Меню

Блок индикации для лабораторного блока питания

ЛАБОРАТОРНЫЙ БП С ИНДИКАЦИЕЙ НА МИКРОКОНТРОЛЛЕРЕ

Представляю для вашего внимания проверенную схему хорошего лабораторного источника питания, опубликованного в журнале «Радио» №3, с максимальным напряжением 40 В и током до 10 А. Блок питания оснащён цифровым блоком индикации, с микроконтроллерным управлением. Схема БП показана на рисунке:

Описание работы устройства. Оптопара поддерживает падение напряжения на линейном стабилизаторе примерно 1,5 В. Если падение напряжения на микросхеме увеличивается (например, вследствие увеличения входного напряжения), светодиод оптопары и, соответственно, фототранзистор открываются. ШИ-контроллер выключается, закрывая коммутирующий транзистор. Напряжение на входе линейного стабилизатора уменьшится.

Плата лабораторного блока питания 0-40В

Для повышения стабильности резистор R3 размещают как можно ближе к микросхеме стабилизатора DA1. Дроссели L1, L2 — отрезки ферритовых трубок, надетых на выводы затворов полевых транзисторов VT1, VT3. Длина этих трубок равна примерно половине длины вывода. Дроссель L3 наматывают на двух сложенных вместе кольцевых магнитопроводах К36х25х7,5 из пермаллоя МП 140. Его обмотка содержит 45 витков, которые намотаны в два провода ПЭВ-2 диаметром 1 мм, уложенных равномерно по периметру магнитопровода. Транзистор IRF9540 допустимо заменить на IRF4905, а транзистор IRF1010N — на BUZ11, IRF540.

Изготовление лабораторного блока питания 0-40В

Если потребуется блок питания с выходным током, превышающим 7,5 А, необходимо добавить еще один стабилизатор DA5 параллельно DA1. Тогда максимальный ток нагрузки достигнет 15 А. В этом случае дроссель L3 наматывают жгутом, состоящим из четырех проводов ПЭВ-2 диаметром 1 мм, и увеличивают примерно в два раза емкость конденсаторов С1—СЗ. Резисторы R18, R19 подбирают по одинаковой степени нагрева микросхем DA1, DA5. ШИ-контроллер следует заменить другим, допускающим работу на более высокой частоте, например, КР1156ЕУ2.

САМОДЕЛЬНЫЙ ЛАБОРАТОРНЫЙ БП - ОБЩИЙ ВИД

Модуль цифрового измерения напряжения и тока лабораторного БП

Основа устройства — микроконтроллер PICI6F873. На микросхеме DA2 собран стабилизатор напряжения, которое используется и как образцовое для встроенного АЦП микроконтроллера DDI. Линии порта RA5 и RA4 запрограммированы как входы АЦП для измерения напряжения и тока соответственно, a RA3 — для управления полевым транзистором. Датчиком тока служит резистор R2, а датчиком напряжения — резистивный делитель R7 R8. Сигнал датчика тока усиливает ОУ DAI. 1. а ОУ DA1.2 использован как буферный усилитель.

Схема цифрового измерения напряжения и тока лабораторного БП

  • Измерение напряжения, В — 0..50.
  • Измерение тока, А — 0.05..9,99.
  • Пороги срабатывания защиты:
  • — по току. А — от 0,05 до 9.99.
  • — по напряжению. В — от 0,1 до 50.
  • Напряжение питания, В — 9. 40.
  • Максимальный потребляемый ток, мА — 50.

Работа цифрового измерения напряжения и тока: при нажатии на кнопку SB3 «Авто в режиме установки выполняется выход на рабочий режим, а в рабочем режиме — автоматическая установка защиты. В последнем случае значения тока и напряжения, при которых срабатывает защита, автоматически устанавливаются больше текущих значений напряжения и потребляемого тока на две единицы младшего разряда. Подробнее о работе модуля читайте на форуме.

Модуль цифрового измерения напряжения и тока

Светодиодные семиэлементные индикаторы могут быть любые с общим катодом, кнопки — малогабаритные с самовозвратом, например DTST-6, постоянные резисторы — МЛТ, С2-22. Резистор R2 изготовлен из отрезка высокоомного провода, в авторском варианте использован резистор от вышедшего из строя мультиметра М-830. Полевой транзистор — мощный переключательный с n-каналом, желательно с буквой L в первой части названия, так как для его открывания достаточно напряжения 4-5 В. При токах нагрузки более 5 А сопротивление открытого канала должно быть не более 0,01 Ом. Необходимо обратить внимание на то, чтобы максимально допустимый ток стока был больше тока нагрузки.

