Меню

Блок переключения обмоток трансформатора блока питания



Характеристика и схемы автоматического переключения обмоток трансформатора в блоке питания

В состав любого измерительного комплекса, имеющегося в современной лаборатории или на рабочем месте радиолюбителя, обязательно входит недорогой и надежный блок питания (БП). Для того чтобы улучшить его эксплуатационные характеристики, специалисты советуют применить автоматическое переключение трансформаторных обмоток в блоке питания. Это существенно снижает паразитное рассеяние мощности в выходных каскадах и облегчает режим работы любого лабораторного источника тока.

Указанный подход особо востребован в тех случаях, когда в рабочих условиях востребован БП с диапазоном регулировки напряжения 50 Вольт, например, и с током нагрузки не менее 5 Ампер. Промышленные источники с такими заявленными характеристиками для рядового пользователя недоступны из-за своей высокой стоимости. Как раз это и вынуждает его применять принцип и схему автоматического переключения обмоток трансформатора в блоке питания.

Переключатель

Для чего используется система переключений обмоток трансформатора

При самостоятельном изготовлении блока питания с такими характеристиками исполнителю приходится решать целый ряд проблем, важнейшая из которых – обеспечение требуемой передаточной характеристики во всем спектре выходных напряжений. Рассмотрим пример, когда имеется источник питания, рассчитанный на максимальное напряжение до 50-ти Вольт.

Если в определенной ситуации потребовалось установить точное значение выходного напряжения всего в 5 Вольт при токе в нагрузке 5 Ампер – в выходных цепях будет бесполезно рассеиваться мощность 225 Ватт. Эта цифра получается из расчета 50-5=45 (Вольт), что после умножения на 5 Ампер дает означенною величину потерянной без всякого эффекта мощности.

Важно! В данной ситуации КПД такого источника будет предельно низким.

Для устранения указанного недостатка приходится принимать специальные меры, позволяющие существенно снизить потери в индуктивных выходных каскадах. Для этого потребуется предпринять следующее:

  • Каким-то образом коммутировать вторичные обмотки силового трансформатора (ТС), что позволит при необходимости отбирать от него меньшую по величине мощность.
  • Использовать более экономичный импульсный режим преобразования электроэнергии.
  • Воспользоваться заранее изготовленным предварительным регулятором, работающим по тому же импульсному принципу.

система обмотки трансформатора

С другой стороны, общеизвестно, что надежный и многофункциональный лабораторный блок питания не должен иметь импульсных узлов, приводящих к появлению нелинейных искажений. Более рациональным и эффективным в этом случае считается чисто линейное преобразование.

Дополнительная информация: для не очень сложных любительских схем вполне сгодится обычный импульсный блок питания.

Однако для наладки более точной электронной аппаратуры потребуется стандартное устройство, содержащее узлы с линейной передаточной характеристикой.

Принцип работы

Для решения этой проблемы при разработке промышленных источников питания инженеры пошли по первому пути, предполагающему наличие во вторичной обмотке нескольких коммутируемых отводов. Для их переключения применяются самые различные способы, включая следующие варианты:

  • Ручная коммутация (посредством галетных переключателей, например).
  • Использование типовых коммутирующих реле, управляемых отдельным электронным узлом.
  • Включение в выходную цепочку быстродействующих полупроводниковых элементов (симисторов).
  • Применение в качестве управляющего узла современных контроллеров.

Такая коммутация позволяет использовать только часть вторичной обмотки, соответствующую требуемому значению выходного напряжения (в приведенном выше примере – это 5 Вольт).

Таким образом, принцип работы такой схемы заключается в искусственной регулировке выходного переменного напряжения с установкой его фиксированной величины, меньшей полного значения выхода трансформатора. Данный подход исключает неоправданный расход энергии, идущей на бессмысленный нагрев элементов выпрямителя (в типовых схемах эту функцию выполняют силовые транзисторы).

Обратите внимание! Для повышения КПД такой схемы и снижения степени нагрева сердечника трансформатора специалисты советуют увеличивать число отводов вторичной обмотки до максимального значения.

После такой доработки выходных цепей к ним подключаются контакты галетного переключателя, посредством которого можно будет устанавливать требуемый режим питания по выходу. Единственное неудобство этого метода – увеличение числа органов управления выходным напряжением. Неэффективность механического способа подключения выходных обмоток трансформатора заставляет искать новые (более рациональные) решения.

