Меню

Блок питания для высоковольтного трансформатора



Высоковольтный блок питания своими руками

Изготовление самоделок такого рода требует особых умений и знаний. Если это ваша первая самоделка, подобного вида, следует обратиться за помощью к специалисту (для собственной безопасности).

Статья лишь демонстрирует процесс изготовление блока питания. Автор статьи не несет ответственности за любой ущерб или травмы, вызванные использованием данной информации.

Шаг 1: Вступление

Этот блок питания был разработан для подачи постоянного напряжения величиной около 50 кВ. Он легко может быть преобразован в регулируемой БП, путем подсоединения реостата (в случае использования трансформатора) или добавления дополнительных схем для регулирования мощности.

Общая стоимость около 15 €, так как большинство частей (трансформатор, мостовой выпрямитель, радиатор, переключатели, кабели …) были взяты из старой техники, единственные части, которые были приобретены – это таймер 555, разъемы и конденсаторы.

Шаг 2: Материалы

  • Трансформатор+выпрямительный мост+конденсаторы;
  • Переключатели и разъемы;
  • Термоусадочные трубки;
  • Макетная и печатная плата;
  • 555 таймер;
  • 8 контактное гнездо;
  • 7812 (если входящее питание в 555 > чем 14,5В или ниже, чем 35В);
  • Малый радиатор для 7812 (при необходимости);
  • 2*100 нФ;
  • 1*1 мкФ;
  • 1*10нФ;
  • 1*68 мкФ ( или 100 мкФ);
  • 2*4148 диода;
  • 3*10k;
  • (1 МОП) 10R;
  • 1*680R;
  • 1*470R;
  • 1*10k переменный резистор;
  • 1*100k переменный резистор;
  • 2* ручки для переменных резисторов;
  • 1*2N2222 и 2N2907 (или другая NPN-PNP пара);
  • 1*Инфракрасный датчик;
  • 1*Инфракрасный светодиод;
  • 1*BC547(или аналогичный: 2N2222или 2N3904);
  • 2* изолирующих разъема высокого напряжение;
  • 3* МОП IRF540N, но рекомендую 1*IRFP260;
  • Радиатор для транзисторов(и вентилятор, при необходимости);
  • Кнопки;
  • Трансформатор для строчной развертки от старого телевизора или монитора компьютера;
  • Толстый медный кабель(около1 метра);
  • Эпоксидный клей.

Шаг 3: Расчеты

Единственный расчет, который необходимо выполнить – расчет значение конденсаторов (в случае, если вы используете трансформатор).

В моем случае использовал 20000 uF. Возможно следует добавить 10000uF или 20000uF, чтобы увидеть эффект на выходе. Пульсация созданная в связи с изменением токов может изменить корректную работу управления, в результате снизится эффективность и уменьшится дуга.

Источник

Высоковольтный БП (0-350V, 0.5А max) с вольт-амперметром на PIC16F690

Схема

Такой блок был взят для переделки

Довольно хорошо подошла вот такая схема

С платы блока ATX (с микросхемой TL494) выпаяны детали, относящиеся к ножкам 1,2,15,16. Также были удалены все вторичные выпрямители. Цепи управления и регулирования микросхемы TL494 переделаны согласно приведенной ниже схеме

Питание SB (Дежурный режим) изменено на 8,5V, чтобы хватило для вентилятора. Для этого был заменен резистор в верхнем плече оптрона с 4,7k на 11k.

Защита по превышению мощности не использовалась, так как в ней не было необходимости.
Выходной выпрямитель переделан по мостовой схеме.
В качестве нелинейной нагрузки применена схема на транзисторе VT3. Сопротивление ее зависит от выходного напряжения и поэтому становится возможным регулировка напряжения и тока нуля при сохранении высокого значения КПД.
Для обеспечения устойчивой работы микросхемы TL494 необходимо подобрать цепи коррекции R13, R14, C7, C9, C11.

Особого внимания требует шунт, провода для регулировки и измерения должны подключатся непосредственно к его выводам, так как напряжение, снимаемое с него невелико. На схеме эти подключения показаны фиолетовыми стрелками. Измеряемое напряжение для цепи регулирования снимается с делителя с коррекцией (R16, C10) для устранения самовозбуждения в цепях управления.
Верхний предел установки напряжения подбираются резисторами R17 и R18. Верхний предел установки тока подбирается резистором R11.

