Меню

Блок питания для усилителя 1000 ватт

Блок питания для усилителя 1000 ватт

Текущее время: Пт июн 25, 2021 00:52:13

Часовой пояс: UTC + 3 часа

Блок питания для автоусилителя

Страница 1 из 1 [ Сообщений: 11 ]

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Приглашаем всех желающих 15 июля 2021 г. принять участие в бесплатном вебинаре, посвященном решениям Microchip и сервисам Microsoft для интернета вещей. На вебинаре будут рассмотрены наиболее перспективные решения Microchip, являющиеся своеобразными «кирпичиками» – готовыми узлами, из которых можно быстро собрать конечное устройство интернета вещей на базе микроконтроллеров и микропроцессоров производства Microchip. Особое внимание на вебинаре будет уделено облачным сервисам Microsoft для IoT.

Приглашаем 07/07/2021 всех желающих принять участие в вебинаре, посвященном работе с графической библиотекой TouchGFX и новой линейке высокопроизводительных микроконтроллеров STM32H7A/B производства STMicroelectronics. На вебинаре будут разобраны ключевые преимущества линейки STM32H7A/B, а также показан пример создания проекта с помощью среды TouchGFX Designer и методы взаимодействия этой программы с экосистемой STM32Cube.

_________________
Мудрость приходит вместе с импотенцией.

Источник



Импульсный блок питания 1000W на IGBT транзисторах

Силовая часть собрана по мостовой схеме на мощных IGBT транзисорах B1- B4 (на схеме отсутствует ЭМИ фильтр). D1-D4 — диодный мост. R6 и RS1 — схема плавного включения, обеспечивает постепенный заряд фильтрующего конденсатора С3, исключая бросок тока. С5, R7, R8 — схема запуска ШИМ контроллера. С2, R10 — демпфирующая цепь. LR1-LR2, D5-D8, R9, WR — регулировка выходного тока.

Список радиодеталей силового блока:

Предохранители
F1- 5A

Транзисторы IGBT
B1, B2, B3, B4 – G20N60

Диоды
D1, D2, D3, D6 – 6A10 ( 6A 1000V)
D7, D8, D9, D10 – 4148

Конденсаторы
C1 – 2,2uF 630V
C2 – 332 630V (3300pF, 3,3nF, 0,0033 uF )
C3 – 600uF 400V, электролитический
C4 – 220uF 400V, электролитический
C5 – 22uF 400V, электролитический
C6 – 104 (100nF, 0,1uF)

Резисторы
RB1, RB2, RB3, RB4 – 3,3K
R5 – 10K
R6 –100/10W
R7 – 10K/2W
R8 – 120K/2W
R9 – 150
R10 – 51/10W
RW – 510, подстроечный

Реле
RS1- 12V 10A

LR1, LR2 – трансформатор тока
ферритовое кольцо 20*12*6 2000НМ, вторичная обмотка LR2 — 100 витков провода 0,12- 0,15 мм2, первичная обмотка LR1— перемычка, пропущенная через кольцо.

1200w_6.jpg

PM1 Блок ШИМ контроллера собран на микосхемах TL494 и IR2181, способен управлять мощными IGBT или MOSFET транзисторами с током до 60А. С помощью этого блока возможно построение мощного блока питания по мостовой схеме от 1 до 3 кВт.

Список радиодеталей ШИМ контроллера:

Микросхемы
TL494
IR2181 – 2шт.

Диоды
UF 407 – 2шт.
Zener 18V

Конденсаторы
224 (200n, 0,22uF) – 3шт
103 (10n, 0,01uF) – 2шт.
102 (1000pF, 1n) – 1шт.
100uF*35V – 1шт.
100uF*16V – 1шт.

Резисторы
10 – 4шт.
51 – 1шт.
1К – 4шт.
2К – 5шт.
10К – 1шт
15К – 1шт.
82К – 2шт.

Вторичные цепи с однополярным питанием и силовой трансформатор

Силовой трансформатор изготовлен на сердечнике ЕЕ55 материал N87 . Первичная обмотка N1 — 0,35*6=35 витков, N2,N3 — 0,55*10=6+6 витков, N4-0,55=3 витка, N5 — 0,55=2 витка.

Дроссель L1 изготовлен на сердечнике ЕЕ55 материал N87 0,55*20=9 виков

Стабилизатор V1 — 12V, питание вентилятора и реле Rs1. Стабилизатор V2 — 18V, питание Шим контроллера. WR1 — регулировка выходного напряжения.