Преимущества

Применение принципа дробления выходного напряжения на небольшие части обеспечивает следующие преимущества:

  • Возможность на свое усмотрение устанавливать на выходе устройства широкий набор рабочих напряжений.
  • Снизить потери в выходных каскадах блока питания.
  • Повысить общий КПД и, в конечном счете, сэкономить на расходе электроэнергии.

Все эти преимущества удается получить лишь при условии эффективности механических способов управления или электронных схем коммутации. Порядок построения каждой из них будет рассмотрен в следующем разделе.

Варианты схематических решений

При конструировании блоков питания, обеспечивающих экономное расходование электроэнергии и исключающих тепловые потери в сердечнике трансформатора, возможны следующие варианты:

  • Установка в выходных цепях обычных переключателей витков.
  • Применение в тех же цепочках коммутаторов релейного типа.
  • Использование в выходных управляющих линиях современных симисторных переключателей.
  • Применение в преобразовательной схеме программируемого электронного коммутатора (контроллера).

Далее каждый из этих способов управления выходным напряжением будет рассмотрен более подробно.

система обмотки трансформатора схематически

Простой блок переключения

Этот тип коммутатора может быть выполнен в виде обычного галетного переключателя, рассчитанного на определенное число положений ручки управления. Каждому из них соответствует заданное количество витков вторичной катушки трансформатора, с увеличением числа которых возрастает его выходное напряжение.

Важно! К преимуществам этого способа следует отнести простоту реализации, а к недостаткам – неудобство постоянного переключения ручки, которой приходится управлять вручную.

Кроме того, коммутации в этом случае происходят очень медленно и приводят к паразитным переходным процессам в выходных цепях, обладающих высокой индуктивностью.

Простой блок переключения

Релейный

Принцип этого метода управления выходными каскадами БП основан на применении специальных коммутирующих элементов, называемых реле. С их помощью удается существенно повысить скорость переключений и исключить появления больших всплесков напряжения (тока). Со схемой такого коммутатора можно ознакомиться на приведенном справа рисунке.

Из нее видно, что для управления положением контактов реле используется отдельная катушка, напряжение с которой выпрямляется и подается на простейший электронный модуль, выполненный на основе транзисторов.

Обратите внимание! В этом случае исполнительной частью устройства коммутации являются контакты реле, срабатывающие намного быстрее человеческой руки, переключающей галетный прибор.

Поэтому переходные процессы в данной схеме заметно меньше, а опасность возникновения перенапряжений в выходных цепях существенно снижается. С другой стороны, контакты реле со временем снашиваются, а сильное искрообразование зачастую приводит к нарушениям в нормальной работе преобразователя. Гораздо надежнее некоторые типы полупроводниковых приборов (симисторы, например), при коммутации которых в цепях исключаются паразитные помехи.

релейный трансформатор

Симисторный

Симисторная схема управления переключением обмоток (точнее – ее пример) приведена на рисунке слева. В данной ситуации коммутация витков выходной катушки осуществляется посредством электронных переходов специальных полупроводниковых приборов – симисторов. Для управления их переключением в схеме предусмотрен электронный модуль, срабатывающий по сигналу, поступающему от пользователя.

В данном случае для развязки управляющих и коммутирующих цепей применены оптические пары того же симисторного типа. Сигнал на их входные элементы поступает с выходов транзисторов, управляемых электронным коммутатором на операционных усилителях. В состав симистороной схемы управления выходными напряжениями входят:

  • Блок питания на стабилизаторе VR1.
  • Модуль задержки включения, выполненный на транзисторах VT1-VT3.
  • Блок индикации на светодиодных элементах LED1-LED3.
  • Типовой сдвоенный компаратор LM393.
  • Логика типа 74HC86.
  • Оптроны MOC3083.
  • Входной делитель R6-R7.

В процессе настройки этой схемы резистором R7 выставляется фиксированное входное напряжение, поделенное делителем R6-R7 на десять. Пример: при поступлении с БП напряжения 20 Вольт, его величина на не инвертируемых входах LM393 составит всего 2 Вольта. А резисторы R8, R10 служат для выставления пороговых напряжений переключения

симисторный трансформатор

Переключатель обмоток трансформатора на контроллере

Принцип работы программируемого блока состоит в следующем:

  • Каждому из фиксируемых значений выходного напряжения (согласно требованиям задания) ставится в соответствие определенный двоичный код.
  • Комбинация из нулей и единичек определяет нужное число обмоток, подключаемых к выходу трансформатора блока питания.
  • За счет их изменения и происходит управление выходными цепями.
  • За смену кода ответственен специальный контроллер, управляющий работой всей схемы.

Дополнительная информация! Особенностью данного метода является то, что электронный модуль не измеряет текущее выходное напряжение, а только индицирует его расчетное значение.