Конструкция и детали

Трансформатор выходной (Ш10×13, Н окна — 19 мм, ширина окна 7 мм) был разобран и перемотан.
Было снято:
20 вит 0,75 мм
2×4 вит 0,9 мм
2×3 вит 0,72 мм
2×3 вит 0,72 мм

Намотано:
170 вит 0,35 мм
20 вит 0,75 мм

Дроссель L1 (D — 23 мм) (также был перемотан). Сняты все обмотки и намотана обмотка из 600 витков провода 0,25 мм, из расчета 2 вит на Вольт выходного напряжения. Полученная индуктивность дросселя составила 29,62 мГн.

Выходной мост собран на высоковольтных диодах UF4007. На выходе моста установлен еще один диод UF4007 для обеспечения непрерывного тока через дроссель и облегчения переключения диодов моста.

Вентилятор монтируется наоборот – теперь он будет нагнетать холодный воздух внутрь БП: на радиатор и трансформатор.

Для измерения тока и напряжения применен вольтметр-амперметр на микросхеме PIC16F690 со шкалами для вольтметра до 400 Вольт и для измерения тока со шкалой до 600 миллиампер. Схема, плата и программа находятся в разделе «Файлы». Моя датагорская статья по теме: «Вольтметр-амперметр переменного тока с вычислением мощности на PIC16F690».

Конструктивно все элементы размещены в корпусе блока ATX. Радиатор с диодами удален, так как диоды моста в нем не нуждаются. Сетевые разъемы убраны и на их месте установлен выключатель и выходные гнезда. Сбоку на крышке блока находятся резисторы установки напряжения и тока и индикатор вольтметра-амперметра. Закреплены они на фальшпанели с внутренней стороны крышки.

Источник

Источник высокого напряжения из ТДКС

Сейчас очень часто можно найти на помойке устаревшие кинескопные телевизоры, с развитием технологий они стаи не актуальны, поэтому теперь от них в основном избавляются. Пожалуй, каждый видел на задней стенке такого телевизора надпись в духе «Высокое напряжение. Не открывать». И висит она там не с проста, ведь в каждом телевизоре с кинескопом имеется весьма занятная вещица, называемая ТДКС. Аббревиатура расшифровывается как «трансформатор диодно-каскадный строчный», в телевизоре он служит, в первую очередь, для формирования высокого напряжения для питания кинескопа. На выходе такого трансформатора можно получить постоянное напряжение величиной аж 15-20 кВ. Переменное напряжение с высоковольтной катушки в таком трансформаторе увеличивается и выпрямляется с помощью встроенного диодно-конденсаторного умножителя.
Выглядят трансформаторы ТДКС вот так:

Толстый красный провод, отходящий от верхушки трансформатора, как не трудно догадаться, и предназначен для снятия с него высокого напряжения. Для того, чтобы запустить такой трансформатор, необходимо намотать на него свою первичную обмотку и собрать не сложную схему, которая зовётся ZVS-драйвером.

Схема

Схема представлена ниже:

Эта же схема в другом графическом представлении:

Несколько слов о схеме. Ключевое её звено – полевые транзисторы IRF250, сюда хорошо подойдут так же IRF260. Вместо них можно ставить и другие аналогичные полевые транзисторы, но лучше всего в этой схеме себя зарекомендовали именно эти. Между затвором каждого из транзисторов и минусом схемы устанавливаются стабилитроны на напряжение 12-18 вольт, я поставил стабилитроны BZV85-C15, на 15 вольт. Также к каждому из затворов подключаются ультрабыстрые диоды, например, UF4007 или HER108. Между стоками транзисторов подключается конденсатор 0,68 мкФ на напряжение не меньше 250 вольт. Его ёмкость не так критична, можно спокойно ставить конденсаторы в диапазоне 0,5-1 мкФ. Через этот конденсатор протекают довольно значительные токи, поэтому возможен его нагрев. Желательно поставить несколько конденсаторов параллельно, либо же взять конденсатор на большее напряжение, 400-600 вольт. На схеме присутствует дроссель, номинал которого также не сильно критичен и может находиться в пределах 47 – 200 мкГн. Можно намотать 30-40 витков провода на ферритовом колечке, работать будет в любом случае.

