общим проводом — образовывать т.н. земляные петли.

Всегда будет хорошей идеей обратиться к знакомому разработчику со стажем. Большинство ошибок уже было кем-либо допушено раньше, и нет никакой необходимости повторять их до бесконечности.

Источник