Читайте также:  Блок питания hipro 600w отзывы

Применение в управляющей схеме современного микроконтроллера позволяет существенно сократить общее число комплектующих изделий. Это не только заметно упрощает проектирование и изготовление печатных плат, но и облегчает все процедуры, связанные с наладкой устройства в целом. На приведенном выше рисунке представлена схема управления выходным каскадом блока, выполненная на микроконтроллере PIC16F628A-1/P (DD1). Дополнительный узел – регистр сохранения данных ЭКР1554ИР22 (DD2).

Переключатель обмоток трансформатора на контроллере

Конечно, для реализации этого принципа управления можно было обойтись простейшим и более дешевым микроконтроллером PIC12F629. Он обычно применяется в сочетании с двумя сдвиговыми регистрами, преобразующими последовательный код в его параллельную копию. Но при этом дешевое устройство не обеспечивало бы требуемую устойчивость к воздействию импульсных помех, которые, как известно, всегда присутствуют при коммутации индуктивных цепей.

Обратите внимание! Указанное замечание непосредственно касается нашего случая, когда схемное решение предполагает использование обладающих большой индуктивностью трансформаторных обмоток.

В заключительной части тематического обзора отметим, что все известные способы переключения выходных обмоток трансформатора делятся на механические (с использованием галетного переключателя, например) и автоматические. Второй способ управления успешно реализуется за счет появления быстродействующих электронных элементов и комплектующих. При их использовании не только повышается скорость предполагаемых коммутаций, но и возрастает уровень защищенности схемы от воздействия паразитных импульсных помех.

Источник

Блок переключения обмоток трансформатора блока питания

  • Усилители мощности
  • Светодиоды
  • Блоки питания
  • Начинающим
  • Радиопередатчики
  • Разное
  • Ремонт
  • Шокеры
  • Компьютер
  • Микроконтроллеры
  • Разработки
  • Обзоры и тесты
  • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
    • Усилители мощности
    • Светодиоды
    • Блоки питания
    • Начинающим
    • Радиопередатчики
    • Разное
    • Ремонт
    • Шокеры
    • Компьютер
    • Микроконтроллеры
    • Разработки
    • Обзоры и тесты
    • Обратная связь
  • Форум
    • Усилители мощности
    • Шокеры
    • Качеры, катушки Тэсла
    • Блоки питания
    • Светодиоды
    • Начинающим
    • Жучки
    • Микроконтроллеры
    • Устройства на ARDUINO
    • Программирование
    • Радиоприемники
    • Датчики и ИМ
    • Вопросы и ответы
  • Online расчёты
  • Умный дом
  • Видео
  • RSS
  • Приём статей
  • Коммутатор обмоток для лабораторного блока питания

    Регулируемый источник питания является обязательным атрибутом на столе радиолюбителя, но из-за их немалой стоимости многие предпочитают сделать лабораторный блок питания своими руками.
    Блоки питания бывают линейными и импульсными, основное преимущество импульсных схем — это их высокий КПД (>90%). Линейные схемы имеют низких КПД, но обеспечивают более чистое выходное напряжение, которые свойственны импульсным источникам питания.

    Линейные источники питания лучше, но при конструировании таких источников питания большой мощности возникают проблемы с охлаждением силовых транзисторов.

    В чем же заключается основная сложность?. Допустим мы собрали блок питания с регулировкой напряжения от нуля до 30 Вольт и ток от нуля до 5 Ампер. И если мы выставим на выходе малое напряжение и большой ток, например 3 Вольта и 5 Ампер, на выходе получим мощность около 9 Ватт, при этом на транзисторе будет падение напряжения как минимум 27 Вольт, с учетом тока в 5 ампер, получаем около 140 ватт мощности в виде бесполезного тепла, которое нужно отводить.

    Есть два основных варианта решения этой проблемы:

    1. Громадный радиатор с вентилятором для охлаждения силового транзистора;
    2. Система переключения обмоток трансформатора.

    Второй вариант наиболее предпочтителен, и позволит избавиться от массивных радиаторов и шумного вентилятора.

    Принцип работы очень прост — при малых выходных напряжениях на вход также подается малое напряжение. Таким образом мощность рассеиваемая на транзисторе будет гораздо меньше, КПД увеличивается в разы.

    Но для того, чтобы задействовать коммутатор, нужно иметь трансформатор с несколькими вторичными обмотками, желательно с полностью одинаковыми параметрами, например три обмотки по 12 Вольт.

    Перед вами сейчас самая простая и безотказная схема релейного коммутатора.