Читайте также:  Защита если блок питания сгорит

Изготовление

Если дроссель сильно нагревается, значит следует убавить количество витков, либо взять провод сечением потолще. Главное преимущество схемы – большой КПД, ведь транзисторы в ней почти не нагреваются, но, тем не менее, их стоит установить на небольшой радиатор, для надёжности. При установке обоих транзисторов на общий радиатор обязательно нужно использовать теплопроводящую изолирующую прокладку, т.к. металлическая спинка транзистора соединена с его стоком. Напряжение питания схемы лежит в пределах 12 – 36 вольт, при напряжении в 12 вольт на холостом ходе схема потребляет примерно 300 мА, при горящей дуге ток повышается до 3-4 ампер. Чем больше напряжение питания, тем большее напряжение будет на выходе трансформатора.
Если внимательно присмотреться к трансформатору, то можно увидеть зазор между его корпусом и ферритовым сердечником примерно 2-5 мм. На сам сердечник нужно намотать 10-12 витков провода, желательно медного. Наматывать провод можно в любую сторону. Чем больше сечение провода, тем лучше, однако провод слишком большого сечения может не пройти в зазор. Также можно использовать эмалированную медную проволоку, она пролезет даже в самый узкий зазор. Затем необходимо сделать отвод от середины этой обмотки, оголив проводов в нужном месте, как показано на фото:

Источник

Импульсные блоки питания: принципы работы для новичков — обзор 7 правил построения схемы

Домашний мастер часто сталкивается с поломками сложной бытовой техники из-за отказов ее электрической схемы. Не всегда удается сразу выполнить такой ремонт. Часто требуются знания про импульсные блоки питания, принципы работы их составных частей.

Такие работники популярны, всегда востребованы, заслуживают уважения. Однако не все так сложно в этом вопросе, как кажется на первый взгляд.

Я выделил 7 правил, по которым работает любой ИБП, постарался объяснить их простыми словами для новичков. А что получилось — оценивайте сами.

Блоки питания — это электротехнические устройства, которые изменяют характеристики промышленной электроэнергии до уровня параметров, необходимых для работы конечных механизмов.

Они подразделяются на трансформаторные и импульсные изделия.

Силовой трансформатор понижает входное напряжение и одновременно обеспечивает гальваническую развязку между электрической энергией первичной и вторичной цепи.

Трансформаторные модули тратят значительную часть мощности на электромагнитные преобразования и нагрев, имеют повышенные габариты, вес.

Импульсные блоки питания: как работает структурная схема и взаимодействуют ее части — краткое пояснение

Правило №1 всех ИБП: чем выше рабочая частота, тем лучше. Преобразование электроэнергии выполняется не на промышленных 50 герц, а на более высоких сигналах в пределах 1÷100кГц.

За счет этого снижаются потери и общий вес всех элементов, но усложняется технология. Принципы работы импульсного блока питания помогает понять его структурная схема.

Показываю ее составные части прямоугольниками, связи стрелками, а форму выходного сигнала из каждого блока — мнемонической фигурой преобразованного напряжения (темно синий цвет сверху).

Сетевой фильтр пропускает через себя промышленную синусоиду. Одновременно он отделяет из нее все посторонние помехи.

Очищенная от помех синусоида поступает на выпрямитель со сглаживающим фильтром. Он превращает полученную гармонику в сигнал напряжения строго постоянной формы действующей величины.

Следующим этапом начинается работа инвертора. Он из постоянного стабилизированного сигнала формирует высокочастотные колебания уже не синусоидальной, а практически строго прямоугольной формы.

Преобразованная в подобный вид электрическая энергия поступает на силовой высокочастотный трансформатор, который, как и обычный аналоговый, видоизменяет ее на пониженное напряжение с увеличенным током.

После силового трансформатора наступает очередь работы выходного выпрямителя.

Заключительным звеном работает сглаживающий выходной фильтр. После него на блок управления бытового прибора поступает стабилизированное напряжение постоянной величины.

Качество работы импульсного блока поддерживается за счет создания в рабочем состоянии обратной связи, реализованной в блоке управления инвертора. Она компенсирует все посадки и броски напряжения, вызываемые колебаниями входной величины или коммутациями нагрузок.