Вторичные цепи с двухполярным питанием и силовой трансформатор

Силовой трансформатор изготовлен на сердечнике ЕЕ55 материал N87 (при расчете программой Lite-CalcIT, размер сердечника: E 42/21/20 N87) . Первичная обмотка N1 — 0,35*6=35 витков, N2,N3 — 0,55*4=9+9 витков, N4-0,55=3 витка, N5 — 0,55=2 витка.

Дроссель L1а L1b изготовлен на сердечнике ЕЕ55 материал N87 0,55*10=9+9 виков (противоположное направление намотки).

Стабилизатор V1 — 12V, питание вентилятора и реле Rs1. Стабилизатор V2 — 18V, питание Шим контроллера. WR1 — регулировка выходного напряжения.

Печатная плата блока управления . >>>здесь

Источник

Блок питания 1000 Ватт на IR2153. Часть 1.

Своими руками

Что можно сделать на основе очень мощного понижающего бока питания ? много чего и пуско-зарядное устройство одно из этих устройств. Современные пуско-зарядные устройства стоят больших денег – в среднем 8-10.000 руб.

Для пуска нужны токи выше 100 Ампер, сам стартер очень кратковременно в момент запуска может потреблять око;о 230 250 Ампер, с учетом того, что в совместимости с зарядным устройством будет работать и сам аккумулятор, то таких токов в принципе не нужно.

Схема Power Supply IR2153

Основа любого зарядного устройства – бок питания. Небольшой расчет.
Каким мощным должен быть блок питания, чтобы отдавать ток выше 100 Ампер? это же получается почти сварочный аппарат, за исключением того, что у сварочников напряжение 3-4 раза больше, чем то напряжение, которое нужно для запуска стартера. Физика 8-го класса – 12Вольтх100 Ампер – итого 1200 ватт мощности. Представьте сетевой, железный трансформатор на такую мощность. Он будет иметь большие размеры и вес, что не очень уж и удобно с точки зрения транспортировки. Но тут на помощь спешат импульсные схемы.

1

2

3

Такие схемы как право имеют электронную начинку и состоят из многочисленных отдельных узлов, которые работают совместно. Такое решение позволяет резким образом снизить размеры и вес устройства.
Наша схема построена на основе популярного полумостового драйвера IR2153, на основе данной микросхемы были созданы десятки схем, но наша отличается от всех схематическими решениями и выходной мощностью.

13

Основные узлы схемы.

1) Входной блок. Сетевой фильтр, выпрямитель и сглаживающая емкость
2) Генератор импульсов и драйвер для управления силовыми транзисторами
3) силовые транзисторы и трансформатор
4) Выходной блок – выпрямитель, фильтр
5) Система плавного пуска
6) Система защиты

Все эти узлы работают совместно, благодаря чему наш блок питания очень надежный и достаточно мощный.

9

Схема была собрана честно говоря для иных целей, а точнее для питания мощных усилителей низкой частоты, но ничего не мешает получить на выходе 12-14 Вольт. Работает схема довольно простым образом – сетевое питание 220 Вольт через фильтр подается на выпрямитель в виде готового диодного моста на 8 Ампер, где происходит преобразование переменного тока в постоянный, дальше выпрямленное питание сглаживается мощными конденсаторами 400 Вольт 470мкФ каждый, для получения более высокой мощности стоит использовать конденсаторы большей емкости, например 2х680 мкФ 400 Вольт. Идеальное соотношение 1 ватт мощности 1мкФ.

14

Мой блок имеет расчетную мощность в 1000 Ватт, но это не предел, без всяких проблем можно снять и 1300 и 1500 ватт, хотя знатоки твердят, что для полумостовых схем такие мощности не самый лучший вариант, для получения более большой мощности как право используют топологию полный мост.

Питание микросхемы (она же задающий генератор) организовано через ограничительный резистор 47кОм 2 Ватт (он будет нагреваться в ходе работы и это нормально). Микросхема вырабатывает импульсы с частотой 42кГц , далее импульсы поступают на драйвер, который собран на комплиментарных парах BD140/139 всего 4 транзистора, к стати наш аналог КТ815Г(BD139), КТ814Г(BD140).

17

15

Драйвер управляет мощными полевыми транзисторами 20N60 – это N-канальные высоковольтные транзисторы с током 20 Ампер в корпусе ТО-220 – для 1000 Ватт выходной мощности их с головой хватит.