цифровой измеритель напряжения и тока на микроконтроллере

Налаживание блока индикации начинают с установки подстроенным резистором R4 выходного напряжения (5,12 В) стабилизатора на микросхеме DA2. при этом предварительно микроконтроллер удаляют. Затем его устанавливают и подают на вход напряжение 10. 15 В. Измеряя это напряжение цифровым вольтметром, сравнивают его показания с показаниями индикатора устройства и при небольших отличиях добиваются их совпадения резистором R4. При этом следует учесть, что напряжение питания микроконтроллера не должно превышать 5,5 В. В случае необходимости подбирают резистор R7.

Передняя панель лабораторного блока питания 0-40В, с цифровой индикацией тока и напряжения

Для налаживания измерителя тока к выходу устройства подключают нагрузку с последовательно включенным амперметром. При токе 100мА сравнивают показания и добиваются их совпадения подбором резистора R5. Затем проверяют точность показаний при токе в несколько ампер. Плата и прошивка индикатора — в архиве.

лабораторный блок питания 0-40В, с цифровой индикацией тока и напряжения собранный своими руками

После срабатывания защиты устраняют причину, ее вызвавшую. Возвращают устройство в исходное состояние, отключив и включив источник или включив режим «Установка», а затем нажимая на кнопку SB3 «Авто».

фотографии лабораторного блока питания радиолюбителя

Необходимо отметить, что устройство реагирует на нажатие кнопок после их отпускания. Если присутствует дребезг контактов, то параллельно кнопкам следует установить конденсаторы емкостью 0.047. 0,22 мкФ. Питать устройство желательно от отдельного источника. Конструкцию собрал и испытал: Romick_Калуга.

Источник



Блок питания 0…30В/5А с цифровой индикацией напряжения и тока

Описываемый блок питания предназначен для использования в радиолюбительской лаборатории. Несмотря на то, что в радиолюбительской литературе печаталось множество схем подобных устройств, данный блок питания не требователен к специализированным микросхемам и импортным элементам. В настоящее время вопрос приобретения микросхем по-прежнему актуален и в некоторых регионах, доставать их проблематично. Данный блок питания является модернизацией блока питания, описанным в ( II ). Блок питания собран только из доступных деталей.

Характеристики блока питания:
Выходное напряжение регулируется от 0 до 30 В.
Выходной ток 5 А.
Падение напряжения при токе от 1 А до 6 А ничтожно мало и на выходных показателях не отражается.

Читайте также:  Как проверить обмотку блока питания

Схема блока питания показана на рис.1 ниже

Схема блока питания
Рис. 1

Данный блок питания содержит три основных узла: внутренний сетевой узел питания VD 1- VD 4, C 1- C 7, DA 1, DA 2, узел защиты от перегрузки и КЗ VS 1, R 1- R 4, VD 3 и основной узел – регулируемый стабилизатор напряжения VT 2- VT 7, VD 4- VD 5, R 4- R 14, C 8.

А так же к блоку питания добавляется цифровая панель, т.е. блок индикации, который показан на рис.5.

Внутренний сетевой узел питания построен по традиционной схеме с сетевым трансформатором Т1.

Узел защиты особенностей не имеет. Датчик тока рассчитывался на ток 3А, но можно его рассчитать и на 5А. Длительное время блок питания эксплуатировался с током 5А. Никаких сбоев в его работе не наблюдалось. Диод HL 1 индицирует перегрузку по току или КЗ в нагрузке.

Основной узел – регулируемый стабилизатор напряжения компенсационного типа. Он содержит входную дифференциальную ступень на транзисторах VT 5, VT 7, две ступени усиления на транзисторах VT 3 и VT 2, и регулирующий транзистор VT 1. Элементы VT 4, VT 6, VD 4, VD 5, R 5 — R 8, R 10 образуют стабилизаторы тока. Конденсатор С8 предотвращает самовозбуждение блока. Т.к. транзисторы VT 5 и VT 7 не подбирались одинаковыми, то имеется определенное «смещение нуля» этого каскада, которое и является минимальным напряжением блока питания. В небольших пределах оно регулируется с помощью подстроечного резистора R 7 и, в авторском варианте достигало на выходе блока питания приблизительно 47 m V . Выходное напряжение регулируется резистором R 13. Верхняя граница напряжения – подстроечным резистором R 14.