Пример монтажа деталей показан на фотографии платы импульсного блока питания ниже.

Сетевой выпрямитель имеет в своем составе предохранитель на основе плавкой вставки, диодный мост, электромеханический фильтр, набор дросселей, конденсаторы развязки со статикой.

Накопительная емкость сглаживает пульсации.

Генератор инвертора на основе силового ключевого транзистора
в комплекте с импульсным трансформатором выдает напряжение на выходной
выпрямитель с диодами, конденсаторами и дросселями.

Оптопара в узле обратной связи обеспечивает оптическую развязку электрических сигналов.

Разберем все эти части подробнее.

Схемы сетевых фильтров импульсных и высокочастотных помех: 4 типа конструкций

Правило №2: у качественных ИБП в конструкции блока должен работать надежный фильтр в/ч сигналов.

Важно понимать, что импульсы высокой частоты играют двоякую роль:

  1. в/ч помехи могут приходить из бытовой сети в блок питания;
  2. импульсы высокочастотного тока генерируются встроенным преобразователем и выходят из него в домашнюю проводку.

Причины появления помех в бытовой сети:

  • апериодические составляющие переходных процессов, возникающие от коммутации мощных нагрузок;
  • работы близкорасположенных приборов с сильными электромагнитными полями, например, сварочных аппаратов, мощных тяговых электродвигателей, силовых трансформаторов;
  • последствия погашенных импульсов атмосферных разрядов и других факторов, включая наложение высокочастотных гармоник.

Помехи ухудшают работу радиоэлектронной аппаратуры, мобильных устройств и цифровых гаджетов. Их необходимо подавлять и блокировать внутри конструкции импульсного блока питания.

Основу фильтра составляет дроссель, выполненный двумя обмотками на одном сердечнике.

Дроссели могут быть выполнены разными габаритами, намотаны толстой или тонкой проволокой на больших или маленьких сердечниках.

Начинающему мастеру достаточно запомнить простое правило: лучше работает фильтр с дросселем большого магнитопровода, увеличенным числом витков и поперечным сечением проволоки. (Принцип: чем больше — тем и лучше.)

Дроссель обладает индуктивным сопротивлением, которое резко ограничивает высокочастотный сигнал, протекающий по проводу фазы или нуля. В то же время оно не оказывает особого влияния на ток бытовой сети.

Читайте также:  Блок питания гсм с

Работу дросселя эффективно дополняют емкостные сопротивления.

Конденсаторы подобраны так, что закорачивают ослабленные дросселем в/ч сигналы помех, направляя их на потенциал земли.

Принцип работы фильтра в/ч помех от проникновения на блок питания входных сигналов показан на картинке ниже.

Между потенциалами земли с нулем и фазой устанавливают Y конденсаторы. Их конструктивная особенность — они при пробое не способны создать внутреннее короткое замыкание и подать 220 вольт на корпус прибора.

Между цепями фазы и нуля ставят конденсаторы, способные выдерживать 400 вольт, а лучше — 630. Они обычно имеют форму параллепипеда.

Однако следует хорошо представлять, что ИБП в преобразователе напряжения сами выправляют сигнал и помехи им практически не мешают. Поэтому такая система актуальна для обычных аналоговых блоков со стабилизацией выходного сигнала.

У импульсного блока питания важно предотвратить выход в/ч помех в бытовую сеть. Эту возможность реализует другое решение.

Как видите, принцип тот же. Просто емкостные сопротивления всегда располагаются по пути движения помехи за дросселем.

Третья схема в/ч фильтра считается универсальной. Она объединила элементы первых двух. Y конденсаторы в ней просто работают с двух сторон каждого дросселя.

У самых дорогих и надежных устройств используется сложный фильтр с дополнительно подключенными дросселями и конденсаторами.

Сразу же показываю схему расположения фильтров на всех цепочках блока питания: входе и выходе.

Обратите внимание, что на кабель, выходящий из ИБП и подключаемый к электронному прибору, может быть дополнительно установлен ферритовый фильтр, состоящий из двух разъемных полуцилиндров или выполненный цельной конструкцией.

Примером его использования является импульсный блок питания ноутбука. Это уже четвертый вариант применения фильтра.