16

Ну а дальше все как в других блоках питания – силовой трансформатор, выпрямитель, и фильтр, который состоит из дросселей, а после них сглаживающие конденсаторы.

Источник

Самый простой ИИП 1кВт для усилителя.

Собранный блок питания DA Power1000.

Рисунок печатной платы:

Характеристики:
— напряжение питания: 210-240в;
— напряжение на выходе (холостой ход): +84/-84в;
— дополнительные сервисные напряжения: +15/-15в 100мА, +12в 100мА.
— напряжение на выходе при номинальной мощности: +72/-72в (-14,2%);
— мощность постоянная: 1000вт;
— мощность кратковременная: более 1500вт;
— защита от короткого замыкания: есть.

Прошло уже более 2-х лет с момента создания импульсного блока питания на микросхеме SG3525 с применением трансформатора гальванической развязки. ИИП показал себя очень достойно, доработанная версия обладает отличной надёжностью, повторяемостью и отличается дешевизной.
Про данный блок питания мощностью 300вт можно почитать здесь: ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ ДЛЯ УСИЛИТЕЛЯ НА SG3525+ТГР.

Теперь набравшись немного опыта и знаний я попробую прокачать блок питания повысив мощность более чем в 3 раза. Для начала я убрал стабилизацию напряжения, чтобы ИИП хорошо работал с усилителями D-класса, затем усилил печатную плату и поставил более мощные силовые элементы. Принцип работы расписывать не буду, думаю, что вряд-ли новички без опыта станут сразу собирать киловаттный блок.

Топология остаётся той же — полумост, но для минимизации потерь я использовал полевые транзисторы с очень низким сопротивлением открытого канала KCX9860A от производителя KIA Semicon Tech (600V 47A 81 mΩ). Но чем мощнее ключи, тем сложнее ими управлять. Тяжеленный затвор и долгое время переключения создают некоторые сложности при постойке мощного ИИП. Для управления транзисторами применена все та же микросхема SG3525 с трансформатором гальванической развязки и конденсаторным блоком питания для запитки ШИМ-контроллера.

Часть 1. Управление тяжелыми полевыми транзисторами..
Посмотрим на график тока через полевик в зависимости от напряжения на его затворе.

Зависимость тока полевого транзистора от напряжения на его затворе.

Для полного открытия транзистора при 25°C на затвор нужно подать 5в, и около 6в при 150°C. Так зачем же заряжать затвор напряжением 12в, если это не имеет никакого смысла. С увеличением напряжения на затворе, его заряд сильно увеличивается, что приводит к повышению потребления от ШИМ-контроллера.
Данный график показывает, как увеличивается заряд затвора в зависимости от приложенного на него напряжения.

Зависимость заряда затвора от приложенного напряжения на затворе.

Вывод: управление тяжелыми полевыми транзисторами намного проще осуществлять пониженным напряжением. Для полевых транзисторов KCX9860A оптимальное напряжение на затворе будет составлять 6в.

Часть 2. Трансформатор гальванической развязки.
В качестве ТГР применено ферритовое кольцо R16*10*4,5 из материала PC40. Для того, чтобы ШИМ контроллер потреблял меньше энергии на перемагничивание сердечника, я увеличил количество витков первичной обмотки до 60-ти. При 45 витках ток потребления SG3525 без подключенных полевиков составляет поряка 25мА, при 60 витках 18мА соответственно. Т.е. с малым количеством витков повышенная индукция в сердечнике привидит к повышенным потерям, микросхеме тяжело переключать обмотку даже на холостом ходу, сама SG3525 без подключенного ТГР потребляет около 10мА. Рассчитал количество витков вторичных обмоток, для 6в будет достаточно намотать по 30 витков. (12в/60*30=6в).
Трансформатор мотал сразу 3 жилами, первичная обмотка 60витков, вторичные 2*30витков.

Трансформатор гальванической развязки.

