Меню

Балансирующее зарядное устройство своими руками

Балансирующее зарядное устройство своими руками

Активный балансир для LiFePO4 своими руками

Статья обновлена: 2020-12-17

Для получения заданного выходного напряжения литиевые аккумуляторы последовательно соединяются в батарею. Например, для получения батареи вольтажом 24 В последовательно соединяется 7 или 8 LiFePO4 аккумуляторов, а для получения вольтажа 36 В – 10–12 элементов. При зарядке аккумуляторной сборки от общего источника питания с напряжением, соответствующим вольтажу АКБ, нужно обеспечить равномерный уровень заряда всех элементов. При этом важно, чтобы напряжение на каждом элементе не превысило допустимого значения.

Но элементы питания в сборке не идентичны, и достигают предельно допустимого напряжения в разное время. С другой стороны, когда хотя бы на одном аккумуляторе напряжение достигнет допустимого максимума, процесс зарядки необходимо прекратить. Но в таком случае остальные ячейки остаются недозаряженными, и при дальнейшем использовании они разряжаются быстрее.

Такой дисбаланс между ячейками приводит к снижению емкости всей батареи, сокращению времени ее автономной работы и преждевременному выходу из строя «слабых звеньев» – аккумуляторов, которые постоянно оказывались недозаряженными. Для решения этой проблемы используются балансиры. Они выравнивают напряжение на всех аккумах сборки и не позволяют ему превысить пороговое значение. Балансиры могут использоваться как самостоятельно, так и в составе многофункциональных BMS плат или совместно с ними.

Принцип работы

Балансирующие системы отслеживают напряжение на последовательно соединенных аккумах, а когда оно достигает граничной величины – включают силовой ключ. Тогда в работу включается балластный резистор. Прирост напряжения на подзаряжаемой ячейке останавливается, когда остаточный ток заряда становится соизмеримым току, идущему через резистор. Остальные элементы, еще не набравшие заряд, в это время продолжают заряжаться.

Процесс зарядки аккумуляторной сборки завершается после срабатывания всех балансиров. В итоге вольтаж всех элементов сборки становится равным заданной предельной величине. В зависимости от используемой схемы, балансиры для LiFePO4 аккумуляторов имеют ток срабатывания 3,52–3,55 В. Номинально вольтаж LFP ячеек составляет 3,2–3,3 В. В заряженном состоянии для них характерно напряжение 3,6 В, а в разряженном –2 В.

Виды балансировочных систем

По принципу действия различают балансиры 2 типов:

  1. Активные – выравнивающие напряжение на элементах в ходе подзарядки батареи. Когда 1-й элемент из аккумуляторной сборки достигает граничного напряжения, активная система баланса останавливает его питание, и заряжается 2-й элемент. Производители используют разные схемы балансиров для LiFePO4 элементов, в т. ч. емкостные и трансформаторные. Все они умеют распределять энергию от ячеек с большим уровнем заряда к менее заряженным. При заряде это делается выборочным снижением и повышением зарядного тока в зависимости от состояния элементов. При разряде аналогичным образом перераспределяются разрядные токи.
  2. Пассивные – используют аналоговые компоненты и не зависят от внешнего питания. Они подзаряжают аккумуляторы до нужного значения напряжения (одинакового с остальными ячейками) малыми токами и применяют резисторы. При замыкании аккумулятора шунтирующим резистором зарядный ток отчасти следует через аккум, а отчасти – через шунт. Соответственно, интенсивность зарядного процесса в отношении шунтированного аккумулятора уменьшается, и прирост напряжения на нем замедляется. КПД таких систем ниже из-за потерь энергии в виде тепла и невозможности использования всей емкости АКБ.

Балансир для LiFePO4 своими руками

Для самостоятельной сборки простого балансира для LFP ячеек можно воспользоваться распространенной схемой, которая приведена на фото. Но чтобы полноценно использовать регулируемый стабилитрон TL431, его нужно преобразовать в триггер Шмитта. В итоге получится точный и термически стабильный балансир, четко подающий управляющий импульс на силовой ключ.

Для превращения стабилитрона TL431 в триггер Шмитта достаточно включить в схему резистор R5 и p-n-p транзистор Т1. Принцип работы схемы таков: делителем R3, R4 настраивается порог отслеживаемого напряжения. При помощи делителя R3, R4 схему можно перенастроить для контроля любого другого напряжения. Значение предельного тока балансировки задает резистор R7 и напряжение на аккумуляторной секции.