Сетевой выпрямитель напряжения: самая популярная конструкция

Правило №3: после выхода с фильтра напряжение подается на схему выпрямителя, состоящего в базовой версии из диодного моста и электролитического конденсатора.

В ходе электрического преобразования форма синусоиды, состоящая из полуволн противоположных знаков, вначале меняется на сигнал положительного направления после диодной сборки, а затем эти пульсации сглаживаются до практически постоянной амплитудной величины 311 вольт.

Такой сетевой выпрямитель напряжения заложен в работу всех блоков питания.

Преобразователь импульсного напряжения: объяснение простыми словами с поясняющими картинками

Правило №4: выпрямленный сигнал подвергается широтно-импульсной модуляции на силовом ключе под управлением ШИМ контроллера.

Силовой ключ выполняется первичной обмоткой высокочастотного трансформатора. Для эффективной трансформации в/ч импульсов до 100 килогерц конструкцию магнитопровода делают из альсифера или ферритов.

На обмотку трансформатора от цепей управления через в/ч транзистор поступают импульсы сигналов в несколько десятков килогерц.

Прямоугольные импульсы тока подаются по времени, чередуются с паузами, обозначаются единицей (1) и нулем (0).

Продолжительность протекания импульса или его ширина в каждый момент низкочастотного синусоидального напряжения соответствует его амплитуде: чем она больше, тем шире ШИМ. И наоборот.

ШИМ контроллер отслеживает величину подключенной нагрузки на выходе импульсного блока питания. По ее значению он вырабатывает импульсы, кратковременно открывающие силовой транзистор.

Если подключенная к ИБП мощность начинает возрастать, то схема управления увеличивает длительность импульсов управления, а когда она снижается, то — уменьшает.

За счет работы этой конструкции производится стабилизация напряжения на выходе блока в строго определенном диапазоне.

Импульсный трансформатор: принцип работы одного импульса в 2 такта

Правило №5: импульсный трансформатор для блока питания передает каждый ШИМ импульс за счет двух преобразований электромагнитной энергии.

Во время преобразования электрической энергии в магнитную и обратно в электрическую с пониженным напряжением обеспечивается гальваническое разделение первичных входных цепей с вторичной выходной схемой.

Каждый ШИМ импульс тока, поступающий при кратковременном открытии силового транзистора, протекает по замкнутой цепи первичной обмотки трансформатора.

Его энергия расходуется:

  1. вначале на намагничивание сердечника магнитопровода;
  2. затем на его размагничивание с протеканием тока по вторичной обмотке и дополнительной подзарядкой конденсатора.

По этому принципу каждый ШИМ импульс из первичной сети подзаряжает накопительный конденсатор.

Генераторы ИБП могут работать по простой однотактной или более сложной двухтактной технологии построения.

Однотактная схема импульсного блока питания: состав и принцип работы

На стороне 220 расположены: предохранитель, выпрямительный диодный мост, сглаживающий конденсатор, биполярный транзистор, цепочки колебательного контура и коллекторного тока, а также обмотки импульсного трансформатора.

Однотактная схема импульсного блока питания создается для передачи мощности 10÷50 ватт, не более. По ней изготавливают зарядные устройства мобильных телефонов, планшетов и других цифровых гаджетов.

В выходной цепочке трансформатора используется выпрямительный диод Д7. Он может быть включен в прямом направлении, как показано на картинке, или обратно, что важно учитывать.

При прямом включении импульсный трансформатор накапливает индуктивную энергию и передает ее в выходную цепь к подключенной нагрузке с задержкой по времени.

Если диод включен обратно, то трансформация энергии из первичной схемы во вторичную цепь происходит во время закрытого состояния транзистора.

Однотактная схема ИБП отмечается простотой конструкции, но большими амплитудами напряжения, приложенными к виткам первичной обмотки импульсного трансформатора.

Их защита осуществляется дополнительными цепочками из
резисторов R2÷R4 и конденсаторов С2, С3.

Двухтактная схема импульсного блока питания: 3 варианта исполнения

Более высокий КПД и пониженные потери мощности являются неоспоримыми преимуществами этих ИБП по сравнению с однотактными моделями.

Простейший вариант исполнения двухполупериодной методики показан на картинке.