Подключил полевые транзисторы, ток потребления SG3525 вырос до 38мА, что совсем не много.
Одно из преимуществ ТГР состоит в том, что он заряжает затвор полевиков еще и отрицательным напряжением.. Время включения полевого транзистора происходит в диапазоне от -6 до +6в, а выключения от +6 до 0в, т.е. закрывается он 2 раза быстрее. Иными словами добавляется свой dead time с помощью ТГР, время которого можно вычислить по осциллографу.
Резистор 10ом в первичке ТГР облегчает микросхеме работу при жёстком переключении, а завторные резисторы 20ом немого замедляют переключение полевиков и тоже разгружают управляющую цепь.
Опыты показали, что очень низкое сопротивление затворных резисторов приводит к слишком резкому открытию полевых транзисторов, ток в первичке при таком переключении превышает 20А. Это приводит к срабатыванию защиты даже при нагрузке около 500вт. А если убрать завторные резисторы и соединить напрямую к ТГР, то ИИП вообще будет запускаться лишь через раз.

Итог: слишком низкое значение затворных резистором приводит к большим импульсным токам при переключении. И это касается не только данного ИИП, то же самое я заметил в усилителе D-класса, строило заменить завторные резисторы с 30ом до 60-ти, токовая защита перестала ложно срабатывать. Причем нагрев транзисторов остался прежним.

Часть3. Силовой трансформатор.
В качестве силового трансформатора я выбрал кольцо R40*24*20 из материала PC40, потому, что они во много раз дешевле трансформаторов с каркасами.
Самая продвинутая программа для расчета кольцевых трансформаторов:

Тремя жилами проводом 0.75мм в один слой мне удалось намотать только 27 витков первичной обмотки. Скорректировал в программе данные и пересчитал заново. Главное, не задирать индукцию в сердечнике, чтобы не было перегрева трансформатора. Можно играть частотой и индукцией, чтобы попасть в нужное число витков.

Формула определения числа витков вторичных обмоток для необходимого напряжения на холостом ходу.

N2=U/Uтр*N1= 80/155*27=14 витков, где
U — необходимое постоянное напряжение в плече;
Uтр — напряжение на первичной обмотке трансформатора, для полумостового преобразователя оно будет равно половине выпрямленного сетевого напряжения. 220*1,41/2= 155в;
N1 — количество витков первичной обмотки трансформатора, считается в программе.

Силовой трансформатор.

Часть 4. Софтстарт.
В данной схеме есть два софтстарта. Первый — осуществляется посредством ШИМ контроллера. При пуске на полевые транзисторы подаются узкие импульсы, которые не полностью их открывают и пусковой ток не превышает ограничение в 20 ампер даже со значительными ёмкостями на выходе.
Второй софтстарт построен на реле, и служит для ограничения тока заряда больших сетевых ёмкостей. В нашем случае 990мкф сначала около полсекунды заряжаются через токоограничивающий резистор 33ома, и только потом напрямую подключаются к сети 220в. Пусковой ток через вилку при этом не превышает 8А, без софтстарта он достигал бы 50А в момент включения.
Реле софтстарта запитано все от того же конденсаторного блока питания, подойдёт любое реле на 12 в с сопротивлением катушки не ниже 200ом. Конденсатор 1000мкф задаёт задержку срабатывания реле при пуске.

Часть 5. Сборка и настройка.
Первым делом на плату монтируются малогабаритные элементы, затем все остальные.
Важно: первый пуск и проверка производится с низким напряжением питания. Для этого необходимо поставить 3 перемычки и подать на вход 13 в постоянного напряжения. Должен появится сигнала на обмотках ТГР и красивый менандр на силовом трансформаторе, на выходе в плечах питания должно появится около +5в/-5в.
Далее проверяем работу тригера, замыкаем транзистор оптопары (у PC817 со стороны точки находится светодиод, с другой — транзистор), генерация должна мгновенно прекратиться. Если все так, то убираем временные перемычки и первый пуск делаем через токоограничиваюший резистор 100-200ом.

Также важно при больших мощностях, применив полевые транзисторов с низким сопротивление открытого канала, ставить снабберную цепочку. Более лёгкие полевики работали нормально без нее, но с этими пришлось поставить 33ома+2.2нф. Вот что было без снаббера на больших мощностях, при переходе через ноль появлялись выбросы на обмотках силового трансформатора.

Часть 6. Защиты.
Токовая защита настраивается очень просто, ее порог срабатывания зависит от сопротивления токового шунта. Светодиод оптопары загорается примерно от 1в, тогда шунт 0,05 ома даёт отсечку на 1в/0,05ом=20А.
Мощность на шунте при 1квт выходной мощности составит (1000вт/150в/2)²*0,05ом =0,55вт.
Важно, чтобы токовый шунт был безындуктивным. Можно использовать метеллопленочные или СМД резисторы, проволочные не годятся. После срабатывания тригера, дальнейшая работа возможна только после отключения блока питания от сети на несколько секунд.
ИИП спокойно выдерживает короткое замыкание между плечами, как во время работы, там и при попытке запуска с закороченным выходом. Главное, не проверять сработка защиты с токограничительной лампочкой в разрыве.