Когда на управляющем электроде напряжение составит 2,5 В, произойдет открытие стабилитрона TL431 и транзистора Т1. Потенциал коллектора возрастет, и частично это напряжение пойдет в цепь через резистор R5. Произойдет лавинное вхождение TL431 в состояние насыщения. В этот момент наблюдается гистерезис – система включается при 3,6 В и выключается при 3,55 В. В затворе силового ключа создается управляющий импульс.

Такой балансир создается в виде самостоятельной платы, подключаемой к балансировочному разъему при зарядке. В современных BMS платах защита элементов питания от перенапряжения и разбалансировки по уровню заряда – это одна из функций защиты, и она выполняется микроконтроллером. Но оптимальным решением считается использование активного балансира в сочетании с BMS платой.

;

Источник



Балансировочное зарядное устройство для Li-ion

Сейчас на рынке полно зарядных устройств. Автоматы и нет, с измерением емкости и без него. Большинство зарядных устройств универсальны и могут заряжать элементы любой химии. Литий-ион и литий-полимер все чаще применяют в разных устройствах.
Не так давно я переделывал аккумулятор шуруповерта на литий-ионные элементы формата 18650. Заряжаю его умным зарядным устройством Turnigy. Но данное зарядное есть не у каждого.

Читайте также:  Зарядное устройство диолд дэа 14нк 01

Понадобится для сборки

Принял решение, собрать простое зарядное устройство с балансиром для литий-иона. Зарядное устройство имеет 3 одинаковых независимых канала. Им можно заряжать от одного элемента до трех. Если нужно, можно добавлять любое количество каналов. У меня же их три, то есть 3S или 11.1 вольт.
Корпусом для балансирующего зарядного устройства является корпус от сгоревшего роутера D-link. Если есть возможность, берите корпус побольше, очень тесно получается в нем работать.

Одним из главным компонентном, являются блоки питания каждого канала. Их роль выполняю платы зарядных устройств планшетов, с выходом 5 Вольт и током от 1 Ампера (или можно купить на Али Экспресс — импульсный блок питания 5 В 1 А).

Контроллерами заряда служат платы из Китая — контроллер заряда для аккумулятора 18650. На каждый канал, свой контроллер. У меня платы без защиты, но она в данном случае не нужна. Можно применять платы контроллеров вместе с разъемами, у меня на двух они отсутствуют, сняты для других проектов. Цена на данные модули копеечная. Если занимаетесь доработкой устройств на литий-ионе и литий-полимере, то данные контроллеры незаменимы.

Изготовление балансировочного зарядного устройства

Платы контроллеров заряда нужно припаять к выходам плат зарядок. Можно и отдельно. Я припаял на толстые жилы от силового кабеля, так конструкция более жесткая.

На платах контроллеров заряда имеются светодиоды, которые индицируют заряд и окончание заряда. Их нужно выпаять. Вместо них будут обычные светодиоды, разного цвета. Они будут прикреплены к окошкам, где раньше моргали светодиоды роутера.

К светодиодам припаял провода от старого шлейфа жесткого диска компьютера. Если есть светодиоды с общим анодом(плюсом), то лучше применить их. У меня таких не оказалось, применил что есть.

На место старых светодиодов, припаиваем шлейфы со светодиодами. На фото у меня зеленый светодиод на 3 мм. Пришлось заменить, оказались паленые, не проверил перед распайкой.

Для задней панели нужно вырезать накладку. В ней проделываем пропилы под выключатель питания и выходной разъем на 4 пина. Разъем снял со старого жесткого диска. Можно применить любой, на нужное количество пинов, с током 1-2 Ампера.
Выключатель снял со старого блока питания компьютера. Накладку прикручиваем на два винта, для жесткости.

Выходной разъем приклеиваем на эпоксидный клей или соду с супер клеем. Я для быстроты приклеил и одним и другим.
Плата зарядок с контроллерами, приклеил на термо клей. Но перед фиксацией припаял сетевые проводочки.

Один из сетевых проводочков, припаиваем к выключателю. Второй, непосредственно к второму проводу сетевого шнура.

Теперь приклеиваем светодиоды. Я клеил термо клеем, можно и содой с супер клеем.

Распаиваем выходные перемычки.
Плюс первого контроллера на первую ножку выходного разъема. Минус его на вторую ножку и соединяем с плюсом второго контроллера. И так далее.