Если в нее дополнительно подключить два диода и один сглаживающий конденсатор, то на этом же трансформаторе получается двухполярная схема.

Она распространена в усилителях мощности, работает по обратноходовому принципу. В ней через каждую емкость протекают меньшие токи, обеспечивающие повышенный ресурс конденсаторов при эксплуатации.

Продлить ресурс работы электролитических конденсаторов в ИБП можно заменой одного большой мощности несколькими составными. Ток будет распределяться по всем, что вызовет меньший нагрев. А отвод тепла с каждого отдельного происходит лучше.

Прямоходовая схема блока питания имеет в своей конструкции дроссель, который выполняет функцию накопления энергии. Для этого два диода направляют поступающие импульсы ШИМ на его вход в одной полярности.

Дроссель этих устройств изготавливается большими габаритами и устанавливается отдельно внутри платы ИБП. Он дополняет работу накопительного конденсатора.

Это наглядно видно по верхней форме сигнала, показанного осциллограммой выпрямления одного и того же блока без дросселя и с ним.

Читайте также:  600w power box блок питания

Прямоходовая схема используется в мощных блоках питания, например, внутри компьютера.

В ней выпрямлением тока занимаются диоды Шоттки. Их применяют за счет:

  • уменьшенного падения напряжения на прямом включении;
  • и повышенного быстродействия во время обработки высокочастотных импульсов.

3 схемы силовых каскадов двухтактных ИБП

По порядку сложности их исполнения генераторы выполняют по:

  • полумостовому;
  • мостовому;
  • или пушпульному принципу построения выходного каскада.

Полумостовая схема импульсного блока питания: обзор

Конденсаторы С1, С2 собраны последовательно емкостным делителем. На него и переходы коллектор-эмиттер транзисторов Т1, Т2 подается напряжение постоянного питания.

К средней точке емкостного делителя и транзисторов подключена первичная обмотка трансформатора Тр2. С ее вторичной обмотки снимается выходное напряжение генератора, которое пропорционально входному сигналу ТР1, трансформируемому на базы Т1 и Т2.

Полумостовая схема ИБП работает для нагрузок от нескольких ватт до киловатт. Ее недостатком является возможность повреждения элементов при перегрузках, что требует использования сложных защит.

Мостовая схема импульсного блока питания: краткое пояснение

Вместо емкостного делителя предыдущей технологии здесь работают транзисторы T3 и T4. Они попарно открываются совместно с Т1 и Т2: (пара Т1-Т4), (пара Т2-Т3).

Напряжение переходов эмиттер-коллектор у закрытых транзисторов не выше величины питающего напряжения, а на обмотке w1 ТР3 оно возрастает до значения U пит. За счет этого увеличивается величина КПД.

Мостовая схема сложна в наладке из-за трудностей с настройкой цепей управления транзисторов Т1÷Т4.

Пушпульная схема: важные особенности

Первичная обмотка выходного ТР2 имеет средний вывод, на который подается плюсовой потенциал источника питания, а его минус — на среднюю точку вторичной обмотки Т1.

Во время прохождения одного полупериода колебания работает один из транзисторов Т1 или Т2 и соответствующая ему часть полуобмотки трансформатора.

Здесь создается самый высокий КПД, малые пульсации и низкие помехи. Амплитудное значение импульсного напряжения на любой половине обмотки w1 ТР2 достигает величины U пит.

К напряжению перехода коллектор-эмиттер каждого транзистора добавляется ЭДС самоиндукции, и оно возрастает до 2U пит. Поэтому Т1 и Т2 надо подбирать на 600÷700 вольт.

Пушпульная схема ключевого каскада пользуется большей популярностью. Она применяется в наиболее мощных преобразователях.

Выходной выпрямитель: самое популярное устройство

Правило №6: сигнал, поступающий с выхода ИБП, выпрямляется и сглаживается.

Простейшая схема выпрямителя, состоящая из диода и накапливающего конденсатора, показана картинкой ниже.

Она может дорабатываться подключением дополнительных конденсаторов, дросселей, элементов фильтров.

Схема стабилизации напряжения: как работает

Правило №7: оптимальные условия для работы нагрузки при изменяющихся условиях эксплуатации обеспечивает принцип стабилизации вторичного напряжения.

Самая примитивная схема стабилизации выходного напряжения создается на дополнительной обмотке импульсного трансформатора.