    Коммутатор обмоток для лабораторного блока питания, принципиальная схема

    Имеем пару стабилитронов на одинаковое напряжения и пару реле, которыми управляют маломощные транзисторы обратной проводимости. Точка «А» подключается к выходу лабораторного блока питания. Масса питания общая. Схема коммутатора питается от отдельной, маломощной обмотки.

    Схема работает следующим образом, если напряжение на выходе лабораторного блока питание ниже 12 Вольт, стабилитрон закрыт. Если напряжение на выходе лабораторного блока питания больше 12 Вольт первый стабилитрон моментально откроется, сигнал поступит на базу первого транзистора, отпирая его, через открытый переход поступит питание на обмотку реле, как следствие — реле также сработает, коммутируя соответствующую обмотку. Теперь на вход стабилизатора поступает напряжение 24 Вольта.

    При увеличении выходного напряжения блока питания до порогового значения, а это сумма напряжений обеих стабилитронов, точно таким же образом откроется второй стабилитрон, что приведёт к отпиранию второго транзистора и сработкет второго реле, и на вход стабилизатора поступит полное напряжение со всех трех последовательно соединенных обмоток трансформатора.

    В этот момент первое реле тоже находится во включенном состоянии, но так как питание поступает по второму реле, на выходное напряжение это не влияет. Добавив в схему еще один транзистор со стабилитроном, в эти моменты можно отключать его.

    Коммутатор обмоток для лабораторного блока питания, принципиальная схема

    Если напряжение на выходе источника питания больше значения суммы напряжений стабилизации стабилитронов откроется третий транзистор, шунтируя базу транзистора, который управляет первой реле на массу питания, тот закроется и отключит реле.

    Стоит заметить, что через стабилитроны и переходы база эмиттер протекают ничтожно малые токи.

    В схеме использованы реле с напряжением катушки 12 Вольт.

    Коммутатор обмоток для лабораторного блока питания, реле 12ВКоммутатор обмоток для лабораторного блока питания, реле 12В

    Диоды предназначены для защиты от пробоя управляющих транзисторов напряжением самоиндукции с обмоток реле во время их отключения.

    Ток коммутации реле зависит от вашего блока питания, если конструируете лабораторный блок питания на 5 Ампер, реле желательно взять с двукратным запасом, например 10-12 Ампер.

    Базовые ограничительные резисторы для транзисторов могут иметь сопротивление от 6,8 до 15 кОм. Сами транзисторы обратной проводимости, можно взять любые малой и средней мощности.

    К недостаткам схемы можно отнести использование электромагнитного реле. Должен сказать, что во многих промышленных блоках питания применяется именно такое решение. Реле издают звук во время переключения, а контакты не вечные.

    Есть системы, где переключающим элементом является симистор, но такие коммутаторы также не идеальны, часто возникают проблемы с управлением, а на самих симисторах будут потери, следовательно и нагрев, к тому же симисторные схемы довольно сложны.

    Питать схему коммутации можно как от отдельной обмоткой, которая намотана на основном трансформаторе, так и от отдельного маломощного блока питания. Напряжение этого источника должно быть от 18 до 20 вольт, при токе в 200-300мА.

    Источник

    Лабораторный блок питания «Belarus 3A30» с защитой и коммутацией обмоток (0-30 V, 3 А)

    Содержание / Contents

    • 1 Как все начиналось
    • 2 Блок питания изнутри
    • 3 Схема электрическая принципиальная
    • 4 Защита нагрузки от перенапряжения
    • 5 Защита блока питания от перегрузки
    • 6 Коммутация обмоток трансформатора
    • 7 Испытания
    • 8 Недостатки
    • 9 Файлы

    ↑ Как все начиналось


    Рис. 2. Амперметр древний. Рис. 3. Прибор на новый лад: вольтметр + амперметр

    Рис. 4. Корпус блока питания

    Рис. 5. Элементы передней панели

    Вольтметр, потенциометр, выходные зажимы и переключатель режима индикации, плотно прижали этот «бутерброд» к корпусу без дополнительных болтиков. Результат см. рисунок 1.
    После того как собрал переднюю панель начал думать о принципиальной схеме.

    ↑ Блок питания изнутри

    На плате A4 (см. рисунок 9) установлены четыре параллельно соединенных LM317. LM-ки прикручены к алюминиевому основанию, которое далее через слюду к радиатору.

