Меню

Блок питания и источник питания это одно и тоже

Что такое источник питания, его типы, характеристики применительно к электроустановкам

Источник питания (power source) — это электрическое оборудование, предназначенное для производства, аккумулирования электрической энергии или изменения её характеристик (определение согласно ГОСТ 30331.1-2013).

Источником питания в распределительной электрической сети (см. рисунок 1 ниже) является трансформатор, установленный на понижающей трансформаторной подстанции. Источниками питания также могут быть: местная электростанция, отдельный электрогенератор малой мощности, приводимый в действие двигателем внутреннего сгорания, и даже разделительный трансформатор, на основе которого в части электроустановки здания реализуют систему IT.

Характеристики доступных источников питания

При проектировании электрических установок в соответствии с комплексом стандартов IEC 60364 необходимо знать характеристики источников питания. Для того чтобы спроектировать безопасную электроустановку, соответствующую требованиям комплекса стандартов IEC 60364, необходимо получить соответствующую информацию от оператора распределительной электрической сети. Характеристики источников питания должны быть включены в проектную и эксплуатационную документацию электрических установок. Если оператор электрической сети изменяет характеристики источников питания, это может повлиять на безопасность электроустановки.

Приведем эти характеристики (согласно ГОСТ 30331.1-2013):

  • Род электрического тока: переменный и (или) постоянный.
  • Виды проводников, применяемых в электрических цепях электроустановки:

— переменного тока: фазный (линейный) проводник, нейтральный проводник, защитный проводник;

— постоянного тока: полюсный (линейный) проводник, средний проводник, защитный проводник.

Примечание — В одном проводнике, например — в PEN-, РЕМ- или PEL-проводнике, могут быть объединены функции, выполняемые несколькими проводниками.

— напряжение и допустимые отклонения напряжения;

— потери напряжения, колебания напряжения и падения напряжения;

— частота и допустимые отклонения частоты;

— максимальный допустимый ток;

— полное сопротивление петли замыкания на землю до ввода в электроустановку;

— ожидаемые токи короткого замыкания.

Стандартные значения напряжения и частоты приведены в IEC 60038.

Защитными мерами предосторожности, присущими источнику питания, являются, например, заземление нейтрали в электрической системе переменного тока или заземление средней части, находящейся под напряжением, в электрической системе постоянного тока.

При этом, приведенные ниже характеристики любого применяемого источника питания и обычный диапазон этих характеристик, если необходимо должны быть определены путем расчета, измерения, сбора материала или проверки:

  • номинальное (ые) напряжение (ия);
  • род тока и его частота;
  • ожидаемый ток короткого замыкания на вводе электроустановки;
  • полное сопротивление петли замыкания на землю той части электрической системы, которая расположена снаружи электроустановки;
  • соответствие требованиям, предъявляемым электроустановкой, включая — обеспечение максимальной нагрузки;
  • тип и номинальные характеристики устройства защиты от сверхтока, установленного на вводе электроустановки.

Эти характеристики следует оценивать как для внешнего, так и для внутреннего источников питания. Требования распространяются на основные источники питания, на источники питания систем безопасности и резервные источники питания.

Дополнительные типы источников питания

Помимо основного источника питания также выделят резервный электрический источник питания и электрический источник питания для систем безопасности. Приведем их определения и примеры.

Резервный электрический источник питания — это электрический источник питания, предназначенный для поддержания питания электрической установки или ее частей, или части в случае перерыва нормального питания, но в иных целях, чем безопасность.

Электрический источник питания для систем безопасности — это электрический источник питания, предназначенный для использования в качестве части системы электрического питания для систем безопасности.

Если наличие систем безопасности, имеющих отношение к противопожарным мероприятиям и другим условиям аварийной эвакуации из зданий, требуется, например, органами управления и (или) если обеспечение резервного питания требуется административным лицом, устанавливающим технические требования к электроустановке, характеристики источников питания для систем безопасности и (или) резервных систем должны определяться для каждого в отдельности. Такие источники питания должны иметь соответствующую мощность, надежность, номинальные характеристики и соответствующее время переключения для работы указанного вида.