С нее снимается напряжение и подается для корректировки величины сигнала первичной обмотки.

Лучшая стабилизация создается за счет контроля выходного сигнала с вторичной обмотки и отделения его гальванической связи через оптопару.

В ней используется светодиод, через который проходит ток, пропорциональный значению выходного напряжения. Его свечение воспринимается фототранзистором, который посылает соответствующий электрический сигнал на схему управления генератора ключевого каскада.

Повысить качество стабилизации выходного напряжения позволяет последовательное дополнение к оптопаре стабилитрона, как показано на примере микросхемы TL431 на картинке ниже.

Для закрепления материала в памяти рекомендую посмотреть видеоролик владельца Паяльник TV, который хорошо объясняет информацию про импульсные блоки питания: принципы работы на примере конкретной модели.

Надеюсь, что моя статья поможет вам выполнить ремонт ИБП своими руками за 7 шагов, которые я изложил в другой статье.

Задавайте возникшие вопросы в разделе комментариев, высказывайте свое мнение. Его будет полезно знать другим людям.

Источник

Высоковольтный блок питания

ТР1 промышленного образца, 1 обмотка рассчитана на 220В. 2 и 3 рассчитаны на 12В, 2-я (верхняя на схеме) рассчитана на отдачу 8-10 А. ТР2 состоит из высоковольтной обмотки (использована заводская с 800 витками), силовой содержащей 10-12 витков (подбирается экспериментально) и обратной связи состоящей из 28 витков, токовый трансформатор ТР3 состоит из токовой обмотки из одного витка и обмотки связи из 24 витков (для повышения чувствительности необходимо увеличить число витков)

Схема высоковольтного блока питания
Рис.1 Схема принципиальная электрическая

Технические характеристики:
Напряжение питания: 220 вольт переменного тока 50 Гц.
Напряжение на выходе регулируемое от 1 до 15 кВ*.
Регулировка выходного тока, защита от короткого замыкания.**

Правила эксплуатации:
Выставить регулятор напряжения в минимальное положение, регулятор тока в среднее, подключить киловольтметр, запустить установку подключив питание и включив, выставить необходимое напряжение, подрегулировать ограничение по току.

Техника безопасности:
Не прикасаться к цепям высокого напряжения не удостоверившись в отсутствии питания и не разрядив цепь.

При подключении/переподключении силовых цепей необходимо отключить устройство, выдернуть шнур питания, разрядить силовую цепь резистором на 3 мОм или больше в течении нескольких минут, после чего разрядить оставшееся коротким замыканием (запрещается разряжать сразу коротким замыканием во избежание порчи силовых цепей).

**В положении «Макс. ток» регулятора тока защита от короткого замыкания отключена.

Печатная плата
Рис.2 Печатная плата

Принцип действия высоковольтного блока питания

БП построен на основе распространенной ШИМ микросхеме TL494. Особенностью включения является использование обоих компараторов ошибки, что позволило сделать регулировку по току и по напряжению. Еще одной особенностью является использование микросхемы в однотактном преобразователе, по схеме двухтактного с использованием одного сигнального канала, это позволило избежать открытия силового транзистора на время более чем пол такта и избежать не полного закрытия, позволяя ему более четко срабатывать на сигнал без дополнительного ключа, что значительно снизило температуру транзистора (было установлено практическим методом). Регулировка по току осуществляется по сигналу с датчика тока, регулировка по напряжению по сигналу с дополнительной обмотки трансформатора. Микросхема ШИМ имеет отдельный источник питания не связанный с силовой цепью. Для повышения выходного напряжения применен распространенный умножитель УН8,5/25-1,2. Объединение минуса силовой цепи с минусом высоковольтной цепи позволило избежать порчи микросхемы ШИМ и силового ключа при попадании высокого напряжения на корпус управляющего устройства, а заземления корпуса прибора позволяет полностью исключить эту возможность и обезопасить пользователя.

Фото устройства
Рис.3 Макетная сборка устройства

Как видно на фотографии, плата устройства была собрана на макетной плате, устройство в данном случае питалось от АКБ, в последствии устройство было немного изменено, чтобы разместиться в корпусе компьютерного БП и стало питаться от понижающего трансформатора.

Источник