    В сборе, конструкция выглядит следующим образом (см. рисунок 10)


    Рис. 10. Блок питания без крышки

    ↑ Схема электрическая принципиальная

    При максимальном токе 3A через каждый чип протекает 0,75А. Общая рассеиваемая мощность делится на 4 корпуса и легче отдается радиатору за счет большей площади прикосновения. В моем случае разность температур через слюдяной изолятор составила 10 градусов. На мой взгляд, это очень даже не плохо.

    ↑ Защита нагрузки от перенапряжения

    В классической схеме включения LM317 регулирующий резистор включается между входом ADJ и общим проводом. Обрыв резистора приводит к тому, что входное нестабилизированное напряжение попадает в нагрузку. В схеме регулировка выходного напряжения осуществляется посредствам потенциометра R29. C помощью транзистора T5 организована защита нагрузки от перенапряжения при обрыве ползунка потенциометра R29.

    Читайте также:  Блок питания asus для asus k50in

    Рано или поздно обрыв происходит. При обрыве, транзистор T5 открывается через резистор R32 и на входе ADJ LM317 потенциал падает и как следствие на выходе стабилизатора тоже. Включение резистора R32 вносит небольшую нелинейность в регулировку напряжения с помощью R29. Поэтому его сопротивление должно быть как можно выше, но в связи с этим придется подобрать транзистор T5 с наиболее высоким коэффициентом усиления, иначе открытие транзистора может быть неполным.

    Цепь регулировки выходного напряжения включена относительно отрицательного напряжения -5V. Это дает возможность регулировать выходное напряжение от 0V. Резистором R28 устанавливается минимальное выходное напряжение. Максимальное выходное напряжение можно подстроить резистором R9 на плате A2.

    ↑ Защита блока питания от перегрузки

    На схеме электрической принципиальной две «земли» до датчика тока (шунта R8, R12) и после. За основную следует принимать землю справа, по схеме, от шунта, так как относительно нее подключены стабилизаторы напряжения DA2, DA3, и DA5-DA8 через отрицательное плечо -5V (DA2). Это позволяет не учитывать падение напряжения на шунте при стабилизации. То есть относительно стабилизатора DA5, шунт можно отнести к внутреннему сопротивлению источника напряжения.

    Защита блока питания от перегрузки представляет собой токоограничение и организовано на компараторе OP2 (LM339) отличительной чертой которого является выход с открытым коллектором. На отрицательный вход подается опорное напряжение с делителя R19, R22 на положительный вход – напряжение с датчика тока на резисторах R8, R12.

    Определяет величину токоограничения резистор R19, который можно также выносить на переднюю панель прибора (это может быть полезным), но я этого не сделал, так как сначала спроектировал корпус и только потом схему. При коротком замыкании, например, напряжение на положительном входе OP2 становится ниже чем на отрицательном и выходной транзистор компаратора OP2 начинает открываться, так же как и T5 начинает понижать потенциал на входе ADJ стабилизатора LM317.

    За счет высокого коэффициента усиления компаратора токоограничение получается изумительное. За 10mА до планки ограничения стабилизация напряжения не нарушается. Например в проведенном мной эксперименте ток короткого замыкания 2,94А, при нагрузке 2,93А напряжение остается стабильным — при снятии нагрузки показания вольтметра не меняются.

    ↑ Коммутация обмоток трансформатора

    Одним из недостатков линейных стабилизаторов является низкий КПД. Стабилизаторы греются и чем больше разница между входным и выходным напряжением, тем больше нагрев и как следствие потеря мощности. Отчасти эту проблему можно решить путем снижения входного напряжения, когда это возможно. При выходном напряжении в 2 вольта нет смысла подавать на вход 30V.

    Но не следует забывать про пульсации выпрямителя. При максимальном токе нижняя граница пульсации Umin должна быть приблизительно на 3 вольта выше (для LM317) чем желаемое выходное напряжение стабилизатора, иначе пульсации пройдут на выход стабилизатора. Контролировать это надо осциллографом, так как мультиметры показывают среднее значения пульсирующего напряжения, можно думать, что стабилизация по какой то причине не работает, а на самом деле на выходе будет небольшая пульсация.

    На компараторах OP1, OP3, OP4 и реле K1, K2, K3 организована коммутация обмоток трансформатора. На положительные входы компараторов подается выходное напряжение блока питания через делители R20 и R21, R30 и R31, R38 и R39. На отрицательные входы опорные напряжения, которые определяют уровни срабатывания реле. Резисторы R15, R24, R34 вводят небольшой (0,1V) гистерезис в срабатывания компараторов, это обеспечивает четкое открытие транзисторов при одинаковых входных напряжениях компаратора.