Примечание 1 — Необходимость установки систем безопасности и их характеристики, как правило, регламентируют уполномоченные органы управления, требования которых следует соблюдать.

Примечание 2 — Примерами систем безопасности являются: системы обнаружения пожара, оповещения и управления эвакуацией людей при пожаре, аварийного освещения на путях эвакуации людей, аварийной вентиляции и противодымной защиты, внутреннего противопожарного водопровода, установки для пожарных насосов, лифты для пожарных команд, оборудование для отвода дыма и тепла, ответственное медицинское оборудование.

Источниками питания для систем безопасности могут быть:

  • аккумуляторные батареи;
  • гальванические батареи;
  • генераторные установки, независимые от источника питания, применяемого в нормальном режиме;
  • отдельная линия электропередачи распределительной электрической сети, фактически независимая от линии электропередачи, используемой в нормальном режиме

Источником питания системы безопасности может быть:

  • неавтоматический источник питания, запуск которого осуществляется оператором;
  • автоматический источник питания, запуск которого осуществляется независимо от оператора.

В зависимости от времени переключения автоматические источники питания классифицируют следующим образом:

  • без перерыва питания: автоматический источник питания может обеспечить непрерывное питание при заданных условиях во время переходного периода, например, при изменениях напряжения и частоты;
  • с очень коротким перерывом питания: автоматический источник питания может обеспечивать питание в течение 0,15 с;
  • с коротким перерывом питания: автоматический источник питания может обеспечивать питание в течение 0,5 с;
  • со средним перерывом питания: автоматический источник питания может обеспечивать питание в течение 15 с;
  • с продолжительным перерывом питания: автоматический источник питания может обеспечивать питание за промежуток времени, превышающий 15 с.

Источник



Что такое блок питания.

Блок питания – это устройство, которое используется для создания напряжения, необходимого для работы компьютера, из напряжения домашней электросети. В России блок питания (в дальнейшем просто БП) преобразует переменный электрический ток домашней электрической сети напряжением 220 В и частотой 50 Гц в заданный постоянный ток. В разных странах стандарты домашней электросети отличаются. В США, к примеру, в дома обычных жителей подаётся переменный ток напряжением 120 В и частотой 60 Гц.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника.

Виды блоков питания и их различия.

Существуют два основных вида блоков питания: трансформаторные и импульсные. Ниже будут рассмотрены их устройства и различия, а также преимущества и недостатки.

Трансформаторный блок питания и его устройство.

Этот вид блока питания является классическим и, одновременно, простейшим. Ниже представлена его схема с двухполероудным выпрямителем:

Важнейшим элементом этого вида БП является понижающий трансформатор (вместо которого может быть использован автотрансформатор). Первичная обводка этого элемента как раз и рассчитана на входящее сетевое напряжение. Ещё одна важная деталь такого БП – это выпрямитель. Он выполняет функцию преобразования переменного напряжения в однонаправленное и пульсирующее постоянное. В подавляющем большинстве случаев используются однополупериодный выпрямитель или двухполупериодный. Первый состоит из одного диода, а последний из четырёх диодов, которые образуют диодный мост. В некоторых случаях могут использоваться и другие схемы этого элемента, например, в трёхфазных выпрямителях или выпрямителях с удвоенным напряжением. Последней важной деталью трансформаторного БП является фильтр, который сглаживает пульсации, создающиеся выпрямителем. Обычно эта деталь представлена конденсатором с большой ёмкостью.

Читайте также:  Блок питания для сервопривода 24в

Габариты трансформатора. Из базовых законов электротехники выводится следующая формула:

В этой формуле n – это число витков на 1 вольт, f – частота переменного тока, S – площадь сечения магнитопровода, B – индукция магнитного поля в магнитопроводе.

Формула описывает не мгновенное значение, а амплитуду B!

Практически величина индукции магнитного поля (B) ограничена гистерезисом в сердечнике. Это приводит к перегревам трансформатора и потерям на перемагничивании.