5-107-2.jpg
Рис. 2

Конструкция и детали. Мощность трансформатора Т1 должна быть не менее 100 – 160вт, ток обмотки II – не менее 4 – 6А. Ток обмотки III – не менее 1…2А. Диодную сборку RS 602 можно заменить на сборку RS 603 или диодами, рассчитанными на ток 10А. Диодный мост VD 2 можно заменить на любой из серии КЦ402 – КЦ405, которые приклеиваются со стороны печатных дорожек, зеркально конденсатору С1 и соединяются гибкими проводниками с контактными площадками VD 2 на плате. Транзистор VT 1 следует устанавливать на теплоотводе площадью не менее 1500см 2 . Площадь радиатора рассчитывается по формуле S = 10 I n ( U вх. – U вых. ), где S – площадь поверхности радиатора (см 2 ); I n – максимальный ток, потребляемый нагрузкой; U вх. – входное напряжение (В); U вых. – выходное напряжение (В).

Транзистор КТ825А – составной. Его можно заменить парой транзисторов, как показано на рисунке 2.

Данные транзисторы, соединенные по схеме Дарлингтона. Резистор R 4 подбирают экспериментально, по току срабатывания защиты. Резисторы R 7 и R 14 – многооборотные СП5-2. Резистор — R 13 любой переменный с линейной функциональной характеристикой (А). В авторском варианте применен переменный резистор ППБ-3А на 2,2К — 5% . Микросхемы DA 1 и DA 2 можно заменить аналогичными отечественными КР142ЕН5А и КР1162ЕН5А. Их мощность позволяет стабилизированное напряжение ± 5 В для питания внешних нагрузок с током потребления до 1А. Данной нагрузкой является цифровая панель, которая используется для цифровой индикации напряжения и тока в блоках питания. Если не использовать цифровую панель, то микросхемы DA 1 и DA 2 можно заменить микросхемами 78 L 05 и 79 L 05.

Печатная плата блока питания показана на рис.3 и рис.4.

Схема расположения элементов блока питания
Рис. 3

Печатная плата блока питания
Рис. 4

Налаживание. Так как конструкция расположена на двух печатных платах, сначала настраивают блок питания, затем блок цифровой индикации.

Блок питания. При исправных деталях и отсутствие ошибок в монтаже устройство начинает работать сразу после включения. Его налаживание заключается в установлении необходимых пределов изменения выходного напряжения и тока срабатывания защиты. Движки резисторов R 7 и R 13 должны находиться в среднем положении. Резистором R 14 по вольтметру добиваются показания 15 вольт. Затем движок резистора R 13 переводят в минимальное положение и по вольтметру резистором R 7 устанавливают 0 вольт. Теперь движок резистора R 13 переводят в максимальное положение и резистором R 14 по вольтметру устанавливают напряжение 30 вольт. Резистор R 14 можно заменить постоянным, для этого в плате предусмотрено место – резистор R 15. В авторском варианте это резистор 360 Ом. Размер печатной платы блока питания 110 х 75 мм . Диоды VD 3 – VD 5 можно заменить на диоды КД522Б.

Цифровая панель состоит из входного делителя напряжения и тока, микросхемы КР572ПВ2А и индикации из четырех семисегментных светодиодных индикаторов, показанных на рис 5. Резистор R 4 цифровой панели состоит из двух отрезков константанового провода ? =1мм и длиной 50мм. Разница в номинале резистора должна превышать 15 — 20%. Резисторы R 2 и R 6 марки СП5-2 и СП5-16ВА. Переключатель режимов индикации напряжения и тока типа П2К. Микросхема КР572ПВ2А представляет собой преобразователь на 3,5 десятичных разрядов, работающий по принципу последовательного счета с двойным интегрированием, с автоматической коррекцией нуля и определением полярности входного сигнала.