    Реле выбраны на 24V, контакты 16А, катушка реле потребляет 17mA. Поэтому для питания вполне достаточно однополупериодного выпрямителя на диоде D2 и конденсаторе С9. В качестве ключей реле решил взять низковольтные компьютерные мосфеты Q25SN03A -T1-T3, напряжение сток исток 30V. Обычно их можно снять с неисправной материнской платы в области питания процессора. За время разработки имел место быть пробой затвора, одного из ключей, после чего я установил стабилитроны D7, D8, D10 параллельно затворам транзисторов.

    При отключении реле осциллограф зафиксировал всплеск на стоке под 40V, возможно через какие-то паразитные емкости пробило затвор. Но после установки стабилитронов полет нормальный. Кстати эти транзисторы, возможно, не самый лучший вариант для коммутации реле. При включении К2 нет смысла держать включенной реле К1, для этого транзистор T4 шунтирует затвор транзистора T3, реле К1 не включается, тем самым экономя драгоценных 17 мА.

    Вообще для выходного напряжения 30V делать 3+1 входных напряжения вовсе не обязательно, я думаю хватило бы и два реле и три обмотки. Но три обмотки, при перемотке трансформатора намотать было проблематично, мотал проводом в 1,2 мм и в один слой ложилась одна обмотка в 7 Вольт , делать полтора слоя не решился, так как мог не вписаться в окно. Коммутация обмоток это дело личное, если радиатор позволяет, можно считать, что у блока питания есть дополнительная функция – обогрев квартиры, и КПД можно принять за 100%.: smile:

    ↑ Испытания


    Рис. 12 Осциллограммы 2,9А 9V

    Из осциллограммы на рисунке 12 видно, что низкочастотных пульсаций не наблюдается. Небольшой высокочастотный шум проникает извне, не исчезает даже при выключенном блоке питания, если включить рядом стоящий компьютер, то шумы резко возрастают и появляются выбросы работы импульсника, но они ничтожны. Возможно надо было поставить фильтр перед трансформатором.

    В качестве динамической нагрузки решил использовать свой старенький ноутбук ASUS Z99H. Питание 19V Потребление тока скачет в пределах 1 — 2 А. Для сравнения на рисунке 13 показан холостой ход без нагрузки 19V.


    Рис. 13 Осциллограмма 19V, холостой ход, развязка АС

    На рисунке 14 пульсации при работе ноутбука. Пульсации небольшие с частотой работы внутреннего импульсного блока питания ноутбука 100Кгц.


    Рис. 14 Осциллограмма 19V, нагрузка 1-2А, развязка АС

    ↑ Недостатки

    Основной из выявленных мной недостатков моего блока питания является корпус, он маловат. При наличии большего пространства можно было бы объединить плату А2 и А3, при желании поставить внутрь небольшой вентилятор, так же в больший корпус влезет больший трансформатор при наличии. Мой трансформатор конечно слабоват, 3 А без пульсаций получилось только при 28,5V.

    При 30V, пульсации пролазят на выход, мне как всегда пару витков не хватило, но даже если бы хватило все равно ничего хорошего не получилось, так как 90 Ватт это его максимальная мощность и при длительной эксплуатации он будет греться, воск, которым я пропитал транс чувствую, потечет.

    Следующий недостаток — это измерительный прибор, мало того он не может одновременно показывать ток и напряжения, так он повлек за собой датчик тока относительно большого сопротивления, который при токе 3А немного нагревается, ситуацию усугубляет плохая вентиляция в корпусе. Как следствие нагрева — изменение сопротивления шунта и мой амперметр немножко начинает врать, но это для меня не критично.

    Для тех кто решит повторить схему рекомендую не повторять мои ошибки, не жалеть резисторов на шунт. Трансформатор выбрать с запасом мощности, и использовать более современный вольтметр и амперметр, цифровой например. Перечисленные мною недостатки в принципе не относятся к схемному решению, поэтому я своей работой доволен.

    ↑ Файлы

    Схема: ▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

    Разное: ▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

    Печатные платы: ▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте.

    Спасибо за внимание!

    Камрад, рассмотри датагорские рекомендации

    🌻 Купон до 1000₽ для новичка на Aliexpress

    Никогда не затаривался у китайцев? Пришло время начать!
    Камрад, регистрируйся на Али по нашей ссылке. Ты получишь скидочный купон на первый заказ. Не тяни, условия акции меняются.

    Читайте также:  С какими источниками света может работать блок аварийного питания бап

    🌼 Полезные и проверенные железяки, можно брать

    Куплено и опробовано читателями или в лаборатории редакции.