Источник

Платы балансировки литиевого аккумулятора: назначение и схема плат защиты li ion аккумуляторов

При последовательном подключении батарей наблюдается разброс параметров изделий, что не позволяет поддерживать требуемое выходное напряжение. Проблема возникает из-за неравномерной зарядки элементов. Для устранения дефекта используется плата балансировки литиевых аккумуляторов, обеспечивающая равномерный заряд изделий и предотвращающая перезаряд элементов аккумуляторной банки.

Узнайте о назначении платы балансировки литиевых аккумуляторов.

Балансировочная плата для литиевых аккумуляторов

При соединении нескольких источников постоянного тока в общую банку по последовательной методике обеспечивается суммирование напряжений. При этом емкость аккумулятора будет определяться элементом с минимальным значением параметра.

Для зарядки устройства используется две методики – последовательная и параллельная. При первом способе осуществляется подача питания от единого источника, напряжение соответствует значению параметра на полностью заряженном аккумуляторе.

Параллельный метод предусматривает независимую зарядку каждого изделия, входящего в аккумуляторную банку. В конструкцию зарядного блока входят не связанные между собой источники питания. Для контроля параметров электрического тока применяются индивидуальные устройства. Зарядные блоки подобной конструкции встречаются редко, для восполнения емкости литиевых аккумуляторов применяется последовательная схема зарядки.

При совместной зарядке необходимо не допустить повышения напряжения на клеммах элементов, составляющих аккумуляторную банку, выше допустимого предела (зависит от модели батареи).

Из-за различных характеристик элементов пороговое значение достигается в разное время.

Пользователь вынужден прекратить зарядку после фиксации допустимого напряжения на первом источнике, при этом остальные компоненты АКБ остаются недозаряженными, что негативно влияет на конечную емкость батареи.

При эксплуатации элемента питания происходит неравномерное снижение напряжения на выводах элементов. Разрядка прекращается в момент фиксации минимально допустимого порога на секции, не получившей необходимого заряда.

Читайте также:  Пусковые и зарядные устройства для запуска двигателя

Для исключения возможности возникновения ситуации в цепь питания батареи вводится балансировочный блок, который контролирует параметры на каждой секции. При достижении запрограммированного значения происходит параллельная коммутация балластного резистора, отсекающего подачу питания на клеммы секции.

Балластное сопротивление отключает питание в случае превышения силы тока, идущего через резистор, над параметром в цепи питания секции аккумулятора. Остальные компоненты аккумуляторной банки продолжают заряжаться.

По мере фиксации максимального напряжения происходит последовательное отключение цепей питания. После подключения всех имеющихся балластных сопротивлений зарядка прекращается. Напряжение всех секций будет равняться значению параметра, на который отрегулирован балансир.

Плата защиты литиевого аккумулятора

Защитные платы для Li-ion или Li-pol аккумуляторов дополнительно защищают изделия от взрыва или воспламенения, происходящего из-за избытка газов при перезарядке. Следует учитывать, что регулярная эксплуатация недозаряженных элементов приводит к деградации катода и анода, что сокращает срок службы изделия.

Часть аккумуляторных банок оснащается платой защиты в заводских условиях. Для самодельных устройств и некоторых аккумуляторов потребуется монтаж дополнительного узла фабричного изготовления или собранного своими руками.

Схема платы балансировки литиевых аккумуляторов.

В конструкции всех литий-ионных или литий-полимерных банок предусмотрена защитная плата PCB или PCM. Устройство обеспечивает разрыв цепи при возникновении аварийной ситуации (например, короткого замыкания).

Защитный блок не оснащен регуляторами напряжения или силы тока, допускается разрядка элементов до 2,5 В и ниже (зависит от качества контроллера), что негативно влияет на рабочие характеристики аккумуляторов. Плата балансировки MBS устанавливается вместо защитного устройства, узел обеспечивает защиту от замыканий и равномерную зарядку элементов.