Для индикации использовались импортные светодиодные семисегментные индикаторы KINGBRIGT DA 56 – 11 SRWA с общим анодом. Конденсаторы С2 – С4 желательно применять пленочные типа К73-17. Вместо импортных семисегментных светодиодов можно применить отечественные с общим анодом типа АЛС324Б.

Цифровая панель индикации напряжения и тока
Рис. 5

Цифровая панель индикации напряжения и тока. После включения питания и безошибочном монтаже, при исправных деталях должны засветиться сегменты индикации HG 1- HG 3. По вольтметру резистором R 2 на ножке 36 микросхемы КР572ПВ2 выставляется напряжение 1 вольт. К ножкам (а) и ( b ) подключают блок питания. На выходе блока питания устанавливают напряжение 5 … 15 вольт и подбирают резистор R 10 (грубо), заменив его, на время, переменным. С помощью резистора R8 устанавливают более точное показание напряжения. После чего, к выходу блока питания подсоединяют переменный резистор мощностью 10 … 30 ватт, по амперметру выставляют ток равным 1А и резистором R 6 выставляют значение на индикаторе. Показание должно быть 1,00. При токе 500 мА – 0,50, при токе 50мА – 0,05. Таким образом, индикатор может индицировать ток от 10мА, т.е. 0,01. Максимальное значение индикации тока 9,99А.

Читайте также:  Замена конденсаторов блока питания телевизора

Для большей разрядности индикации можно применить схему на КР572ПВ6. Размер печатной платы цифровой панели 80 х 50 мм ., рис.6 и рис.7. Контактные площадки U и I на печатной плате цифровой панели, с помощью гибких проводников подключаются к точкам соответствующих индикаторов HG 2 и HG 1. Микросхему КР572ПВ2А можно заменить на импортную микросхему ICL7107CPL.

5-107-6.jpg
Рис. 6

5-107-7.jpg
Рис. 7

Литература:

• Стабилизированный выпрямитель тока типа ТЭС 12 – 3 – НТ. г Горце Делчев. Болгария. 1984г.
• А.Патрин Лабораторный блок питания 0…30 В. РАДИО №10 2004г., стр.31.
• Импульсный блок питания на базе ПК. С.Митюрев. РАДИО №10 2004г. стр.33.
• Ануфриев А. Сетевой блок пита­ ния для домашней лаборатории. — Радио, 1992, N 5, С.39-40.
• Стабилизатор напряжения с двойной защитой Ю. КУРБАКОВ , РАДИО февраль 2004г. стр.39.
• Бирюков С. Портативный цифровой мультиметр. — В помощь радиолюбителю, вып. 100 — ДОСААФ, 1988. с. 71-90.
• Бирюков С. Цифровые устройства на МОП интегральных микросхемах. — М.: Радио и связь, 1990:1996 (второе издание).
• Радио N 8 1998г. с.61-65
• Digital Voltmeter

Источник

Лабораторные блоки питания 2189

Одноканальные источники питания

Линейные источники питания мощностью до 1000Вт

Программируемые источники питания

Многоканальные источники питания

Системные источники питания

Аксессуары к лабораторным блокам питания

Лабораторные блоки питания представляют собой стабилизированные регулируемые источники питания, обеспечивающие высокую точность выходного сигнала при изменении параметров нагрузки и питающего напряжения в широких пределах.

По схемному построению лабораторные блоки питания делятся на линейные и импульсные. Схема линейного источника состоит из мощного сетевого трансформатора, выпрямителя и стабилизатора. Такие блоки питания характеризуются минимальным уровнем шумов, создают минимальные помехи в сетях электропитания, но имеют большие ве c и габариты, низкий КПД.

Импульсные лабораторные блоки питания сначала выпрямляют сетевое напряжение на входе, затем преобразуют его в переменное напряжение высокой частоты, далее снова выпрямляют и стабилизируют. Такая схема позволяет уменьшить габариты и вес силового трансформатора и соответственно самого блока, повысить КПД, но создает электромагнитные помехи в цепях питания.

Купить лабораторные блоки питания можно с одним выходным каналом или несколькими. Программируемые блоки питания позволяют моделировать различные режимы работы для проведения лабораторных испытаний.

Источники могут иметь различные дополнительные функции: высокоскоростное управление, интерфейсы передачи данных, усиленную изоляцию, энкодеры, устройство задания последовательности, поглотители энергии и прочие.