    Источник

    2 Схемы

    Принципиальные электросхемы, подключение устройств и распиновка разъёмов

    Самодельный лабораторный регулируемый БП

    Много различных лабораторных блоков питания представлено в интернете на радиотехнических сайтах, правда в основном простые конструкции. Эта же схема отличается достаточно высокой сложностью, которая оправдывается качеством, надёжностью и универсальностью БП. Представляем полностью самодельный блок питания с двухполяркой 2 х 30 В, с регулируемым током до 5 А и цифровым светодиодным А/В метром.

    На самом деле это два одинаковых блока питания в одном корпусе, что значительно увеличивает функциональность и возможности устройства, позволяя объединить мощности каналов вплоть до 10 Ампер. В то же время это не типичный симметричный источник питания, хотя тут можно подключать последовательные выходы для получения более высокого напряжения или псевдо симметрии, рассматривая общее соединение как массу.

    Схемы модулей лабораторного БП

    Все схемы плат питания были спроектированы с нуля, также и все печатные платы являются самостоятельной разработкой. Первый модуль «Z» — это диодный мост, фильтрация напряжения, формирование отрицательного напряжения для питания операционных усилителей, источник положительного напряжения 34 В постоянного тока для операционных усилителей, питание от отдельного вспомогательного трансформатора, реле, используемое для переключения обмоток главного трансформатора, управляемых от другой печатной платы, и источник питания 5 В 1 A для измерители мощности.

    Самодельный лабораторный регулируемый БП

    Самодельный лабораторный регулируемый БП

    Модули «Z» обоих блоков были сконструированы так, чтобы быть почти симметричными (чтобы лучше вписываться в корпус БП). Благодаря этому разъемы ARK были размещены на одной стороне для подключения проводов и радиатора для мостового выпрямителя, а платы, как показано на рисунках, размещены симметрично.

    Самодельный лабораторный регулируемый БП

    Самодельный лабораторный регулируемый БП

    Здесь использован 8-амперный диодный мост. Основные трансформаторы имеют двойные вторичные обмотки, каждая 14 В и ток чуть более 5 А. Блок питания был рассчитан на 5 ампер, но оказалось, что при полном напряжении 30 В не получается полных 5 А. Тем не менее, нет проблем с нагрузкой 5 ампер при более низком напряжении (до 25 В).

    Самодельный лабораторный регулируемый БП

    Самодельный лабораторный регулируемый БП

    Второй модуль представляет собой расширенный вариант блока питания с операционными усилителями.

    Самодельный лабораторный регулируемый БП

    Самодельный лабораторный регулируемый БП

    В зависимости от того, нагружен источник питания или находится в режиме ожидания, напряжение в области усилителя U3, ответственного за ограничение тока, изменяется (при той же настройке пределов потенциометра). Схема сравнивает напряжение на потенциометре P2 с напряжением на резисторе R7. Часть этого падения напряжения подается на инверсный вход U4. Благодаря этому выходное напряжение зависит от настройки потенциометра и практически не зависит от нагрузки. Почти потому, что по шкале от 0 до 5 А отклонение находится на уровне 15 мВ, чего на практике достаточно, чтобы получить стабильный источник для управления схемами LM3914, образующими светодиодную линейку.

    Самодельный лабораторный регулируемый БП

    Самодельный лабораторный регулируемый БП

    Схема визуализации особенно полезна, когда для регулировки используются многооборотные потенциометры. Замечательно, что с помощью такого потенциометра можно легко установить напряжение с точностью до третьего знака после запятой. Каждый светодиод в линейке соответствует току 0,25 А, поэтому, если предел тока ниже 250 мА, линия не отображается.
    Способ отображения линейки можно изменить с точки до линейки, но здесь выбрана точка, чтобы избежать влияния слишком большого количества световых точек и снизить энергопотребление.

    Самодельный лабораторный регулируемый БП

    Следующим модулем является система переключения обмоток и система управления вентиляторами, что установлены на радиаторах старых процессоров.

    Самодельный лабораторный регулируемый БП

    Самодельный лабораторный регулируемый БП

    Питание цепей от независимых обмоток вспомогательного трансформатора. Тут использованы м/с ОУ LM358, которые содержат внутри два операционных усилителя. В качестве датчика температуры использован транзистор BD135. После превышения 55C вентиляторы включаются, а после охлаждения примерно до 50C автоматически выключаются. Система переключения обмотки реагирует на значение напряжения на клеммах прямого выхода источника питания и имеет гистерезис около 3 В, поэтому не будет слишком частого срабатывание реле.