Если частота переменного тока(f) равна 50 Гц, то изменяемыми параметрами при конструировании трансформатора остаются только S и n. На практике используется такая эвристика: n (в значении от 55 до 70) / S в см^2

Увеличение площади сечения магнитопровода (S) приводит к повышению габаритов и веса трансформатора. Если же понижать значение S то этим повышается значение n, что в трансформаторах небольшого размера приводит к снижению сечения провода (в противном случае обмотка не поместится на сердечнике)

При увеличении значения n и уменьшения площади сечения происходит значительное увеличении активного сопротивления обмотки. В трансформаторах с малой мощностью на это можно не обращать внимания, поскольку ток, проходящий через обмотку, невелик. Однако, при повышении мощности ток, проходящий через обмотку, увеличивается, а это вместе с высоким сопротивлением обмотки приводит к рассеиванию значительной тепловой мощности.

Всё вышесказанное приводит к тому, что стандартной частоте 50 Гц трансформатор большой мощности (необходимой для питания компьютера) может быть сконструирован только как устройство, имеющее большой вес и габариты.

В современных БП идут по другому пути – увеличивания значения f, которое достигается использованием импульсных блоков питания. Такие БП намного легче и в значительной степени меньше по габаритам, чем трансформаторные. Также импульсные БП не столь требовательны к входному напряжению и частоте.

Преимущества трансформаторных БП

  • Простота изделия;
  • Надёжность конструкции;
  • Доступность элементов;
  • Отсутствие создаваемых радиопомех.

Недостатки трансформаторных БП

  • Большой вес и габариты, которые увеличиваются вместе с мощностью;
  • Металлоёмкость;
  • Необходимость компромисса между снижением КПД и стабильностью выходного напряжения.

Импульсный БП и его устройство.

Ниже представлена схема одноконтактного импульсного БП (эта схема является простейшей):

Фактически блоки питания импульсного вида являются инверторной системой. В этом БП входящая в него электроэнергия сначала выпрямляется (т. е. образуется постоянный электрический ток), а после этого преобразуется в прямоугольные импульсы определённой частоты и скважности. После этого эти прямоугольные импульсы на трансформатор (в случае если конструкция БП включает в себя гальваническую развязку) или же сразу на выходной ФНЧ (в случае если отсутствует гальваническая развязка). Из-за того, что в импульсных БП с ростом частоты повышается эффективность работы трансформатора и в значительной степени снижается требование к сечению сердечника, в них могут применяться гораздо более малогабаритные трансформаторы чем в классических решениях.

В большинстве случаев сердечник трансформатора импульсного вида может быть выполнен из ферримагнитных материалов, в отличии от низкочастотных трансформаторах, в которых используется электротехническая сталь.

Стабилизация напряжения в импульсных блоках питания обеспечивается путём отрицательной обратной связи. Она позволяет поддерживать выходное напряжение на относительно постоянном уровне. Такая связь может быть сконструирована различными способами. В случае наличия в конструкции БП гальванической развязки чаще всего используют способ использования связи посредством одной из выходных обмоток трансформатора или же способ оптрона. Скважность на выходе ШИМ-контроллера зависит от сигнала обратной связи, который, в свою очередь, зависит от выходного напряжения. В том случае, если развязка в БП не предусмотрена, используется обычный резистивный делитель напряжения. Благодаря этому импульсные блоки питания могут поддерживать стабильное выходное напряжение.

Достоинства импульсных БП.

  • Значительно меньший вес и габариты (это достигается благодаря тому, что при повышении частоты можно использовать трансформаторы с меньшими габаритами при одинаковой мощности. Большинство линейных стабилизаторов производятся в большинстве своём из мощных низкочастотных силовых трансформаторов и радиаторов, которые работают в линейном режиме;
  • Намного более высоким КПД (до 98%). Такой высокий коэффициент полезного действия достигается благодаря тому, что большую часть времени ключевые элементы находятся в устойчивом состоянии (а потери возникают во время включения/выключения ключевых элементов);
  • Меньшей стоимостью (это преимущество было достигнуто благодаря повсеместному выпуску унифицированной элементной базы и разработке транзисторов повышенной мощности);
  • Надёжностью наравне с линейными стабилизаторами;
  • Большим диапазоном входной частоты и напряжения электрической энергии. Благодаря этому один и тот же БП может использоваться в различных странах мира с различными стандартами домашней электрической сети;
  • Наличие защиты от непредвиденных ситуаций (короткое замыкание).