Основными поставщиками лабораторных блоков питания являются: Tektronix, Keithley, QJE, Good Will, Mastech, Rohde & Schwarz, АКИП, Мегеон,Rigol.

Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Архангельск, Барнаул, Белгород, Владимир, Волгоград, Вологда, Воронеж, Гомель, Екатеринбург, Иваново, Ижевск, Казань, Калуга, Кемерово, Киров, Кострома, Краснодар, Красноярск, Курган, Курск, Липецк, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Орёл, Пермь, Псков, Ростов-на-Дону, Рязань, Самара, Саранск, Саратов, Смоленск, Ставрополь, Тверь, Томск, Тула, Тюмень, Уфа, Чебоксары, Челябинск, Ярославль. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Связной» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Владивосток, Махачкала, Томск, Оренбург, Новокузнецк, Астрахань, Пенза, Чебоксары, Калининград, Улан-Удэ, Сочи, Иваново, Брянск, Сургут, Нижний Тагил, Архангельск, Чита, Курган, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и еще в более чем 1000 городов и населенных пунктов по всей России.

Товары из группы «Лабораторные блоки питания» вы можете купить оптом и в розницу.

Источник

Лабораторные блоки питания — какие они бывают (подборка-путеводитель)

Лабораторные блоки питания (ЛБП) отличаются от «обычных» тем, что позволяют менять и контролировать свои параметры (напряжение и ток), подстраивая их под требования питаемого устройства.

К лабораторным блокам питания также часто применяются повышенные требования по «чистоте» выходного напряжения, но единых требований в этом отношении нет — всё зависит от области применения.

Лабораторные блоки питания существуют с незапамятных времён; и кое-где даже до сих пор используются древнесоветские изделия (а собственно, почему бы и нет, если они находятся в работоспособном состоянии?!). Пример, как они выглядели (один из вариантов) — здесь.

Лабораторные блоки питания могут быть импульсными и линейными, а также иметь аналоговую или цифровую регулировку параметров.

Кроме лабораторных блоков питания, существуют и более простые регулируемые блоки питания. Они позволяют только установить напряжение на выходе, а контроля и регулировки выходного тока не имеют. Они не будут рассматриваться в этой статье, хотя в каких-то случаях и могут заменить ЛБП.

Подборку начнём с простого, но мощного импульсного лабораторного блока питания LW-K3010D (обзор).

По обычаям маркировки современных ЛБП, их максимальные выходные напряжение и ток указываются прямо в наименовании (как правило). Например, для данного блока это — 30 Вольт и 10 Ампер.

Но данный ЛБП всё-таки будет исключением: на самом деле он может отдать более высокое напряжение — до 32 Вольт («бонус» в 2 Вольта от производителя). По току он просто соответствует заявленным характеристикам без запаса.

Читайте также:  Блок питания асус adp 65jh bb

Этот блок имеет чисто аналоговую настройку выходных параметров.

При этом напряжение устанавливается довольно точно (до 0.1 В) с помощью многооборотного переменника; а величина выходного тока стабилизации — наоборот, устанавливается довольно грубо с помощью «обычного» переменника.

К положительным качествам этого блока можно отнести не только высокую отдаваемую мощность, но и вертикальную конструкцию, занимающую мало места на столе.

Цена на момент составления подборки — около $50 — 60 при доставке в Россию.

Приобрести его можно на Алиэкспресс: Вариант 1 и Вариант 2.

Далее рассмотрим семейство импульсных лабораторных блоков питания от того же производителя (Longwei), но более продвинутых и дорогих: от PS-302DF (30 В, 2 А) и до PS-1003DF (100 В, 3 А); всего — целых 10 (!) вариантов комбинаций напряжения и тока:

Это семейство блоков питания имеет всё ещё чисто аналоговое управление, но уже улучшенное: имеются регуляторы грубой и точной настройки как по напряжению, так и по току.

Кроме того, улучшена индикация: добавлены показания мощности; и все индикаторы сделаны 4-значными.

И, до кучи, блоки имеют выход USB 5V 2A для зарядки мобильников. 🙂

Цена — от $75 с учётом доставки за стандартный блок PS-3010DF (30 В, 10 А) ссылка; и до $126 за самый высоковольтный PS-1003DF (100 В, 3 А) ссылка.