    Самодельный лабораторный регулируемый БП

    Измерение напряжения и тока нагрузки осуществляется с помощью чипов ICL7107. Платы счетчиков являются двухсторонними и имеют такую ​​конструкцию, что для каждого источника питания на одной плате имеется вольтметр и амперметр.

    Самодельный лабораторный регулируемый БП

    С самого начала идея состояла в том, чтобы визуализировать параметры блоков питания на семисегментных LED дисплеях, потому что они более читабельны, чем ЖК-дисплей. Но ничто не мешает измерять температуру радиаторов, переключателей обмоток и системы охлаждения на одном МК Atmega, даже сразу для обоих источников питания. Это вопрос выбора. Использование микроконтроллера выйдет дешевле, но как уже писали выше — это дело вкуса.

    Все вспомогательные системы питаются от трансформатора, который был перемотан путем удаления всех обмоток, кроме сетевой 220 В (первичной). Для этой цели использовался TS90 / 11.

    Самодельный лабораторный регулируемый БП

    В качестве вторичной обмотки намотаны 2 x 26 В переменки для питания операционных усилителей, 2 x 8 В переменки для питания индикаторов и 2 x 13 В для питания контроля температуры. Всего было создано шесть независимых обмоток.

    Корпус и раходы на сборку

    Самодельный лабораторный регулируемый БП

    Весь БП помещен в корпус, который также был разработан с нуля. Он был сделан на заказ. Известно, что в домашних условиях сложно сделать достойную коробку (особенно металлическую).

    Самодельный лабораторный регулируемый БП

    Алюминиевая лицевая панель, используемая для крепления всех индикаторов и дополнительных элементов, была изготовлена ​​на фрезерном станке в соответствии с конструкцией.

    Самодельный лабораторный регулируемый БП

    Безусловно, это не малобюджетная реализация, учитывая покупку двух мощных тороидальных трансформаторов и исполнение корпуса на заказ. Хотите попроще и подешевле — делайте такие БП.

    Самодельный лабораторный регулируемый БП

    Остальное можно оценить исходя из цен в интернет-магазинах. Конечно, некоторые элементы были получены из собственных запасов, но их тоже нужно будет покупать, создавая блок питания с нуля. Общая стоимость вышла на уровне 10000 рублей.

    Сборка и настройка ЛБП

    Рекомендуем строить этот лабораторный БП в следующем порядке:

    1. Сборка и проверка модуля с мостовым выпрямителем, фильтрацией и реле, подключение к трансформатору и активация реле от независимого источника для проверки выходных напряжений.
    2. Исполнение модуля переключения обмоток и контроля охлаждения радиаторов. Запуск этого модуля облегчит настройку будущего источника питания. Для этого понадобится другой источник питания для подачи регулируемого напряжения на вход системы, отвечающей за управление реле.
    3. Температурная часть схемы может быть настроена путем моделирования температуры. Для этой цели использовалась тепловая пушка, которая аккуратно нагревала радиатор с датчиком (BD135). Температура измерялась с помощью датчика, включенного в мультиметр (в то время не было готовых точных измерителей температуры). В обоих случаях настройка сводится к подбору PR201 и PR202 или PR301 и PR302 соответственно.
    4. Затем запускаем блок питания, регулируя RV1 таким образом, чтобы получить 0 В на выходе, что полезно при настройке ограничения тока. Само ограничение зависит от значений резисторов R18, R7, R17.
    5. Регулирование А/В индикаторов сводится к настройке опорных напряжений между контактами 35 и 36 микросхем ICL. В измерителях напряжения и тока использовался внешний эталонный источник. В случае с измерителями температуры такая точность не нужна, а отображение с десятичным знаком все же несколько преувеличено. Передача показаний температуры осуществляется одним выпрямительным диодом (на схеме их три). Это связано с дизайном печатной платы. На ней есть две перемычки.
    6. Непосредственно на выходных клеммах к вольтметру подключен делитель напряжения и резистор 0,01 Ом / 5 Вт, на котором падение напряжения используется для измерения тока нагрузки.

    Дополнительным элементом источников питания является схема, которая позволяет включать только один источник питания без необходимости использования второго канала, несмотря на тот факт, что вспомогательный трансформатор питает оба канала источника питания сразу. На той же плате размещена система для включения и выключения блока питания с помощью одной слаботочной кнопки (для каждого канала блока питания).

    Самодельный лабораторный регулируемый БП

    Схема питается от инвертора, который в состоянии ожидания потребляет около 1 мА от сети 220 В. Все схемы в хорошем качестве можете скачать в архиве

    Источник