Недостатки импульсных БП

  • Затруднение ремонта БП вследствие того, что большая часть схемы работает в отсутствии гальванической развязки электросети
  • Является источником высокочастотных помех. Этот недостаток выходит из самого принципа работы импульсных БП. Из-за него производителям блоков питания приходится предпринимать меры шумоподавления, которые, в большинстве случаев, не могут полностью устранить данную проблему
  • Эффект гармоник кратный трём (при наличии корректоров фактора мощности и фильтров данный недостаток неактуален)

Источник

Источник питания. Принцип работы и характеристики. Аккумуляторы и блоки бесперебойного питания

Источник питания – это специальное устройство, которое обеспечивает электропитанием различные потребители энергии. Источники питания подразделяются на первичные и вторичные.

К первой группе относятся преобразователи. Основное их назначение – преобразовывать любой вид энергии в электрическую. То есть первичный источник питания является генератором электрической энергии.

Первичные источники питания включают в свой состав химические источники тока (гальванические элементы, топливные элементы, аккумуляторы, редокси-элементы) и прочие источники тока (фотоэлектрические преобразователи, электромеханические источники тока, термоэлектрические преобразователи, МГД-генераторы, радиоизотопные источники энергии).

Вторичные источники преобразуют электрическую энергию. Они позволяют получить электропитание для различных устройств с требуемыми параметрами. В эту группу входят трансформаторы и автотрансформаторы, стабилизаторы напряжения, стабилизаторы тока, импульсные преобразователи, вибропреобразователи, инверторы, умформеры.

Выбор блока питания(БП)

При выборе или разработке БП следует учитывать условия эксплуатации, характер нагрузки, требования к безопасности и т. д. Параметры должны соответствовать требованиям питаемого прибора. Желательно наличие устройства защиты, небольшой вес и габариты.

Источник питания является частью электронной аппаратуры, поэтому выход за пределы допуска любого из его параметров может привести к неустойчивой работе или отказу всего устройства.

Основные типы вторичных источников питания

Сетевые БП входят в состав любого радиоэлектронного устройства. Они подразделяются на следующие типы:
— бестрансформаторные;
— линейные;
— импульсные.

Бестрансформаторные

Эти устройства очень просты, дешевы, не требуют настройки. Схема источника питания состоит всего из нескольких элементов: входной цепи, выпрямителя и параметрического стабилизатора. Устройства рассчитаны на ток до сотен мА. Имеют малый вес и габариты. Потребитель питается от сети через гасящий конденсатор или резистор и постоянно находится под сетевым напряжением. Поэтому при работе следует соблюдать осторожность: нельзя касаться неизолированных элементов.

Читайте также:  Лабораторный блок питания от касьяна

Линейные

Начали применять в радиоэлектронной технике в начале 20 века. К настоящему времени устарели и применяются в основном в дешевых конструкциях из-за присущих им недостатков: большого веса и габаритов, низкого КПД. Преимуществами линейных источников питания являются простота и высокая надежность, низкий уровень шумов и излучений.

Принцип действия блока питания чрезвычайно прост. Входное напряжение поступает на трансформатор, понижается до требуемой величины, выпрямляется, сглаживается конденсатором и подается на вход стабилизатора, который состоит из транзистора и схемы управления. «Излишки» напряжения компенсируются регулирующим транзистором. Поэтому на нем выделяется значительная мощность в виде тепла. Линейный источник питания целесообразно применять при токах потребления до 1А.

Импульсные БП

В электронных устройствах, которые потребляют ток от 1 до 5 ампер, используют импульсные блоки питания. Принцип действия таких устройств основан на преобразовании сетевого напряжения в переменный ток высокой частоты. Высокочастотные трансформаторы имеют небольшой вес и габариты. Поэтому импульсные источники питания значительно меньше и легче линейных. Отличительной особенностью этих устройств является большой уровень паразитных излучений, что приводит к необходимости экранирования и фильтрации высокочастотных помех.