Существует также серия похожих по параметрам импульсных блоков питания компании Wanptek, но с другим дизайном. Эта серия включает восемь блоков с разными комбинациями токов и напряжений: от NPS306W (30 В, 6 А) и до NPS1203W (120 В, 3 А).

Один из серии этих блоков может отдать напряжение до 120 В; в то время, как у конкурентов максимум обычно составляет 100 В.

Эти блоки питания имеют узкую конструкцию, занимающую мало места на рабочем столе.

Индикация может быть трёх- или четырёхзначной; имеется индикатор мощности, отдаваемой в нагрузку.

Цена блоков — от $53 и до $86.

Приобрести его можно на Алиэкспресс можно по ссылкам: Вариант 1 или Вариант 2.

Для тех, кто любит «погорячее», можно рекомендовать импульсный лабораторный блок питания Gophert CPS-3232 (32 В, 32 А). Итого, мощность — свыше киловатта!

Этот лабораторный блок питания имеет плоскую конструкцию, в связи с чем удобнее его будет применять на рабочем месте, оборудованном дополнительными уровнями рабочего пространства над столом.

Но, поскольку блок — импульсный, то вес его не слишком большой — около 2.2 кг; несмотря на очень высокую мощность.

Блок имеет цифровое управление, но несколько «заковыристое»: с одним регулятором-энкодером и кнопочками переключения регулируемого параметра (ток или напряжение). Возможности запомнить несколько настроек нет.

Кроме того, по отзывам, его вентилятор может иметь повышенную шумность.

Цена — конечно же, не маленькая: около $157.

Посмотреть актуальные цены и/или купить блоки питания этого мощного семейства на Алиэкспресс можно здесь. По этой же ссылке можно найти другие блоки с параметрами от 16 В / 60 А до 36 В / 30 А.

Следующий лабораторный блок питания — KORAD KA3005D (30 В, 5 А).

Он не отличается высокой мощностью, зато отличается продвинутым цифровым управлением: он может запоминать несколько настроек. Кроме того, напряжение и ток могут устанавливаться с высокой точностью; что обеспечивается 4-значными индикаторами.

Блок питания — не из дешевых, цена составляет около $86 с учётом доставки.

Посмотреть актуальную цену и/или купить на Алиэкспресс можно здесь.

И, наконец, самый необычный из рассматриваемых сегодня лабораторных блоков питания — 3-канальный линейный лабораторный блок питания KORAD KA3305P.

Как и положено линейным блокам питания, он содержит много металла в виде трансформаторов и радиаторов, и потому — очень тяжелый. Его вес — 9.4 кг.

Один из его каналов — фиксированный и отдаёт напряжение 5 В при токе до 3 Ампер. Остальные два канала — регулируемые в пределах 0-30 В с током 0-5 А. Регулируемые каналы могут работать как «сами по себе», так и включены в параллельный или последовательный режим (инструкция — на сайте продавца, ссылка — далее).

Кроме того, этот блок питания имеет возможность запоминания нескольких настроек и интерфейс USB для связи с компьютером.

Цена на этот блок непременно заставит потребителя этот блок питания уважать и обращаться с ним с осторожностью. Она составляет $284 с учётом доставки в Россию. Что интересно — он уже может попасть под новый российский закон об уплате пошлины с товаров стоимостью свыше $200 (тут могут быть «тонкости», поскольку часть стоимости относится к доставке).

Посмотреть актуальную цену и/или купить на Алиэкспресс можно здесь.

Только что приведённая небольшая подборка не может охватить всё многообразие моделей лабораторных блоков питания, но показывает основные их классы.

Лабораторные блоки питания могут отличаться не только по мощности, но и по способу управления (цифровое или аналоговое), наличию памяти режимов, индицируемым параметрам, количеству каналов, и, наконец, по способу формирования выходного напряжения — импульсные или линейные блоки питания.

Линейные блоки питания — самые дорогие и тяжелые, поэтому их применение должно быть технически оправдано. Обычно они применяются в тех сферах, где предъявляются повышенные требования к уровню высокочастотных пульсаций и помех.

Во всех остальных случаях можно применять импульсные блоки питания, цена на которые — достаточно гуманная.

Источник