Схемы плат защиты литиевого аккумулятора

На рынке представлены следующие балансировочные платы фабричного изготовления:

  1. Устройство на базе стабилизатора LM317 обеспечивает подачу на батареи напряжения 4,2 В.
    В конструкции предусмотрены регулировочные сопротивления, в процессе зарядки работает контрольный светодиод красного цвета. Для подключения устройства используется внешний блок питания, коммутация к портам USB не предусмотрена конструкцией.
  2. Китайские производители массово выпускают балансировочные платы на основе стабилизатора ТР4056, которые дополнительно оснащены защитой от переполюсовки аккумуляторов. Устройство предназначено для подключения к портам USB, предусмотрен регулятор параметров зарядки.
    Оборудование контролирует процесс зарядки в автоматическом режиме, при достижении заданной емкости производится плавное снижение силы зарядного тока. В конструкции предусмотрен штекер для установки дополнительного температурного сенсора.
  3. Устройство на основе чипа NCP1835 отличается уменьшенными габаритами и универсальностью, допускается коммутация аккумуляторов с различными параметрами. Балансир обеспечивает зарядку сильно разряженных элементов путем подачи тока малой силы, предусмотрена защита от установки батареек (со звуковой индикацией). В конструкции модуля предусмотрен регулятор времени зарядки.
  4. Узел на базе контроллера зарядки S8254AA, оснащенный дополнительной балансировкой для аккумуляторов 18650. Оборудование поддерживает защиту от переразрядки и перезарядки, имеется контроль над коротким замыканием.
    Платы на основе контроллера S8254AA не оснащаются лампами, отображающими статус зарядки. Поставщики выпускают аналогичный блок без балансира, изделие отличается применением гетинакса красного цвета. Детали с балансиром изготовлены на основе гетинакса темно-синего цвета.

Базовая схема балансира самодельного типа включает в себя стабилитрон TL431A (с повышенной точностью управления) и транзистор BD140 (относится к типу изделий с прямой проводимостью).

В цепь включаются сопротивления, которые допускается заменить диодами 1N4007. При использовании диодов учитывается нагрев элементов при работе, при изготовлении монтажной платы принимают во внимание необходимость охлаждения узлов.

Для регулировки требуется подать постоянное напряжение 5 В на входы устройства. В цепи предусмотрен резистор, изменяя значение сопротивления, необходимо добиться напряжения 4,2 В на колодках, предназначенных для установки литий-ионных аккумуляторов.

Для подачи питания в рабочем режиме используется трансформатор, напряжение равно суммарному значению подключенных аккумуляторов. На каждый элемент подается запас напряжения в пределах 0,15 В. Например, для зарядки 3 элементов требуется подвести напряжение 3*4,2+3*0,15=13,05 В.

Устройство обеспечивает зарядку батарей до момента достижения напряжения 4,2 В. После фиксации параметра включается стабилитрон, который активирует подачу питания через транзистор к балластным резисторам, имеющим сопротивление 4 Ом. В цепи предусматриваются контрольные светодиоды, которые включаются при подаче питания в балластную цепь.

Упрощенный блок на основе стабилитрона TL431A строится с использованием полупроводникового транзистора, удовлетворяющего параметрам зарядки. Поскольку элемент при работе нагревается, то необходимо предусмотреть охлаждение. В основе выбора типа радиатора лежит расчет по мощности.

Например, при напряжении 4,2 В и силе тока 0,5 А расчетная мощность составит 2,1 Вт. При увеличении параметров зарядки мощность возрастает, что вызывает сложности с теплоотводом. В конструкции используется 2 сопротивления, регулирующих пороговое значение напряжения.

После подбора сопротивлений и транзистора изготавливается требуемое количество балансировочных блоков, которые ставятся на аккумуляторы во время зарядки.

Небольшие габариты устройств позволяют закрепить узлы на общей пластине. При монтаже нескольких балансиров требуется обеспечить изоляцию корпусов транзисторов (из-за подачи отрицательного питания от батареи).

Читайте также:  Ноутбук haier зарядное устройство

Источник

Активный балансир для LiFePO4 своими руками

Активный балансир для LiFePO4 своими руками

Статья обновлена: 2020-12-17

Для получения заданного выходного напряжения литиевые аккумуляторы последовательно соединяются в батарею. Например, для получения батареи вольтажом 24 В последовательно соединяется 7 или 8 LiFePO4 аккумуляторов, а для получения вольтажа 36 В – 10–12 элементов. При зарядке аккумуляторной сборки от общего источника питания с напряжением, соответствующим вольтажу АКБ, нужно обеспечить равномерный уровень заряда всех элементов. При этом важно, чтобы напряжение на каждом элементе не превысило допустимого значения.