Особое место занимают импульсные источники питания с бестрансформаторным входом и высокочастотным преобразователем, рассчитанным на работу с частотами 20-400 кгц. Коэффициент полезного действия этих устройств достигает 90% и более. Но пока они не нашли широкого применения из-за высокой стоимости, сложности устройства, низкой надежности, большого уровня помех.

Особенности источников питания постоянного тока

Эти устройства предназначены для получения стабильного постоянного напряжения или тока. Соответственно, они имеют режимы стабилизации как по току, так и по напряжению. То есть при максимальном изменении тока напряжение практически не меняется, и аналогично при значительных колебаниях напряжения величина тока остается постоянной.

Имеется режим отсечки тока. В этом режиме с питаемого устройства снимается напряжение, если ток превышает установленную величину.
Современный источник питания имеет несколько регулируемых выходов и дополнительные выходы на фиксированные напряжения (3,3V, 5V, 12V …).

Управление работой БП осуществляется встроенным микроконтроллером. Режимы работы и отдельные параметры записываются в ячейки памяти.
Мощность источника питания зависит от назначения прибора и решаемых задач. Предприятия-изготовители выпускают приборы малой (до 100 Вт), средней (до 300 Вт) и большой (свыше 300 Вт) мощности.

Чем отличаются источники бесперебойного и резервного питания

Источник резервного питания подключается к аппаратуре лишь при пропадании напряжения в сети. Подключение может осуществляться в автоматическом или ручном режиме.

Источники бесперебойного питания (ИБП) используются в аппаратуре, в которой отсутствует сетевой блок питания. Они подключены постоянно и обеспечивают нагрузку стабильным питанием. ИБП является одновременно основным и резервным источником питания. При пропадании напряжения в сети он автоматически переключается на резервное питание.

В состав источника бесперебойного питания входят сетевой блок питания, источник резервного питания (аккумуляторная батарея), зарядное устройство, схема коммутации.

Основные виды ИБП, особенности применения

Периодические внезапные отключения электроэнергии стали обычным явлением в нашей жизни. К сожалению, такие скачки напряжения существенно сокращают жизнь бытовой техники, приводят к потере электронных данных.

Избежать неприятных последствий помогают источники бесперебойного питания. Современный рынок представляет широкий ассортимент этих приборов. Принцип работы весьма прост: устройство включают в электросеть, а к нему подключают бытовые приборы. Если сеть функционирует нормально, бесперебойник только накапливает энергию. При пропадании электроэнергии в работу включается ИБП.

ИБП бывают следующих видов:

• Резервный ИБП. Подходит для офисной техники, компьютеров, бытового применения. КПД около 99%. Это хороший источник бесперебойного питания. Цена вполне доступная. К сожалению, такие бесперебойники работают не только при отключении электричества, но и при изменении его параметров, поэтому износ аккумуляторной батареи увеличивается. В этом случае можно предложить использовать дополнительный внешний источник питания.

• Линейно-интерактивные ИБП. Работают только в случае полного отключения питания. Их можно применять для офисного оборудования, отопительных котлов, вычислительной техники.

• ИБП с двойным преобразованием. Это самый дорогой источник бесперебойного питания. Цена его превышает 50 тыс. рублей, но он того стоит. ИБП с двойным преобразованием доводят показания сети до отличных параметров. Время переключения при сбоях — меньше 1 мс. Используются они для питания медицинской техники, серверов, высокочувствительного оборудования.

Замена аккумуляторных батарей ИБП

Аккумуляторные батареи – источники питания тока – являются самым слабым элементом ИБП. 90% неисправностей ИБП связано с выходом из строя аккумулятора. В ИБП, как правило, устанавливают свинцовые необслуживаемые герметизированные аккумуляторы. Электролитом служит гелеобразная масса на основе серной кислоты. Это один из самых дешевых видов аккумуляторов. В то же время они достаточно эффективны (малое внутреннее сопротивление, низкий саморазряд).

Свинцовые аккумуляторы не допускают сильной разрядки. В этом случае они быстро теряют емкость. Срок их службы не превышает 5 лет. Высокая температура и частые разряды заметно сокращают срок службы аккумулятора.
Критерии выбора аккумуляторов для ИБП:
• Аккумулятор должен иметь требуемые напряжение и размеры.
• Желательно устанавливать аккумуляторы от известных производителей.
• Для ИБП годятся только специально предназначенные для них аккумуляторные батареи или батареи определенных марок.