Часть 7. Охлаждение.
Алюминиевая пластина -радиатор толщиной 2мм крепится снизу платы. Для дополнительно охлаждения ее нужно прикрутить к нижней крышке усилителя, в зависимости от характера нагрузки может понадобится вентилятор. Например с усилителем D-класса нагрев будет незначительный, а при работе на постоянную резистивную нагрузку придется ставить активное охлаждение или массивные радиаторы.

Часть 8. Тест.
Для проверки блока питания я подключал к нему 2 утюга помещенные в воду.


Тесты проводил в течении часа, нагрузка 980вт.

Нагрев элементов:
Полевики — 72°С;
Шоттки — 70°С;
Диодный мост 75°С;
Трансформатор 75°С;
Можно смело сказать, что все теплое и в пределах нормы, правда для охлаждения пластины пришлось приделать мощный радиатор.

Напряжения и осциллограммы под нагрузкой:

Холостой ход +84/-84в Нагрузка 490 вт: +75/-75в (-10,7%) Нагрузка 982 вт: +72/-72в (-14,2%).

SG3525 сама может справиться с мощными полевиками. Софтстарт на реле работает отлично, задержка включения 0,5сек, нагрев элементов умеренный, защита от КЗ работает хорошо.

Важно:
— грамотно подобрать затворные резисторы;
— точно рассчитать необходимое напряжение для управления завторами полевиков и определить нужное количество витков ТГР;
— установить снабберную цепочку;
— проверку осуществлять при напряжении 13в временно установив соответствующие перемычки.
— применить только высокоэффективные полевые транзисторы с напряжением не ниже 500-600в, током не ниже 30А и сопротивлением открытого канала 50-200мОм.
— дроссели на выходе обязательны;
— соблюдать технику безопасности, в данном ИИПе под сетевым напряжением находится даже SG3525, сетевые банки разряжаются более 5 минут после отключения.
— не забыть убрать временные перемычки после проверки ИИП от 13в.

Самый простой ИИП 1кВт для усилителя.: 15 комментариев

Сергей, а не могли бы Вы дорисовать данную схему под Ваше видение снабберных цепочек и стабилизации на выходе? думаю собрать данную схему, понизив вторичное напряжение (мне нужно меньше чем +/-85)… а так в целом понятная схемка и ЛЕЙка уже в комплекте.

Спасибо за статью, давно хотел собрать мощный иип

Сквозных токов нет? На какой частоте гоняете? Почему R17 33 ома? Трассировка платы немного не соответствует схеме. На низкой стороне киловатт представляете?

Без снабберов был сквозняк, частота около 45кГц. R17 подбирается, индивидуально в зависимости от выбросов на ключах. На низкой стороне киловатт представляю, снимал и больше на двух утюгах в тазике с водой.

Сомнительная защита по току. Токовый шунт в одном плече. Значит есть вероятность сжечь верхний транзистор при КЗ. Сомневаюсь что светодиод оптопары загорается от 1 В. Скорее всего это 1,7 — 2 вольта. Ну нет светодиодов с падением прямым 1 В в принципе. На таких мощностях кроме R-C цепочки на первичной обмотки ( это не снаббер !!)
крайне желательно поставить R-C-D ( резистор конденсатор диод) снабберы на каждый из транзисторов. Таким образом существенно снизятся потери на транзисторах и обеспечится ОБР транзисторов. Использовать продвинутый ШИМ контроллер и не использовать стабилизацию выходного напряжения — это грех!
А так вполне рабочая схемация.

В оптопаре ИК светодиод, 1.2-1.3v полное открытие, см даташиты.

Стабилизация выхода бп для ум вредна. А так то было бы неплохо для других применений блока. Про токовую защиту для верхнего транзистора поддерживаю, нужен второй канал защиты. Если в цепи верхнего транзистора все по аналогии, то как присобачить это к защелке понимания нет. Прошу нарисовать если не трудно.

Так для второго полевика все то же самое.. шунт, резистор и оптопара выход которой параллельно первой.

Источник

Читайте также:  Pleer ru блок питания для пк