Но элементы питания в сборке не идентичны, и достигают предельно допустимого напряжения в разное время. С другой стороны, когда хотя бы на одном аккумуляторе напряжение достигнет допустимого максимума, процесс зарядки необходимо прекратить. Но в таком случае остальные ячейки остаются недозаряженными, и при дальнейшем использовании они разряжаются быстрее.

Такой дисбаланс между ячейками приводит к снижению емкости всей батареи, сокращению времени ее автономной работы и преждевременному выходу из строя «слабых звеньев» – аккумуляторов, которые постоянно оказывались недозаряженными. Для решения этой проблемы используются балансиры. Они выравнивают напряжение на всех аккумах сборки и не позволяют ему превысить пороговое значение. Балансиры могут использоваться как самостоятельно, так и в составе многофункциональных BMS плат или совместно с ними.

Принцип работы

Балансирующие системы отслеживают напряжение на последовательно соединенных аккумах, а когда оно достигает граничной величины – включают силовой ключ. Тогда в работу включается балластный резистор. Прирост напряжения на подзаряжаемой ячейке останавливается, когда остаточный ток заряда становится соизмеримым току, идущему через резистор. Остальные элементы, еще не набравшие заряд, в это время продолжают заряжаться.

Процесс зарядки аккумуляторной сборки завершается после срабатывания всех балансиров. В итоге вольтаж всех элементов сборки становится равным заданной предельной величине. В зависимости от используемой схемы, балансиры для LiFePO4 аккумуляторов имеют ток срабатывания 3,52–3,55 В. Номинально вольтаж LFP ячеек составляет 3,2–3,3 В. В заряженном состоянии для них характерно напряжение 3,6 В, а в разряженном –2 В.

Виды балансировочных систем

По принципу действия различают балансиры 2 типов:

  1. Активные – выравнивающие напряжение на элементах в ходе подзарядки батареи. Когда 1-й элемент из аккумуляторной сборки достигает граничного напряжения, активная система баланса останавливает его питание, и заряжается 2-й элемент. Производители используют разные схемы балансиров для LiFePO4 элементов, в т. ч. емкостные и трансформаторные. Все они умеют распределять энергию от ячеек с большим уровнем заряда к менее заряженным. При заряде это делается выборочным снижением и повышением зарядного тока в зависимости от состояния элементов. При разряде аналогичным образом перераспределяются разрядные токи.
  2. Пассивные – используют аналоговые компоненты и не зависят от внешнего питания. Они подзаряжают аккумуляторы до нужного значения напряжения (одинакового с остальными ячейками) малыми токами и применяют резисторы. При замыкании аккумулятора шунтирующим резистором зарядный ток отчасти следует через аккум, а отчасти – через шунт. Соответственно, интенсивность зарядного процесса в отношении шунтированного аккумулятора уменьшается, и прирост напряжения на нем замедляется. КПД таких систем ниже из-за потерь энергии в виде тепла и невозможности использования всей емкости АКБ.

Балансир для LiFePO4 своими руками

Для самостоятельной сборки простого балансира для LFP ячеек можно воспользоваться распространенной схемой, которая приведена на фото. Но чтобы полноценно использовать регулируемый стабилитрон TL431, его нужно преобразовать в триггер Шмитта. В итоге получится точный и термически стабильный балансир, четко подающий управляющий импульс на силовой ключ.

Для превращения стабилитрона TL431 в триггер Шмитта достаточно включить в схему резистор R5 и p-n-p транзистор Т1. Принцип работы схемы таков: делителем R3, R4 настраивается порог отслеживаемого напряжения. При помощи делителя R3, R4 схему можно перенастроить для контроля любого другого напряжения. Значение предельного тока балансировки задает резистор R7 и напряжение на аккумуляторной секции.

Когда на управляющем электроде напряжение составит 2,5 В, произойдет открытие стабилитрона TL431 и транзистора Т1. Потенциал коллектора возрастет, и частично это напряжение пойдет в цепь через резистор R5. Произойдет лавинное вхождение TL431 в состояние насыщения. В этот момент наблюдается гистерезис – система включается при 3,6 В и выключается при 3,55 В. В затворе силового ключа создается управляющий импульс.

Такой балансир создается в виде самостоятельной платы, подключаемой к балансировочному разъему при зарядке. В современных BMS платах защита элементов питания от перенапряжения и разбалансировки по уровню заряда – это одна из функций защиты, и она выполняется микроконтроллером. Но оптимальным решением считается использование активного балансира в сочетании с BMS платой.

;

Источник