Источник

Разница между источником питания и блоком питания

Мощность определяется как энергия, потребляемая или поставленная за определенный период. Поскольку энергия не может быть создана согласно теории сохранения энергии, она должна быть преобразована в пот

Содержание:

  • Ключевое различие — источник питания против источника питания
  • Что такое источник питания?
  • Что такое блок питания?
  • В чем разница между источником питания и источником питания?
  • Резюме — источник питания против источника питания

Ключевое различие — источник питания против источника питания

Мощность определяется как энергия, потребляемая или поставленная за определенный период. Поскольку энергия не может быть создана согласно теории сохранения энергии, она должна быть преобразована в потребляемую форму из доступного источника, чтобы использовать энергию. Электричество — одна из наиболее часто используемых форм энергии. Чтобы электричество использовалось, оно должно подаваться или подаваться к прибору от источника питания, как в телевизоре, который подключается к основной электрической линии через розетку. Но ни розетка, ни основная линия не производят электричество; электричество передается в розетку от внешнего источника энергии. Таким образом, ключевое различие между источником питания и блоком питания можно определить следующим образом: источник питания используется для обеспечения питания устройства, в то время как источник питания — это источник, из которого вырабатывается энергия.

Читайте также:  Работа автомагнитолы от блока питания

СОДЕРЖАНИЕ
1. Обзор и основные отличия
2. Что такое источник питания
3. Что такое блок питания
4. Параллельное сравнение — источник питания и источник питания
5. Резюме

Что такое источник питания?

Источник энергии — это место, откуда возникает энергия. Поскольку энергия не может быть создана, во Вселенной нет источника всей энергии, но мы можем идентифицировать родительский источник в другой форме энергии. Например, источником энергии Земли может быть солнце. Точно так же источник, из которого производится электричество, является источником электричества.

Электроэнергия производится из разных источников. В глобальном масштабе основными источниками производства электроэнергии являются уголь, природный газ, гидроэнергетика и атомная энергия. Кроме того, для производства также используются такие источники, как углеводородное топливо, солнечная энергия, приливные волны, топливо из биомассы, ветер и геотермальная энергия. Доступность источников, стоимость единицы продукции, инфраструктуры и т. Д. Учитываются при выборе источников для массового производства электроэнергии. Кроме того, химические соединения используются в качестве источника в батареях, таких как литий-ионные батареи, никель-кадмиевые батареи, автомобильные батареи и т. Д.

Некоторые источники, такие как ядерная энергия и уголь, используются для выработки тепла, которое кипит вода для производства пара, который запускает паровую турбину. Турбина используется с генератором, который преобразует кинетическую энергию в электричество. Во всех вышеперечисленных случаях, за исключением солнечной энергии, для производства электроэнергии используется генератор. Солнечное электричество, производимое фотоэлектрическими панелями, — единственный метод, не требующий механического преобразования энергии.

Что такое блок питания?

Источник питания — это устройство или метод, обеспечивающий электричеством устройство. Он не производит электричество, но получает электричество от существующей линии электропередачи или генератора и подает контролируемое или неконтролируемое электричество на устройство. Обычная электрическая розетка, подключенная к линиям электропередач, может рассматриваться как простой источник питания для бытового прибора. В повседневном использовании обычно используются самые разные источники питания.

Блок питания переменного тока — это один из типов блоков питания, который используется для преобразования напряжений. Они используются в электроприборах, поэтому их можно использовать с различным напряжением питания в разных странах. Источник питания постоянного тока — это еще один тип источника питания, который получает входной сигнал от сети переменного тока для вывода постоянного напряжения на электронные устройства. Источники питания постоянного тока также используются в бытовой электронике. Источники питания переменного и постоянного тока с различными параметрами широко используются в электрических и электронных испытательных лабораториях.

Источники питания делятся еще на два типа: источники напряжения и источники тока. Источник напряжения — это блок питания, который подает питание с постоянным напряжением, независимо от тока, потребляемого нагрузкой. Все вышеперечисленные примеры можно рассматривать как источники напряжения, поскольку подаваемое напряжение всегда постоянно. Например, напряжение питания для розетки всегда одинаковое — 230 В. С другой стороны, источники тока подают постоянный ток в устройство независимо от напряжения между двумя клеммами. Одним из примеров источника тока является источник питания при электродуговой сварке. Напряжение электрической дуги изменяется в зависимости от длины дуги, но для того, чтобы сварка на поверхности была равномерной, источник питания поддерживает постоянным ток. Некоторые другие типы используемых источников питания — это импульсный источник питания, программируемый источник питания и источник бесперебойного питания. Они могут включать в себя регулятор напряжения, преобразователь частоты, батареи, переключатели и т. Д. Для их функции управления выходным напряжением желаемым образом.

В чем разница между источником питания и источником питания?

Источник питания против источника питания

Резюме — источник питания против источника питания

Есть источники энергии, которые нельзя использовать напрямую для повседневных задач. Однако эти формы энергии можно преобразовать в пригодную для использования форму разными способами. Конвертируемая энергия содержит источники энергии или источники энергии, которые подвергаются различным процессам для производства потребляемой энергии. Напротив, источники питания в дальнейшем используются для подачи электроэнергии к устройствам, получая энергию, которая была произведена от источников питания. В этом основное отличие источника питания от блока питания. Источники питания выполняют различные функции, облегчая работу подключенных электрических и электронных устройств.

Ссылка:
1. «Электроснабжение». Википедия. Фонд Викимедиа, 25 мая 2017 г. Web. 26 мая 2017.

Изображение предоставлено:
1. «Круговая диаграмма мирового производства электроэнергии» от Delphi234 — собственная работа (CC0) через Commons Wikimedia
2. «ACtoDCpowersupply» Яун Хименес из английской Википедии (CC BY 3.0) через Commons Wikimedia

Источник

чем отличается блок питания от зарядного устройства

чем отличается блок питания от зарядного устройстваАдаптер питания, он же блок питания выполняет свою задачу: из переменного напряжения сети 220 вольт получить постоянное напряжение 12 вольт (или 5v или 6v). Это напряжение не должно изменятся в зависимости от протекающего тока нагрузки. Это стабилизированный источник питания. Еще раз — на выходе его ВСЕГДА 12 вольт в пределах тока, на который он рассчитан. К примеру на фото слева БП рассчитан на ток до 1.5 ампера, свыше, он сгорит или если «умный» отключится по перегреву.

Зарядное устройство к примеру на 12 вольт, на своем выходе имеет в зависимости от стадии зарядки 14,6 вольта. При этом ток ограничен значением, которое написано на ЗУ.

Почему 14.6 вольта? Чтобы ток потек в направлении аккумулятора нужна разность потенциалов между зарядкой и емкостью (аккумулятором). Если АКБ на 12 вольт, то заряжать его надо большим потенциалом (напряжением). Иначе ток не потечет в него (образно говоря).

Блок питания, выдающий ровно 12 вольт никогда не зарядит батарею на те же 12 вольт. Ток не потечет, нет разности потенциалов. Если батарея сильно разряжена и ее напряжение меньше 12 вольт, ДА Блок питания ее подзарядит, этим можно воспользоваться, если под рукой не настоящего ЗУ, НО уровень заряженности будет процентов 10-15 от номинальной емкости батареи, не более.

Напряжение на полностью заряженной батареи должно быть не 12 вольт, а 12,6-12,8 вольт. Батарея, на клеммах которой 12.0 — 12.3 вольт срочно требует зарядки — иначе, если это AGM батарея, теряется емкость (происходит необратимый процесс сульфатации пластин).

Зарядные устройства сложнее технически, поэтому дороже, чем адаптеры. Поэтому часто поставщики фонарей или детских машинок комплектуют свои изделия именно адаптерами, причем не стабилизированными. Результатом является снижение срока службы АКБ в 3-4 раза от систематического недозаряда.

Мы рекомендуем недорогие зарядные устройства для AGM и GEL, которые действительно дадут реальный срок службы аккумулятору.

Источник